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Key Points:11

• Forecasts from 6 seasonal prediction systems consistently predicted the large-scale12

winter patterns with unusually high accuracy.13

• Ensemble members which better predicted the extreme stratospheric state also14

better predicted the extreme tropospheric state.15

• Accurate prediction of the mid-latitude tropospheric wave pattern was associated16

with more accurate stratospheric forecasts.17
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Abstract18

The winter of 2019-20 was dominated by an extremely strong stratospheric polar vor-19

tex and positive tropospheric Arctic Oscillation (AO). Here, we analyze forecasts from20

6 different prediction systems contributing to the C3S seasonal forecast database. Most21

performed very strongly, with consistently high skill for January–March 2020 from fore-22

casts launched through October–December 2019. Although the magnitude of the anoma-23

lies was underestimated, the performance of most prediction systems was extremely high24

for a positive AO winter relative to the common hindcast climate. Ensemble members25

which better predicted the extremely strong stratospheric vortex better predicted the26

extreme tropospheric state. We find a significant relationship between forecasts of the27

anomalous mid-latitude tropospheric wave pattern in early winter, which destructively28

interfered with the climatological stationary waves, and the strength of the stratospheric29

vortex later in the winter. Our results demonstrate a strong interdependence between30

the accuracy of stratospheric vortex and AO forecasts.31

Plain Language Summary32

Westerly winds during the winter of 2019-20 were unusually strong and long last-33

ing through a deep layer of the atmosphere. We investigate how well this was predicted34

months ahead of time. We find that seasonal weather forecast systems predicted the win-35

ter pattern very well, especially when compared with previous winters. Forecasts which36

better predicted the strength of the winds higher in the atmosphere did better overall.37

We find that there was a link between predictions of the weather patterns lower down38

in the atmosphere and how they suppressed large-scale atmospheric waves in the mid-39

latitudes, which likely helped the winds remain stronger higher up.40

1 Introduction41

The Northern Hemisphere (NH) winter of 2019-20, particularly January–March (JFM)42

2020, was characterized by a strong and persistent positive phase of the Arctic Oscilla-43

tion (AO) (Hardiman et al., 2020; Lawrence et al., submitted) – the leading mode of ex-44

tratropical tropospheric wintertime variability, analogous to the surface Northern An-45

nular Mode (NAM) (e.g. Thompson & Wallace, 1998, 2001; Black & McDaniel, 2004)46

and closely-related to the North Atlantic Oscillation (NAO) (Feldstein & Franzke, 2006).47

The magnitude and persistence of this pattern, associated with strengthened and poleward-48

shifted extratropical storm tracks, led to unusually warm conditions across NH mid-latitudes,49

as well as hydrometeorological extremes associated with the shifted storm tracks. For50

example, while the United Kingdom experienced its wettest February since at least 1862,51

Spain experienced its driest February in at least 56 years (NOAA, 2020). Coupled to the52

strongly positive tropospheric NAM was an extremely strong stratospheric polar vortex53

(SPV) (Lawrence et al., submitted); significant disturbances to the SPV, so-called sud-54

den stratospheric warmings (SSWs) (e.g. Charlton & Polvani, 2007; Butler et al., 2015),55

were entirely absent during their climatological peak of January–March. The record-cold56

temperatures within the undisturbed SPV led to unprecedented ozone loss over the Arc-57

tic during spring 2020 (Manney et al., 2020; Wohltmann et al., 2020). Thus, the win-58

ter of 2020 represents a vertically-deep, extreme climatic state, which offers a rare op-59

portunity to test the performance of operational seasonal forecast models in predicting60

such an extreme.61

Seasonal forecast models have demonstrated significant skill in predicting large-scale62

wintertime climate modes such as the NAO/AO (Scaife et al., 2014), though with sig-63

nificant year-to-year variability. A component of this predictability may arise from the64

