REFERENCES
Akaike, H. (1987). Factor analysis and AIC. Psychometrika , 52,
317–332.
Alexander, J.M., Kueffer, C., Daehler, C.C., Edwards, P.J., Pauchard,
A., Seipel, T., et al. (2011). Assembly of nonnative floras along
elevational gradients explained by directional ecological filtering.Proc. Natl. Acad. Sci. , 108, 656–661.
Allen, J.A. (1877). The influence of physical conditions in the genesis
of species. Radic. Rev. , 1, 108–140.
Altshuler, D.L. & Dudley, R. (2006). The physiology and biomechanics of
avian flight at high altitude. Integr. Comp. Biol. , 46, 62–71.
Barta, Z., Houston, A.I., McNamara, J.M., Welham, R.K., Hedenström, A.,
Weber, T.P., et al. (2006). Annual routines of non-migratory
birds: optimal moult strategies. Oikos , 112, 580–593.
Barta, Z., McNamara, J.M., Houston, A.I., Weber, T.P., Hedenström, A. &
Fero, O. (2008). Optimal moult strategies in migratory birds.Philos. Trans. R. Soc. London B Biol. Sci. , 363, 211–229.
Barton, K. & Barton, M.K. (2019). Package ‘MuMIn.’ R Packag.
version , 1, 1–75.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B.,
Singmann, H., et al. (2012). Package ‘lme4.’ R Packag.
version , 1–122.
BirdLife International and NatureServe. (2014). Bird species
distribution maps of the world . BirdLife International, Cambridge, UK
and NatureServe, Arlington, USA.
Bojarinova, J.G., Lehikoinen, E. & Eeva, T. (1999). Dependence of
postjuvenile moult on hatching date, condition and sex in the Great Tit.J. Avian Biol. , 30, 437–446.
Bridge, E.S. (2008). How does imping affect wing Performance? J.
Wildl. Rehabil. , 29, 4–9.
Briedis, M., Bauer, S., Adamík, P., Alves, J.A., Costa, J.S.,
Emmenegger, T., et al. (2020). Broad‐scale patterns of the
Afro‐Palaearctic landbird migration. Glob. Ecol. Biogeogr.
Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric
constraints on the geography of species richness. Trends Ecol.
Evol. , 15, 70–76.
Condamine, F.L., Sperling, F.A.H., Wahlberg, N., Rasplus, J. & Kergoat,
G.J. (2012). What causes latitudinal gradients in species diversity?
Evolutionary processes and ecological constraints on swallowtail
biodiversity. Ecol. Lett. , 15, 267–277.
Crates, R.A., Sheldon, B.C. & Garroway, C.J. (2015). Causes and
consequences of individual variation in the extent of post‐juvenile
moult in the blue tit Cyanistes caeruleus (Passeriformes: Paridae).Biol. J. Linn. Soc. , 116, 341–351.
Dunn, R.R., Colwell, R.K. & Nilsson, C. (2006). The river domain: why
are there more species halfway up the river? Ecography (Cop.). ,
29, 251–259.
Dunning Jr, J.B. (2007). CRC handbook of avian body masses . CRC
press, Florida.
Felsenstein, J. (1985). Phylogenies and the comparative method.Am. Nat. , 125, 1–15.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial
resolution climate surfaces for global land areas. Int. J.
Climatol. , 37, 4302–4315.
Finlay, J.C., Hood, J.M., Limm, M.P., Power, M.E., Schade, J.D. &
Welter, J.R. (2011). Light‐mediated thresholds in stream‐water nutrient
composition in a river network. Ecology , 92, 140–150.
Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic
analysis and comparative data: a test and review of evidence. Am.
Nat. , 160, 712–726.
Füreder, L., Wallinger, M. & Burger, R. (2005). Longitudinal and
seasonal pattern of insect emergence in alpine streams. Aquat.
Ecol. , 39, 67–78.
Gaston, K.J. (1996). Biodiversity-latitudinal gradients. Prog.
Phys. Geogr. , 20, 466–476.
Gaston, K.J. (2000). Global patterns in biodiversity. Nature ,
405, 220–227.
Grant, B.R. (1990). The significance of subadult plumage in Darwin’s
finches, Geospiza fortis. Behav. Ecol. , 1, 161–170.
Han, W.X., Fang, J.Y., Reich, P.B., Ian Woodward, F. & Wang, Z.H.
