References
Baxter S W, Zhao J Z, Shelton A M, Vogel H, Heckel D G. 2008. Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella . Insect Biochem. Molec. 38: 125-135.
Blackburn MB, Loeb MJ, Clark E, Jaffe H. 2004. Stimulation of midgut stem cell proliferation by Manduca sexta alpha-arylphorin. Arch Insect Biochem Physiol 55: 26–32.
Bravo A, Gill S S, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 49: 423-435.
Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill S S, Soberon M. 2004. Oligomerization triggers binding of aBacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta. 1667: 38-46.
Bravo A, Likitvivatanavong S, Gill S S, Soberon M. 2011. Bacillus thuringiensis : A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423-431.
Bravo A, Soberon M. 2008. How to cope with insect resistance to Bt toxins? Trends Biotechnol. 26: 573-579.
Candas M, Loseva O, Oppert B, Kosaraju P, Bulla L A. 2003. Insect resistance to Bacillus thuringiensis - Alterations in the indianmeal moth larval gut proteome. Mol. Cell Proteomics 2: 19-28.
Chang X L, Wu Q J, Wang S L, Wang R, Yang Z X, Chen D F, Jiao X G, Mao Z C, Zhang Y J. 2012. Determining the involvement of two aminopeptidase Ns in the resistance of Plutella xylostella to the Bt toxin Cry1Ac: Cloning and study of in vitro function. J. Biochem. Mol. Toxic 26: 60-70.
Chen Y Z, Li M W, Islam I, You L, Wang Y Q, Li Z Q, Ling L, Zeng B S, Xu J, Huang,Y P, Tan A J. 2014. Allelic-specific expression in relation toBombyx mori resistance to Bt toxin. Insect Biochem. Molec.54: 53-60.
Derbyshire D J, Ellar D J, Li J. 2001. Crystallization of theBacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D Biol. Crystallogr. 57: 1938-1944.
Dhoot G K, Gustafsson M K, Ai X B, Sun W T, Standiford D M, Emerson C P. 2001. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293: 1663-1666.
Ferre J, Real M D, Vanrie J, Jansens S, Peferoen M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 88: 5119-5123.
Ferré J, van Rie J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis . Annu Rev Entomol. 47:501-33.
Furlong M J, Wright D J, Dosdall L M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58: 517-541.
Guo Z J, Kang S, Chen D F, Wu Q J, Wang S L, Xie W, Zhu X, Baxter S W, Zhou X G, Jurat-Fuentes J L, Zhang Y J. 2015. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance toBacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet. 11.
Halkier B A, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57: 303-333.
Hanson S R, Best M D, Wong C H. 2004. Sulfatases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. Engl. 43: 5736-5763
Heckel D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M, Gould F, Tabashnik B E. 2007. The diversity of Bt resistance genes in species of Lepidoptera. J. Invertebr. Pathol. 95: 192-197.
Jurat-Fuentes J L, Adang M J. 2004. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistantHeliothis virescens larvae. Eur. J. Biochem. 271: 3127-3135.
Krishnamoorthy M, Jurat-Fuentes J L, McNall R J, Andacht T, Adang M J. 2007. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem. Molec. 37: 189-201.
Liu Y B, Tabashnik B E, Meyer S K, Crickmore N. 2001. Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Appl. Environ. Microb. 67: 3216-3219.
Luque-Garcia J L, Zhou G, Spellman D S, Sun T T, Neubert T A. 2008. Analysis of electroblotted proteins by mass spectrometry: protein identification after western blotting. Mol. Cell Proteomics. 7: 308-314.
McNall R J. 2014. Proteomic analyses of the interaction of insect midgut proteins with Bacillus thuringiensis toxins. Ph. D. thesis, The University of Vermont.
Micchelli CA, Perrimon N. 2006. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439: 475–479.
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S. 2011. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics. 10.
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S. 2011. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics 10.
Nakanishi, K, Yaoi K, Nagino Y. Hara H, Kitami M, Atsumi S, Miura N, Sato R. 2002. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella -their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. Febs. Lett. 519: 215-220
Qiu L, Cui S, Liu L, Zhang B, Ma W, Wang X, Lei C, Chen L. 2017. Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua. Scientific reports. 7:45007.
Ragsdale E J, Muller M R, Rodelsperger C, Sommer R J. 2013. A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155: 922-933.
Ratzka A, Vogel H, Kliebenstein D J, Mitchell-Olds T, Kroymann J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99: 11223-11228.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108.
Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik B E, Bravo A. 2007. Engineering modified Bt toxins to counter insect resistance. Science. 318: 1640-1642.
Tabashnik B E, Carrière Y. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol. 35: 926-935.
Tabashnik B E, Finson N, Johnson M W, Moar W J. 1993. Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera: Plutellidae). Appl. Environ. Microb. 59: 1332-1335.
Tabashnik B E, Liu Y B, Finson N, Masson L, Heckel D G. 1997. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. U. S. A. 94: 1640-1644.
Tabashnik B E, Malvar T, Liu Y B, Finson N, Borthakur D, Shin B S, Park S H, Masson L, DeMaagd R A, Bosch D. 1996. Cross-resistance of the diamondback moth indicates altered interactions with domain II ofBacillus thuringiensis toxins. Appl. Environ. Microb. 62: 2839-2844.
Tabashnik B E. 1994 Evolution of resistance to Bacillus Thuringiensis . Annu. Rev. Entomol. 39: 47-79.
Tan A J, Fu G L, Jin L, Guo Q H, Li Z Q, Niu B L, Meng Z Q, Morrison N I, Alphey L, Huang Y P. 2013. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori . Proc. Natl. Acad. Sci. U. S. A. 110: 6766-6770.
Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y, Feyereisen R, Wu Y. 2018. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun. 9: 4820.
Wei J, Zhang M, Liang G, Wu K, Guo Y, Ni X, Li X. 2016. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Scientific reports. 6:19179.
Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi F V, Giordana B, Hanozet G M. 1987. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae ). Comp. Biochem.Physiol. 86: 301-308.
Wu Y, Li Q, Chen X Z. 2007. Detecting protein-protein interactions by far western blotting. Nat. Protoc. 2: 3278-3284.
You M S, Yue Z, He W Y, Yang X H, Yang G, Xie M, Zhan D L, Baxter S W, Vasseur L, Gurr G M, Douglas C J, Bai J L, Wang P, Cui K, Huang S G, Li X C, Zhou Q, Wu Z Y, Chen Q L, Liu C H, Wang B, Li X J, Xu X F, Lu C X, Hu M, Davey J W, Smith S M, Chen M S, Xia X F, Tang W Q, Ke F S, Zheng D D, Hu Y L, Song F Q, You Y C, Ma X L, Peng L, Zheng Y K, Liang Y, Chen Y Q, Yu L Y, Zhang Y N, Liu Y Y, Li G Q, Fang L, Li J X, Zhou X, Luo Y D, Gou C Y, Wang J Y, Wang J, Yang H M, Wang J. 2013. A heterozygous moth genome provides insights into herbivory and detoxification Nat Genet. 45: 220-225.
Zhang X B, Candas M, Griko N B, Taussig R, Bulla L A. 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis . Proc. Natl. Acad. Sci. U. S. A. 103: 9897-9902.