SPV state at the start of the winter (Nie et al., 2019) and accurate predictions of the65

likelihood of extreme SPV states during the winter (both strong vortex events and SSWs)66

due to their relatively long persistence (Scaife et al., 2016). Additional influences on the67
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seasonal-mean NAO/AO and SPV include: tropical sea surface temperatures (SSTs) and68

precipitation, including the El Niño-Southern Oscillation (ENSO) and Indian Ocean SSTs69

(Fletcher & Cassou, 2015; Hall et al., 2017; Baker et al., 2019; Trascasa-Castro et al.,70

2019; Domeisen et al., 2019), Atlantic SSTs (Rodwell & Folland, 2002; W. Wang et al.,71

2004; Hall et al., 2017) and North Pacific SSTs (Hurwitz et al., 2012). These can inter-72

act directly through forcing tropospheric Rossby wave trains, or indirectly by influenc-73

ing the strength of the SPV (e.g. Ineson & Scaife, 2009) through modulation of verti-74

cally propagating wave activity. Some of the aforementioned drivers have been used with75

some success in statistical forecasts (e.g. Folland et al., 2012; Riddle et al., 2013; Hall76

et al., 2017; L. Wang et al., 2017) to elucidate sources of predictability in dynamical mod-77

els.78

In this letter, we analyze how well the extreme large-scale circulation patterns present79

during winter (JFM) 2020 were predicted by seasonal forecasts issued during late 201980

from different prediction systems. We assess whether forecasts that more accurately cap-81

tured the SPV strength better captured the strength of the positive tropospheric AO and82

overall NH pattern, given their close statistical and dynamical link. We also investigate83

possible drivers of the extreme winter pattern.84

2 Data and Methods85

We analyze data from 6 prediction systems that contribute to the Copernicus Cli-86

mate Change Service (C3S) seasonal forecast database – namely, from the United King-87

dom Met Office (UKMO), the European Centre for Medium-range Weather Forecasts88

(ECMWF), Météo-France, Deutsche Wetterdeinst (DWD), the National Centers for En-89

vironmental Prediction (NCEP), and the Euro-Mediterranean Center on Climate Change90

(Centro euro-Mediterraneo sui Cambiamenti Climatici; CMCC). Data are provided at91

1◦ latitude-longitude resolution. As stratospheric-level data from NCEP are not currently92

available from C3S, it is not included in the multi-model comparison for that part of the93

analysis. Table S1 provides details of the individual model systems used. All model anoma-94

lies are expressed with respect to the common hindcast initialization period 1993-2016.95

Additionally, the multi-model mean (MMM) is calculated as the average of the ensem-96

ble means of the 6 models. Verification is performed with the ECMWF ERA5 reanal-97

ysis at 1.0◦ resolution (Hersbach et al., 2020), with anomalies computed with respect to98

the monthly December 1993–March 2017 climatology.99

The anomaly correlation coefficient (ACC) (e.g. Wilks, 2019) over a domain be-100

tween a forecast anomaly f at each grid point i,j and corresponding observation o, weighted101

by cosine-latitude w, is calculated using:102

ACC =
cov(f, o;w)√

cov(f, f ;w)cov(o, o;w)
(1)

where the weighted covariance is calculated as:103

cov(f, o;w) =

∑
i

∑
j wi,j(fi,j − fw)(oi,j − ow)∑

i

∑
j wi,j

(2)

where the overbar indicates the weighted average across the domain.104

The AO index is computed as the leading empirical orthogonal function (EOF) of105

JFM-averaged mean sea level pressure (MSLP) anomalies poleward of 20◦N (e.g. Thomp-106

son & Wallace, 1998) over the period December 1993–March 2017 in ERA5, which ex-107

plains 27% of the total variance. Anomalies are weighted by the square-root of cosine-108

latitude to give equal area weighting. In the seasonal forecasts and the ERA5 verifica-109

tion, the forecast AO index is computed as the projection of the ERA5 EOF onto the110
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Figure 1. (a–f) Average January–March 2020 ensemble-mean 500 hPa geopotential height

