References
Baxter S W, Zhao J Z, Shelton A M, Vogel H, Heckel D G. 2008. Genetic
mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain
of diamondback moth Plutella xylostella . Insect Biochem. Molec.
38: 125-135.
Blackburn MB, Loeb MJ, Clark E, Jaffe H. 2004. Stimulation of midgut
stem cell proliferation by Manduca sexta alpha-arylphorin. Arch
Insect Biochem Physiol 55: 26–32.
Bravo A, Gill S S, Soberon M. 2007. Mode of action of Bacillus
thuringiensis Cry and Cyt toxins and their potential for insect
control. Toxicon. 49: 423-435.
Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang
M, Gill S S, Soberon M. 2004. Oligomerization triggers binding of aBacillus thuringiensis Cry1Ab pore-forming toxin to
aminopeptidase N receptor leading to insertion into membrane
microdomains. Biochim. Biophys. Acta. 1667: 38-46.
Bravo A, Likitvivatanavong S, Gill S S, Soberon M. 2011. Bacillus
thuringiensis : A story of a successful bioinsecticide. Insect Biochem.
Mol. Biol. 41: 423-431.
Bravo A, Soberon M. 2008. How to cope with insect resistance to Bt
toxins? Trends Biotechnol. 26: 573-579.
Candas M, Loseva O, Oppert B, Kosaraju P, Bulla L A. 2003. Insect
resistance to Bacillus thuringiensis - Alterations in the
indianmeal moth larval gut proteome. Mol. Cell Proteomics 2: 19-28.
Chang X L, Wu Q J, Wang S L, Wang R, Yang Z X, Chen D F, Jiao X G, Mao Z
C, Zhang Y J. 2012. Determining the involvement of two aminopeptidase Ns
in the resistance of Plutella xylostella to the Bt toxin Cry1Ac:
Cloning and study of in vitro function. J. Biochem. Mol. Toxic 26:
60-70.
Chen Y Z, Li M W, Islam I, You L, Wang Y Q, Li Z Q, Ling L, Zeng B S, Xu
J, Huang,Y P, Tan A J. 2014. Allelic-specific expression in relation toBombyx mori resistance to Bt toxin. Insect Biochem. Molec.54: 53-60.
Derbyshire D J, Ellar D J, Li J. 2001. Crystallization of theBacillus thuringiensis toxin Cry1Ac and its complex with the
receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D Biol.
Crystallogr. 57: 1938-1944.
Dhoot G K, Gustafsson M K, Ai X B, Sun W T, Standiford D M, Emerson C P.
2001. Regulation of Wnt signaling and embryo patterning by an
extracellular sulfatase. Science 293: 1663-1666.
Ferre J, Real M D, Vanrie J, Jansens S, Peferoen M. 1991. Resistance to
the Bacillus thuringiensis bioinsecticide in a field population
of Plutella xylostella is due to a change in a midgut membrane
receptor. Proc. Natl. Acad. Sci. U. S. A. 88: 5119-5123.
Ferré J, van Rie J. 2002. Biochemistry and genetics of insect resistance
to Bacillus thuringiensis . Annu Rev Entomol. 47:501-33.
Furlong M J, Wright D J, Dosdall L M. 2013. Diamondback moth ecology and
management: problems, progress, and prospects. Annu. Rev. Entomol. 58:
517-541.
Guo Z J, Kang S, Chen D F, Wu Q J, Wang S L, Xie W, Zhu X, Baxter S W,
Zhou X G, Jurat-Fuentes J L, Zhang Y J. 2015. MAPK signaling pathway
alters expression of midgut ALP and ABCC genes and causes resistance toBacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS
Genet. 11.
Halkier B A, Gershenzon J. 2006. Biology and biochemistry of
glucosinolates. Annu. Rev. Plant Biol. 57: 303-333.
Hanson S R, Best M D, Wong C H. 2004. Sulfatases: Structure, mechanism,
biological activity, inhibition, and synthetic utility. Angew. Chem.
Int. Ed. Engl. 43: 5736-5763
Heckel D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M, Gould F,
Tabashnik B E. 2007. The diversity of Bt resistance genes in species of
Lepidoptera. J. Invertebr. Pathol. 95: 192-197.
Jurat-Fuentes J L, Adang M J. 2004. Characterization of a
Cry1Ac-receptor alkaline phosphatase in susceptible and resistantHeliothis virescens larvae. Eur. J. Biochem. 271: 3127-3135.
Krishnamoorthy M, Jurat-Fuentes J L, McNall R J, Andacht T, Adang M J.
2007. Identification of novel Cry1Ac binding proteins in midgut
membranes from Heliothis virescens using proteomic analyses.
Insect Biochem. Molec. 37: 189-201.
Liu Y B, Tabashnik B E, Meyer S K, Crickmore N. 2001. Cross-resistance
and stability of resistance to Bacillus thuringiensis toxin Cry1C
in diamondback moth. Appl. Environ. Microb. 67: 3216-3219.
Luque-Garcia J L, Zhou G, Spellman D S, Sun T T, Neubert T A. 2008.
Analysis of electroblotted proteins by mass spectrometry: protein
identification after western blotting. Mol. Cell Proteomics. 7: 308-314.
McNall R J. 2014. Proteomic analyses of the interaction of insect midgut
proteins with Bacillus thuringiensis toxins. Ph. D. thesis, The
University of Vermont.