(2011). Biogeography and variability of eleven mineral elements in plant
leaves across gradients of climate, soil and plant functional type in
China. Ecol. Lett. , 14, 788–796.
Hanson, M.T. & Coss, R.G. (1997). Age differences in the response of
California ground Squirrels (Spermophilus beecheyi) to avian and
mammalian predators. J. Comp. Psychol. , 111, 174.
Hemborg, C., Sanz, J. & Lundberg, A. (2001). Effects of latitude on the
trade-off between reproduction and moult: a long-term study with pied
flycatcher. Oecologia , 129, 206–212.
Hijmans, R.J. & van Etten, J. (2016). raster: Geographic data analysis
and modeling. R Packag. version , 2.
Hodkinson, I.D. (2005). Terrestrial insects along elevation gradients:
species and community responses to altitude. Biol. Rev. , 80,
489–513.
Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E.
(2019). Handbook of the birds of the world alive . Lynx Edicions,
Barcelona.
Jenni, L. & Winkler, R. (1994). Moult and ageing of European
passerines . A&C Black, London.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012).
The global diversity of birds in space and time. Nature , 491,
444–448.
Kiat, Y. & Izhaki, I. (2016). Why renew fresh feathers? Advantages and
conditions for the evolution of complete post-juvenile moult. J.
Avian Biol. , 47, 47–56.
Kiat, Y., Izhaki, I. & Sapir, N. (2019a). The effects of long-distance
migration on the evolution of moult strategies in Western-Palearctic
passerines. Biol. Rev. , 94, 700–720.
Kiat, Y. & Sapir, N. (2017). Age-dependent modulation of songbird
summer feather moult by temporal and functional constraints. Am.
Nat. , 189, 184–195.
Kiat, Y. & Sapir, N. (2018). Life-history trade-offs result in
evolutionary optimization of feather quality. Biol. J. Linn.
Soc. , 125, 613–624.
Kiat, Y., Vortman, Y. & Sapir, N. (2019b). Feather moult and bird
appearance are correlated with global warming over the last 200 years.Nat. Commun. , 10, 1–7.
de la Hera, I., Díaz, J. a., Pérez-Tris, J. & Tellería, J.L. (2009). A
comparative study of migratory behaviour and body mass as determinants
of moult duration in passerines. J. Avian Biol. , 40, 461–465.
Lawson, A.M. & Weir, J.T. (2014). Latitudinal gradients in
climatic‐niche evolution accelerate trait evolution at high latitudes.Ecol. Lett. , 17, 1427–1436.
Makarieva, A.M., Gorshkov, V.G. & Li, B.-L. (2009). Precipitation on
land versus distance from the ocean: evidence for a forest pump of
atmospheric moisture. Ecol. Complex. , 6, 302–307.
Marchetti, K. & Price, T. (1989). Differences in the foraging of
juvenile and adult birds: the importance of developmental constraints.Biol. Rev. , 64, 51–70.
McKinnon, L., Smith, P.A., Nol, E., Martin, J.L., Doyle, F.I., Abraham,
K.F., et al. (2010). Lower predation risk for migratory birds at
high latitudes. Science (80-. ). , 327, 326–327.
Minias, P. & Iciek, T. (2013). Extent and symmetry of post-juvenile
moult as predictors of future performance in Greenfinch Carduelis
chloris. J. Ornithol. , 154, 465–468.
Mittelbach, G.G., Schemske, D.W., Cornell, H. V, Allen, A.P., Brown,
J.M., Bush, M.B., et al. (2007). Evolution and the latitudinal
diversity gradient: speciation, extinction and biogeography. Ecol.
Lett. , 10, 315–331.
Møller, A.P., Fiedler, W. & Berthold, P. (2010). Effects of
climate change on birds . OUP Oxford.
Murray, B.R., Brown, A.H.D., Dickman, C.R. & Crowther, M.S. (2004).
Geographical gradients in seed mass in relation to climate. J.
Biogeogr. , 31, 379–388.
Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S.,
Blackburn, T.M., et al. (2009). Global biogeography and ecology
of body size in birds. Ecol. Lett. , 12, 249–259.
Orme, D. (2013). The caper package: comparative analysis of
phylogenetics and evolution in R. R Packag. , 5, 1–36.
Osorio‐Canadas, S., Arnan, X., Rodrigo, A., Torné‐Noguera, A., Molowny,
R. & Bosch, J. (2016). Body size phenology in a regional bee fauna: a
temporal extension of Bergmann’s rule. Ecol. Lett. , 19,
1395–1402.
