REFERENCES
Akaike, H. (1987). Factor analysis and AIC. Psychometrika , 52, 317–332.
Alexander, J.M., Kueffer, C., Daehler, C.C., Edwards, P.J., Pauchard, A., Seipel, T., et al. (2011). Assembly of nonnative floras along elevational gradients explained by directional ecological filtering.Proc. Natl. Acad. Sci. , 108, 656–661.
Allen, J.A. (1877). The influence of physical conditions in the genesis of species. Radic. Rev. , 1, 108–140.
Altshuler, D.L. & Dudley, R. (2006). The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. , 46, 62–71.
Barta, Z., Houston, A.I., McNamara, J.M., Welham, R.K., Hedenström, A., Weber, T.P., et al. (2006). Annual routines of non-migratory birds: optimal moult strategies. Oikos , 112, 580–593.
Barta, Z., McNamara, J.M., Houston, A.I., Weber, T.P., Hedenström, A. & Fero, O. (2008). Optimal moult strategies in migratory birds.Philos. Trans. R. Soc. London B Biol. Sci. , 363, 211–229.
Barton, K. & Barton, M.K. (2019). Package ‘MuMIn.’ R Packag. version , 1, 1–75.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., et al. (2012). Package ‘lme4.’ R Packag. version , 1–122.
BirdLife International and NatureServe. (2014). Bird species distribution maps of the world . BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.
Bojarinova, J.G., Lehikoinen, E. & Eeva, T. (1999). Dependence of postjuvenile moult on hatching date, condition and sex in the Great Tit.J. Avian Biol. , 30, 437–446.
Bridge, E.S. (2008). How does imping affect wing Performance? J. Wildl. Rehabil. , 29, 4–9.
Briedis, M., Bauer, S., Adamík, P., Alves, J.A., Costa, J.S., Emmenegger, T., et al. (2020). Broad‐scale patterns of the Afro‐Palaearctic landbird migration. Glob. Ecol. Biogeogr.
Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. , 15, 70–76.
Condamine, F.L., Sperling, F.A.H., Wahlberg, N., Rasplus, J. & Kergoat, G.J. (2012). What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. , 15, 267–277.
Crates, R.A., Sheldon, B.C. & Garroway, C.J. (2015). Causes and consequences of individual variation in the extent of post‐juvenile moult in the blue tit Cyanistes caeruleus (Passeriformes: Paridae).Biol. J. Linn. Soc. , 116, 341–351.
Dunn, R.R., Colwell, R.K. & Nilsson, C. (2006). The river domain: why are there more species halfway up the river? Ecography (Cop.). , 29, 251–259.
Dunning Jr, J.B. (2007). CRC handbook of avian body masses . CRC press, Florida.
Felsenstein, J. (1985). Phylogenies and the comparative method.Am. Nat. , 125, 1–15.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37, 4302–4315.
Finlay, J.C., Hood, J.M., Limm, M.P., Power, M.E., Schade, J.D. & Welter, J.R. (2011). Light‐mediated thresholds in stream‐water nutrient composition in a river network. Ecology , 92, 140–150.
Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. , 160, 712–726.
Füreder, L., Wallinger, M. & Burger, R. (2005). Longitudinal and seasonal pattern of insect emergence in alpine streams. Aquat. Ecol. , 39, 67–78.
Gaston, K.J. (1996). Biodiversity-latitudinal gradients. Prog. Phys. Geogr. , 20, 466–476.
Gaston, K.J. (2000). Global patterns in biodiversity. Nature , 405, 220–227.
Grant, B.R. (1990). The significance of subadult plumage in Darwin’s finches, Geospiza fortis. Behav. Ecol. , 1, 161–170.
Han, W.X., Fang, J.Y., Reich, P.B., Ian Woodward, F. & Wang, Z.H. (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. , 14, 788–796.
Hanson, M.T. & Coss, R.G. (1997). Age differences in the response of California ground Squirrels (Spermophilus beecheyi) to avian and mammalian predators. J. Comp. Psychol. , 111, 174.
Hemborg, C., Sanz, J. & Lundberg, A. (2001). Effects of latitude on the trade-off between reproduction and moult: a long-term study with pied flycatcher. Oecologia , 129, 206–212.
Hijmans, R.J. & van Etten, J. (2016). raster: Geographic data analysis and modeling. R Packag. version , 2.
Hodkinson, I.D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. , 80, 489–513.
Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (2019). Handbook of the birds of the world alive . Lynx Edicions, Barcelona.
Jenni, L. & Winkler, R. (1994). Moult and ageing of European passerines . A&C Black, London.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in space and time. Nature , 491, 444–448.
Kiat, Y. & Izhaki, I. (2016). Why renew fresh feathers? Advantages and conditions for the evolution of complete post-juvenile moult. J. Avian Biol. , 47, 47–56.
Kiat, Y., Izhaki, I. & Sapir, N. (2019a). The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. , 94, 700–720.
Kiat, Y. & Sapir, N. (2017). Age-dependent modulation of songbird summer feather moult by temporal and functional constraints. Am. Nat. , 189, 184–195.
Kiat, Y. & Sapir, N. (2018). Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Linn. Soc. , 125, 613–624.
Kiat, Y., Vortman, Y. & Sapir, N. (2019b). Feather moult and bird appearance are correlated with global warming over the last 200 years.Nat. Commun. , 10, 1–7.
de la Hera, I., Díaz, J. a., Pérez-Tris, J. & Tellería, J.L. (2009). A comparative study of migratory behaviour and body mass as determinants of moult duration in passerines. J. Avian Biol. , 40, 461–465.