(Z500 GPH) anomalies, poleward of 20◦N, from 6 seasonal prediction systems nominally ini-

tialized on 1 December 2019. Anomalies are expressed with respect to the 1993–2016 hindcast

climatology for each prediction system. (g) Multi-model mean (MMM) of a–f. (h) As in panels

a–g but for ERA5 reanalysis. Due to the larger anomaly magnitudes in ERA5, a separate color

scale is used. The number in the top-right of panels a–g indicates the anomaly correlation coeffi-

cient (ACC) with ERA5. (i) ACC between ensemble-mean JFM-mean Z500 anomalies poleward

of 20◦N and ERA5, for nominal initialization dates of October, November, and December 2019.

The MMM is shown as a hatched bar.

forecast/reanalysis MSLP anomalies, and is scaled to have unit standard deviation (across111

all ensemble members) over the hindcast period in each model and ERA5.112

3 Tropospheric Forecasts113

We first assess the skill of the seasonal forecasts by considering predictions of the114

extratropical mid-tropospheric flow. Aside from regional subtleties, Figure 1 shows that115

all systems predicted strikingly similar patterns on the hemispheric scale – both with each116

other and with ERA5, though with characteristically low signal amplitude (e.g. Scaife117

et al., 2014). The similarity with ERA5 is reflected in the high ACCs, which exceed 0.6118

for all but Météo-France (0.43) and otherwise range from 0.63 (ECMWF) to 0.73 (DWD)119

for the individual prediction systems, while the MMM performed the best (0.76). There120

are several key features of the observed wintertime state (Fig. 1h): (i) a strongly pos-121

itive NAO pattern, with an enhanced poleward height gradient in the Atlantic sector,122

(ii) a large anomalous ridge in the northeast Pacific, (iii) a secondary ridge anomaly in123

eastern Asia and the northwest Pacific. All systems predicted the Pacific ridge anoma-124

lies, though in Météo-France only 1 broad anomalous ridge was predicted. All but Météo-125

France predicted the enhanced Iceland low and Azores high characteristic of the posi-126

tive NAO.127

Another feature of the seasonal forecasts of winter 2020 was their general consis-128

tency in predicting a similar pattern across different initializations. Equivalent maps as129

Figure 1 but for October and November forecasts are provided in the supporting infor-130

mation (Figure S1–S2). For brevity, we show the ACCs for these forecasts in Figure 1i.131

The highest-performing forecasts were the October and November forecasts from UKMO,132

which had ACCs of 0.76 and 0.77 respectively. The MMM performed very strongly across133

the initialization dates despite considerable inter-model differences, with an ACC of 0.68-134

0.76, only exceeded by the forecasts from UKMO in October and November. The lowest-135
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performing forecasts were the October initialization from CMCC (-0.27), and both Oc-136

tober and November initializations from CMCC (0.34) and DWD (0.30). In these cases,137

a notable missing feature was the anomalous ridge in the northeast Pacific.138

The ACC skill of the forecasts for winter 2020 was unusually high with respect to139

the common hindcast period. Figure 2 shows the JFM ACCs for hindcasts nominally140

initialized on 1 December 1993–2016, alongside the ACC for the 2020 forecast. As the141

operational forecast ensemble sizes are larger than the hindcast ensembles (c.f. Table S1),142

we also show a 95% confidence interval around the 2020 forecast obtained by randomly143

sub-sampling the operational forecast ensemble to the size of the hindcast ensemble 10,000144

times. When accounting for this uncertainty, the performance of all systems except Météo-145

France exceeded more than half of the hindcast years; without the uncertainty estimate146

the skill of the full ensemble exceeded most years. Only JFM 1998 and 2010 lie within147

the confidence interval for CMCC, the lowest resolution model; unlike 2020, both were148

significant El Niño years, and neither were positive AO/NAO winters (2010 in fact was149

dominated by an extremely negative AO/NAO). We also note that the mean of the re-150

sampled ACCs was systematically smaller than the ACCs of the full ensemble (not shown),151

consistent with the need for large ensemble sizes to produce skillful forecasts (Scaife et152

al., 2014).153

As suggested by Figure 1, all but Météo-France predicted a positive AO for JFM154