Pagel, M. (1997). Inferring evolutionary processes from phylogenies.Zool. Scr. , 26, 331–348.
Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C.,
Loreau, M., et al. (2018). Comparing species interaction networks
along environmental gradients. Biol. Rev. , 93, 785–800.
Petrů, M., Tielbörger, K., Belkin, R., Sternberg, M. & Jeltsch, F.
(2006). Life history variation in an annual plant under two opposing
environmental constraints along an aridity gradient. Ecography
(Cop.). , 29, 66–74.
Pulido, F. & Berthold, P. (2010). Current selection for lower migratory
activity will drive the evolution of residency in a migratory bird
population. Proc. Natl. Acad. Sci. , 107, 7341–7346.
Rajala, M., Rätti, O. & Suhonen, J. (2003). Age differences in the
response of willow tits (Parus montanus) to conspecific alarm calls.Ethology , 109, 501–509.
Ricklefs, R.E. (2004). A comprehensive framework for global patterns in
biodiversity. Ecol. Lett. , 7, 1–15.
Rohwer, S., Butler, L.K., Froehlich, D.R., Greenberg, R. & Marra, P.P.
(2005). Ecology and demography of east–west differences in molt
scheduling of Neotropical migrant passerines. Birds Two Worlds
Ecol. Evol. Migr. (R. Greenb. PP Marra, Eds.). Johns Hopkins Univ.
Press. Balt. Maryl. , 87–105.
Rohwer, S., Ricklefs, R.E., Rohwer, V.G. & Copple, M.M. (2009).
Allometry of the duration of flight feather molt in birds. PLoS
Biol. , 7, 1246.
Roselaar, K. (2006). The boundaries of the Palearctic region. Br.
Birds , 99, 602.
Roy, K., Jablonski, D., Valentine, J.W. & Rosenberg, G. (1998). Marine
latitudinal diversity gradients: tests of causal hypotheses. Proc.
Natl. Acad. Sci. , 95, 3699–3702.
Rubolini, D., Liker, A., Garamszegi, L.Z., Møller, A.P. & Saino, N.
(2015). Using the BirdTree. org website to obtain robust phylogenies for
avian comparative studies: A primer. Curr. Zool. , 61, 959–965.
Sclater, P.L. (1858). On the general geographical distribution of the
members of the class Aves. J. Proc. Linn. Soc. London. Zool. , 2,
130–136.
Seebohm, H. (1901). The Birds of Siberia: A Record of a
Naturalist’s Visits to the Valleys of the Petchora and Yenesei . John
Murray, London.
Senar, J.C., Copete, J.L. & Martin, A.J. (1998). Behavioural and
morphological correlates of variation in the extent of postjuvenile
moult in the Siskin Carduelis spinus. Ibis (Lond. 1859). , 140,
661–669.
Steudel, B., Hector, A., Friedl, T., Löfke, C., Lorenz, M., Wesche, M.,et al. (2012). Biodiversity effects on ecosystem functioning
change along environmental stress gradients. Ecol. Lett. , 15,
1397–1405.
Tomotani, B.M., van der Jeugd, H., Gienapp, P., de la Hera, I.,
Pilzecker, J., Teichmann, C., et al. (2018). Climate change leads
to differential shifts in the timing of annual cycle stages in a
migratory bird. Glob. Chang. Biol. , 24, 823–835.
Tutin, T.G., Heywood, V.H., Burges, N.A. & Valentine, D.H. (1964).Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae) .
Cambridge University Press.
Visser, M.E., Perdeck, A.C., Balen, V., Johan, H. & Both, C. (2009).
Climate change leads to decreasing bird migration distances. Glob.
Chang. Biol. , 15, 1859–1865.
Walter, H., Harnickell, E. & Mueller-Dombois, D. (1975). Climate
diagram maps. Ind. Ctries. Ecol. Clim. Reg. earth. Suppl. to veg.
Monogr. , 8.
Zhang, D. (2018). rsq: R-squared and related measures. R Packag.
version , 1, 1–21.
Table 1. The effects of difference in (Δ) migration distance,
mean latitude and body mass on the Δ moult extent (longitude difference
between Eastern and Western Palearctic populations): list of statistical
models (PGLS), statistics and Akaike Information Criterion (AICc).