Micchelli CA, Perrimon N. 2006. Evidence that stem cells reside in the
adult Drosophila midgut epithelium. Nature 439: 475–479.
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A,
Nagaraj N, Cox J, Mann M, Horning S. 2011. Mass spectrometry-based
proteomics using Q Exactive, a high-performance benchtop quadrupole
Orbitrap mass spectrometer. Mol. Cell Proteomics. 10.
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A,
Nagaraj N, Cox J, Mann M, Horning S. 2011. Mass spectrometry-based
proteomics using Q Exactive, a high-performance benchtop quadrupole
Orbitrap mass spectrometer. Mol. Cell Proteomics 10.
Nakanishi, K, Yaoi K, Nagino Y. Hara H, Kitami M, Atsumi S, Miura N,
Sato R. 2002. Aminopeptidase N isoforms from the midgut of Bombyx
mori and Plutella xylostella -their classification and the
factors that determine their binding specificity to Bacillus
thuringiensis Cry1A toxin. Febs. Lett. 519: 215-220
Qiu L, Cui S, Liu L, Zhang B, Ma W, Wang X, Lei C, Chen L. 2017.
Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity
in the beet armyworm, Spodoptera exigua. Scientific reports. 7:45007.
Ragsdale E J, Muller M R, Rodelsperger C, Sommer R J. 2013. A
developmental switch coupled to the evolution of plasticity acts through
a sulfatase. Cell 155: 922-933.
Ratzka A, Vogel H, Kliebenstein D J, Mitchell-Olds T, Kroymann J. 2002.
Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99:
11223-11228.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the
comparative C(T) method. Nat. Protoc. 3: 1101-1108.
Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik B E, Bravo A.
2007. Engineering modified Bt toxins to counter insect resistance.
Science. 318: 1640-1642.
Tabashnik B E, Carrière Y. 2017. Surge in insect resistance to
transgenic crops and prospects for sustainability. Nat Biotechnol. 35:
926-935.
Tabashnik B E, Finson N, Johnson M W, Moar W J. 1993. Resistance to
toxins from Bacillus thuringiensis subsp. kurstaki causes minimal
cross-resistance to B. thuringiensis subsp. aizawai in the
diamondback moth (Lepidoptera: Plutellidae). Appl. Environ. Microb. 59:
1332-1335.
Tabashnik B E, Liu Y B, Finson N, Masson L, Heckel D G. 1997. One gene
in diamondback moth confers resistance to four Bacillus
thuringiensis toxins. Proc. Natl. Acad. Sci. U. S. A. 94: 1640-1644.
Tabashnik B E, Malvar T, Liu Y B, Finson N, Borthakur D, Shin B S, Park
S H, Masson L, DeMaagd R A, Bosch D. 1996. Cross-resistance of the
diamondback moth indicates altered interactions with domain II ofBacillus thuringiensis toxins. Appl. Environ. Microb. 62:
2839-2844.
Tabashnik B E. 1994 Evolution of resistance to Bacillus
Thuringiensis . Annu. Rev. Entomol. 39: 47-79.
Tan A J, Fu G L, Jin L, Guo Q H, Li Z Q, Niu B L, Meng Z Q, Morrison N
I, Alphey L, Huang Y P. 2013. Transgene-based, female-specific lethality
system for genetic sexing of the silkworm, Bombyx mori . Proc.
Natl. Acad. Sci. U. S. A. 110: 6766-6770.
Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y, Feyereisen R, Wu Y. 2018.
CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in
detoxification of phytochemicals and insecticides. Nat Commun. 9: 4820.
Wei J, Zhang M, Liang G, Wu K, Guo Y, Ni X, Li X. 2016. APN1 is a
functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea.
Scientific reports. 6:19179.
Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi F V, Giordana B,
Hanozet G M. 1987. Preparation and partial characterization of amino
acid transporting brush border membrane vesicles from the larval midgut
of the cabbage butterfly (Pieris brassicae ). Comp.
Biochem.Physiol. 86: 301-308.
Wu Y, Li Q, Chen X Z. 2007. Detecting protein-protein interactions by
far western blotting. Nat. Protoc. 2: 3278-3284.
You M S, Yue Z, He W Y, Yang X H, Yang G, Xie M, Zhan D L, Baxter S W,
Vasseur L, Gurr G M, Douglas C J, Bai J L, Wang P, Cui K, Huang S G, Li
X C, Zhou Q, Wu Z Y, Chen Q L, Liu C H, Wang B, Li X J, Xu X F, Lu C X,
Hu M, Davey J W, Smith S M, Chen M S, Xia X F, Tang W Q, Ke F S, Zheng D
D, Hu Y L, Song F Q, You Y C, Ma X L, Peng L, Zheng Y K, Liang Y, Chen Y
Q, Yu L Y, Zhang Y N, Liu Y Y, Li G Q, Fang L, Li J X, Zhou X, Luo Y D,
Gou C Y, Wang J Y, Wang J, Yang H M, Wang J. 2013. A heterozygous moth
genome provides insights into herbivory and detoxification Nat Genet.
45: 220-225.
Zhang X B, Candas M, Griko N B, Taussig R, Bulla L A. 2006. A mechanism
of cell death involving an adenylyl cyclase/PKA signaling pathway is
induced by the Cry1Ab toxin of Bacillus thuringiensis . Proc.
Natl. Acad. Sci. U. S. A. 103: 9897-9902.