Lawson, A.M. & Weir, J.T. (2014). Latitudinal gradients in climatic‐niche evolution accelerate trait evolution at high latitudes.Ecol. Lett. , 17, 1427–1436.
Makarieva, A.M., Gorshkov, V.G. & Li, B.-L. (2009). Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol. Complex. , 6, 302–307.
Marchetti, K. & Price, T. (1989). Differences in the foraging of juvenile and adult birds: the importance of developmental constraints.Biol. Rev. , 64, 51–70.
McKinnon, L., Smith, P.A., Nol, E., Martin, J.L., Doyle, F.I., Abraham, K.F., et al. (2010). Lower predation risk for migratory birds at high latitudes. Science (80-. ). , 327, 326–327.
Minias, P. & Iciek, T. (2013). Extent and symmetry of post-juvenile moult as predictors of future performance in Greenfinch Carduelis chloris. J. Ornithol. , 154, 465–468.
Mittelbach, G.G., Schemske, D.W., Cornell, H. V, Allen, A.P., Brown, J.M., Bush, M.B., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. , 10, 315–331.
Møller, A.P., Fiedler, W. & Berthold, P. (2010). Effects of climate change on birds . OUP Oxford.
Murray, B.R., Brown, A.H.D., Dickman, C.R. & Crowther, M.S. (2004). Geographical gradients in seed mass in relation to climate. J. Biogeogr. , 31, 379–388.
Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M., et al. (2009). Global biogeography and ecology of body size in birds. Ecol. Lett. , 12, 249–259.
Orme, D. (2013). The caper package: comparative analysis of phylogenetics and evolution in R. R Packag. , 5, 1–36.
Osorio‐Canadas, S., Arnan, X., Rodrigo, A., Torné‐Noguera, A., Molowny, R. & Bosch, J. (2016). Body size phenology in a regional bee fauna: a temporal extension of Bergmann’s rule. Ecol. Lett. , 19, 1395–1402.
Pagel, M. (1997). Inferring evolutionary processes from phylogenies.Zool. Scr. , 26, 331–348.
Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., et al. (2018). Comparing species interaction networks along environmental gradients. Biol. Rev. , 93, 785–800.
Petrů, M., Tielbörger, K., Belkin, R., Sternberg, M. & Jeltsch, F. (2006). Life history variation in an annual plant under two opposing environmental constraints along an aridity gradient. Ecography (Cop.). , 29, 66–74.
Pulido, F. & Berthold, P. (2010). Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. , 107, 7341–7346.
Rajala, M., Rätti, O. & Suhonen, J. (2003). Age differences in the response of willow tits (Parus montanus) to conspecific alarm calls.Ethology , 109, 501–509.
Ricklefs, R.E. (2004). A comprehensive framework for global patterns in biodiversity. Ecol. Lett. , 7, 1–15.
Rohwer, S., Butler, L.K., Froehlich, D.R., Greenberg, R. & Marra, P.P. (2005). Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. Birds Two Worlds Ecol. Evol. Migr. (R. Greenb. PP Marra, Eds.). Johns Hopkins Univ. Press. Balt. Maryl. , 87–105.
Rohwer, S., Ricklefs, R.E., Rohwer, V.G. & Copple, M.M. (2009). Allometry of the duration of flight feather molt in birds. PLoS Biol. , 7, 1246.
Roselaar, K. (2006). The boundaries of the Palearctic region. Br. Birds , 99, 602.
Roy, K., Jablonski, D., Valentine, J.W. & Rosenberg, G. (1998). Marine latitudinal diversity gradients: tests of causal hypotheses. Proc. Natl. Acad. Sci. , 95, 3699–3702.
Rubolini, D., Liker, A., Garamszegi, L.Z., Møller, A.P. & Saino, N. (2015). Using the BirdTree. org website to obtain robust phylogenies for avian comparative studies: A primer. Curr. Zool. , 61, 959–965.
Sclater, P.L. (1858). On the general geographical distribution of the members of the class Aves. J. Proc. Linn. Soc. London. Zool. , 2, 130–136.
Seebohm, H. (1901). The Birds of Siberia: A Record of a Naturalist’s Visits to the Valleys of the Petchora and Yenesei . John Murray, London.
Senar, J.C., Copete, J.L. & Martin, A.J. (1998). Behavioural and morphological correlates of variation in the extent of postjuvenile moult in the Siskin Carduelis spinus. Ibis (Lond. 1859). , 140, 661–669.
Steudel, B., Hector, A., Friedl, T., Löfke, C., Lorenz, M., Wesche, M.,et al. (2012). Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol. Lett. , 15, 1397–1405.
Tomotani, B.M., van der Jeugd, H., Gienapp, P., de la Hera, I., Pilzecker, J., Teichmann, C., et al. (2018). Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Chang. Biol. , 24, 823–835.
Tutin, T.G., Heywood, V.H., Burges, N.A. & Valentine, D.H. (1964).Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae) . Cambridge University Press.
Visser, M.E., Perdeck, A.C., Balen, V., Johan, H. & Both, C. (2009). Climate change leads to decreasing bird migration distances. Glob. Chang. Biol. , 15, 1859–1865.
Walter, H., Harnickell, E. & Mueller-Dombois, D. (1975). Climate diagram maps. Ind. Ctries. Ecol. Clim. Reg. earth. Suppl. to veg. Monogr. , 8.
Zhang, D. (2018). rsq: R-squared and related measures. R Packag. version , 1, 1–21.
Table 1. The effects of difference in (Δ) migration distance, mean latitude and body mass on the Δ moult extent (longitude difference between Eastern and Western Palearctic populations): list of statistical models (PGLS), statistics and Akaike Information Criterion (AICc).