2020 (Figure 3a). However, the ensemble-mean forecasts were about 0.5 σ, much less than155

the observed value of 2.4 σ; only the ensemble spread of DWD and NCEP contained the156

true value. The lack of an ensemble-mean signal for a positive AO in Météo-France is157

consistent with its lower hemispheric ACC (c.f. Fig. 1d). The highest observed JFM-158

mean AO index during 1994–2017 is 1.7 σ in JFM 2015; thus, there is not a similar year159

within the common hindcast period with which we can compare 2020. The upper-tail160

of the UKMO predictions lay outside the model hindcast climatology, and was thus the161

only prediction system with ensemble members predicting a record-positive AO. Addi-162

tionally, Figure 3b shows that, in contrast with ERA5, the ensemble-mean AO index was163

not a record for any of the models with respect to their hindcasts.164

4 Stratospheric Polar Vortex Forecasts165

We next consider predictions of the seasonal-mean SPV, defined as the JFM-averaged166

zonal-mean zonal wind at 10 hPa and 60◦N (following e.g. Charlton and Polvani (2007)).167

Boxplots of the ensemble distributions from the December 2019 initializations, along with168

the corresponding hindcast distribution, are shown in Figure 4a. The verifying anomaly169

according to ERA5 was 20.0 m s−1; this is only exceeded by JFM 1997 (23.2 m s−1) in170

the hindcast period. The ensemble-mean of all systems shown here predicted a stronger-171

than-average SPV with respect to their own climatological mean state (although the de-172

parture was very small for Météo-France), with the greatest departure predicted by DWD173

(7.2 m s−1). Similarly, the true anomaly magnitude lay within the ensemble spread of174

all except Météo-France. Fig. 4b shows that the ensemble-mean forecasts for JFM 2020175

from both CMCC and DWD exceeded any equivalent in their hindcast periods indicat-176

ing there was an exceptional ensemble-mean signal from these prediction systems for a177

strong seasonal-mean SPV. This is in contrast to the ensemble-mean AO forecasts, which178

were not a record with respect to the hindcast period for any prediction system.179

We further assess the relationship between the accuracy of SPV forecasts with the180

accuracy of the AO to assess whether accurate predictions of the anomalous SPV strength181

were associated with more accurate predictions of the large-scale tropospheric state. Fig-182

ure 4c shows that, in all but Météo-France, there was a significant positive correlation183

between the AO error and the SPV error; ensemble members with a stronger SPV tended184

to have a more positive AO. This linear relationship was strongest in ECMWF (r = 0.68),185

DWD (r = 0.65) and UKMO (r = 0.64). The lack of a significant correlation in Météo-186
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Figure 2. ACCs (gray bars) between ensemble-mean JFM-mean Z500 poleward of 20◦N and

ERA5 for nominal 1 December hindcasts in the common period 1993–2016. Dashed red lines are

the respective ACCs from the December 2019 forecast; dotted red lines indicate the 95% confi-

dence interval obtained by re-sampling the forecast ensemble to the size of the hindcast ensemble

10,000 times (without replacement).

France is interesting given it predicted both the weakest SPV and least-positive AO. Thus,187

the linear relationship between the AO and SPV was only evident in the prediction sys-188

tems which indicated an increased likelihood of a stronger SPV (c.f. Figure 5a).189

As seasonal-mean statistics may mask sub-seasonal variability, we also compute the190

probability of strong or weak SPV events using daily data from the December forecasts,191

and compare with the climatological likelihood. The threshold for a strong/weak vor-192

tex is set at the 80th/20th percentiles of the daily hindcast zonal wind distribution for193

JFM 1994–2017 in each model. We apply a relatively long persistence criterion of 5 days194

to capture anomalous SPV states with potentially higher seasonal impact. Figure 5a shows195

that, for all but Météo-France, the probability of a strong vortex in JFM 2020 was sig-196

nificantly elevated with respect to the mean over the JFM 1994–2017 hindcast climate.197

Correspondingly, the probability of a weak vortex was reduced (Fig. 5b). Forecasts from198

DWD indicated a significantly greater probability of a strong vortex than any winter in199

the hindcasts. CMCC nominally indicated a lower chance of a weak vortex than any win-200

–6–



manuscript submitted to Geophysical Research Letters

Figure 3. (a) Forecasts of the average JFM 2020 Arctic Oscillation (non-filled boxes), for 6

seasonal prediction systems nominally initialized on 1 December 2019. Solid gray boxes show

the corresponding hindcast distribution for JFM 1994-2017. Horizontal lines indicate the mean.

Whiskers extend to the extreme values. The observed anomaly from ERA5 (2.4 σ) is shown with

a horizontal red line. Units are standard deviations of the corresponding hindcast/reanalysis cli-

matology. (b) Ensemble-mean AO hindcasts for JFM 1994–2017 (left-hand ordinate) and ERA5

(right-hand ordinate). The ensemble-mean forecasts and ERA5 for JFM 2020 are also shown.

ter in the hindcast period, but the effect of the different ensemble sizes means this dif-201

ference was not significant. These results are consistent with Figure 4b. Moreover, the202

absence of a significant departure in the likelihood of a strong or weak vortex in Météo-203

France is in agreement with its poorer ACC and the absence of a signal for a strongly204

positive AO.205
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Figure 4. (a, b) As in Figure 3 but for the zonal-mean zonal wind anomaly at 10 hPa and

60◦N, excluding forecasts from NCEP. (c) Scatter plot of individual ensemble member forecasts

of the JFM 2020 AO and [U]1060, as departures from the ERA5 value. Correlation values are

shown, and an asterisk indicates the correlation is significant at the 95% confidence level after

10,000 bootstrap re-samples with replacement.

5 Linking Tropospheric and Stratospheric Forecasts206

In this final section we seek to link features in the tropospheric forecasts with those207

in the stratosphere, using lagged linear regression between different variables across all208
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Figure 5. Probability of (a) strong and (b) weak vortex events for JFM from nominal 1 De-

cember initializations, using thresholds based on the hindcast climate in each model. Boxplots

indicate the hindcast distribution, with the mean indicated by the horizontal line. Squares indi-

cate the probability for JFM 2020. Error bars are a 95% uncertainty estimate by re-sampling the

operational ensemble to the size of the hindcast ensemble 10,000 times (without replacement).

members of a multi-model ensemble (also known as “ensemble sensitivity analysis”, e.g.209

Dacre and Gray (2013)). First, the individual ensemble mean is subtracted from each210

ensemble member to produce a perturbation anomaly, and then scaled by the ensemble211

standard deviation, before then forming the multi-model ensemble. The resultant lin-212

ear regression coefficients are thus in units of standard deviation of the “response” (lead-213

ing) variable per standard deviation in the “precursor” variable.214

The relationship between 500 hPa geopotential height (Z500) anomalies in January215

and the February–March SPV strength is shown in Figure 6a. The hemispheric-wide pat-216

tern of the regression coefficients is similar to both the ERA5 verification and the fore-217

casts with the highest ACCs in Figure 1, exhibiting significant destructive interference218

with the climatological-mean eddy height field. The destructive interference that was re-219

lated to forecasts of a stronger SPV was particularly strong in the North Pacific (destruc-220

tively interfering with the climatological Aleutian low), western North America, and north-221

eastern Scandinavia and the Ural mountains region. The absence of blocking in the Ural222

region is in contrast to the SSW precursor patterns (e.g. Karpechko et al., 2018; Lee et223

al., 2019; Peings, 2019). Similar, albeit weaker, results are found when using Z500 in De-224

cember and JFM SPV forecasts (not shown). These results are consistent with Lawrence225
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Figure 6. Ensemble sensitivity, across all ensemble members (except NCEP) from the 1 De-

cember 2019 initialization, between forecasts of (a) January Z500 and February–March (FM)

[U]1060 and (b) January [U]1060 and FM Z500. Units are standardized departures from the en-

semble mean. The corresponding 1994–2017 average eddy height field from ERA5 are shown in

contours (every 50 m from -200 to 200 m, excluding 0). Stippling indicates significance at the

95% confidence level after 10,000 bootstrap re-samples (with replacement).

et al. (submitted) who found that low vertically-propagating tropospheric wave activ-226

ity was present during the winter.227
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We also show in Figure 6b that ensemble members which predicted a stronger SPV228

in January tended to predict a tropospheric anomaly pattern consistent with the pos-229

itive AO/NAO during February–March, in agreement with Figure 4c. The strongest sen-230

sitivity of the FM Z500 anomalies to January SPV strength is over the North Atlantic,231

where the downward influence of the stratosphere on the troposphere has been found to232

dominate (Hitchcock & Simpson, 2014). The results in Figure 6 cannot be used to in-233

fer causality behind the anomalies in Figure 1, but do suggest that the spread in sea-234

sonal forecasts depended on how well the prediction systems captured the two-way cou-235

pling process. In particular, these results suggest that both the accurate prediction of236

certain mid-latitude tropospheric anomalies in early mid-winter was important in the237

subsequent prediction of the extremely strong SPV (through suppression of the mean238

wave field), and that a stronger SPV in early-mid winter was associated with a more pos-239

itive AO later in the winter, likely through downward coupling of persistent stratospheric240

anomalies.241

6 Summary242

In this letter, we have analyzed the performance of forecasts for the exceptional win-243

ter of 2020 from 6 seasonal prediction systems which contribute to the C3S seasonal fore-244

cast database. Our results show that the performance of the majority of the models in245

predicting the extratropical anomaly pattern was among the highest in the common hind-246

cast period, particularly for a positive AO winter in the absence of a major ENSO event.247

We also find that, despite large differences between individual models, the multi-model248

mean had the most consistently high skill – supporting the usefulness of a multi-model249

approach. Otherwise, the most consistently skillful forecasts were from UKMO. Of the250

forecasts from December 2019, only Météo-France did not predict the positive AO or strong251

SPV, and accordingly had the lowest extratropical skill (though earlier initializations per-252

formed better, c.f. Figure S1-S2). Although the forecasts systematically underestimated253

the extreme magnitude of the anomalous AO, the ensemble-mean SPV forecasts from254

CMCC and DWD exceeded any winter in their hindcasts, indicating the relatively ex-255

treme state was predicted by these models.256

We further find that ensemble members that predicted a stronger SPV also pre-257

dicted a stronger AO, suggesting that the prediction of the strong SPV also played a role258

in accurate predictions of the large-scale surface circulation pattern, consistent with Scaife259

et al. (2016). For all systems except Météo-France, there were significant increases in the260

probability of a strong SPV and a decreased probability of a weak SPV/SSW – though261

these were generally not exceptional with respect to the hindcast period. Nevertheless,262

this shows that these seasonal forecasts correctly indicated the shift in the likelihood of263

these sub-seasonal phenomena.264

An ensemble sensitivity analysis showed that ensemble members that predicted greater265

destructive interference with the tropospheric stationary waves in early winter predicted266

a stronger SPV later in the winter, in a pattern concordant with the overall anomaly field267

during winter 2020. This result suggests a two-way relationship between the troposphere268

and stratosphere during the winter. Modeling experiments, following those of Hardiman269

et al. (2020) who tied NAO predictability to the Indian Ocean Dipole event in late 2019,270

will likely be required to fully elucidate the cause of this tropospheric predictability, and271

ascertain why it was better captured by some prediction systems at much longer lead-272

times than others.273
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