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Key Points:11

• Forecasts from 6 seasonal prediction systems consistently predicted the large-scale12

winter patterns with unusually high accuracy.13

• Ensemble members which better predicted the extreme stratospheric state also14

better predicted the extreme tropospheric state.15

• Accurate prediction of the mid-latitude tropospheric wave pattern was associated16

with more accurate stratospheric forecasts.17
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Abstract18

The winter of 2019-20 was dominated by an extremely strong and persistent stratospheric19

polar vortex and positive tropospheric Arctic Oscillation (AO). Here, we analyze fore-20

casts from 6 different models contributing to the C3S seasonal forecast database. Most21

models performed very strongly, with consistently high skill for January–March 2020 from22

forecasts launched through October–December 2019. Although the magnitude of the anoma-23

lies was underestimated, the performance of most prediction systems was extremely high24

for a positive AO winter relative to the common hindcast climate. Ensemble members25

which better predicted the extremely strong stratospheric vortex better predicted the26

extreme tropospheric state. We find a significant relationship between forecasts of the27

anomalous mid-latitude tropospheric wave pattern in early winter, which destructively28

interfered with the climatological stationary waves, and the strength of the stratospheric29

vortex later in the winter. Our results support the role of accurate Arctic stratospheric30

vortex predictions for improving seasonal weather forecasts.31

Plain Language Summary32

Westerly winds during the winter of 2019-20 were unusually strong and long last-33

ing through a deep layer of the atmosphere. We investigate how well this was predicted34

months ahead of time. We find that seasonal weather forecast models predicted the win-35

ter pattern very well, especially when compared with previous winters. Models which36

better predicted the strength of the winds higher in the atmosphere did better overall.37

We find that there was a link between how the patterns lower down in the atmosphere38

affected the waviness of the flow, which likely helped the winds remain stronger higher39

up.40

1 Introduction41

The Northern Hemisphere (NH) winter of 2019-20, particularly January–March (JFM)42

2020, was characterized by a strong and persistent positive phase of the Arctic Oscilla-43

tion (AO) (Lawrence et al., submitted) – the leading mode of extratropical tropospheric44

wintertime variability, analogous to the surface Northern Annular Mode (NAM) (e.g. Thomp-45

son & Wallace, 1998, 2001; Black & McDaniel, 2004) and closely-related to the North46

Atlantic Oscillation (NAO) (Feldstein & Franzke, 2006). The magnitude and persistence47

of this pattern, associated with strengthened and poleward-shifted extratropical storm48

tracks, led to unusually warm conditions across NH mid-latitudes, as well as hydrom-49

eteorological extremes associated with the shifted storm tracks. For example, while the50

United Kingdom experienced its wettest February since at least 1862, Spain experienced51

its driest February in at least 56 years (NOAA, 2020). Coupled to the strongly positive52

tropospheric NAM was an extremely strong stratospheric polar vortex (SPV) (Lawrence53

et al., submitted); significant disturbances to the SPV, so-called sudden stratospheric54

warmings (SSWs) (e.g. Charlton & Polvani, 2007; Butler et al., 2015), were entirely ab-55

sent during their climatological peak of January–March. The record-cold temperatures56

within the undisturbed SPV led to unprecedented ozone loss over the Arctic during spring57

2020 (Manney et al., 2020; Wohltmann et al., submitted). Thus, the winter of 2020 rep-58

resents a vertically-deep, extreme climatic state, which offers a rare opportunity to test59

the performance of operational seasonal forecast models in predicting such an extreme.60

Seasonal forecast models have demonstrated significant skill in predicting large-scale61

wintertime climate modes such as the NAO/AO (Scaife et al., 2014), though with sig-62

nificant year-to-year variability. A component of this predictability may arise from the63

SPV state at the start of the winter (Nie et al., 2019) and accurate predictions of the64

likelihood of extreme SPV states during the winter (both strong vortex events and SSWs)65

due to their relatively long persistence (Scaife et al., 2016). Additional influences on the66

seasonal-mean NAO/AO and SPV include: tropical sea surface temperatures (SSTs) and67
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precipitation, including the El Niño-Southern Oscillation (ENSO) and Indian Ocean SSTs68

(Fletcher & Cassou, 2015; Hall et al., 2017; Baker et al., 2019; Trascasa-Castro et al.,69

2019; Domeisen et al., 2019), Atlantic SSTs (Rodwell & Folland, 2002; Wang et al., 2004;70

Hall et al., 2017) and North Pacific SSTs (Hurwitz et al., 2012). These can interact di-71

rectly through forcing tropospheric Rossby wave trains, or indirectly by influencing the72

strength of the SPV (e.g. Ineson & Scaife, 2009) through modulation of vertically prop-73

agating wave activity. Some of the aforementioned drivers have been used to varying de-74

grees of success in statistical forecasts (e.g. Folland et al., 2012; Riddle et al., 2013; Hall75

et al., 2017) to elucidate sources of predictability in dynamical models.76

In this letter, we analyze how well the extreme large-scale circulation patterns present77

during winter (JFM) 2020 were predicted by seasonal forecasts issued during late 201978

from different prediction systems. We assess whether forecasts that more accurately cap-79

tured the SPV strength better captured the strength of the positive tropospheric AO and80

overall NH pattern, given their close statistical and dynamical link. We also investigate81

possible drivers of the extreme winter pattern.82

2 Data and Methods83

We analyze data from 6 prediction systems that contribute to the Copernicus Cli-84

mate Change Service (C3S) seasonal forecast database – namely, from the United King-85

dom Met Office (UKMO), the European Centre for Medium-range Weather Forecasts86

(ECMWF), Météo-France, Deutsche Wetterdeinst (DWD), the National Centers for En-87

vironmental Prediction (NCEP), and the Euro-Mediterranean Center on Climate Change88

(Centro euro-Mediterraneo sui Cambiamenti Climatici; CMCC). Data are provided at89

1◦ latitude-longitude resolution. As stratospheric-level data from NCEP are not currently90

available from C3S, it is not included in the multi-model comparison for that part of the91

analysis. Table S1 provides details of the individual model systems used. All model anoma-92

lies are expressed with respect to the common hindcast initialization period 1993-2016.93

In addition, we analyze a simple multi-model mean (MMM) as the average of the ensem-94

ble means of the 6 models. Verification is performed with the ECMWF ERA5 reanal-95

ysis at 1.0◦ resolution (Hersbach et al., 2020), with anomalies computed with respect to96

the monthly December 1993–March 2017 climatology.97

The anomaly correlation coefficient (ACC) over a domain between a forecast anomaly98

f at each grid point i,j and corresponding observation o, weighted by cosine-latitude w,99

is calculated using:100

ACC =
cov(f, o;w)√

cov(f, f ;w)cov(o, o;w)
(1)

where the weighted covariance is calculated as:101

cov(f, o;w) =

∑
i

∑
j wi,j(fi,j − fw)(oi,j − ow)∑

i

∑
j wi,j

(2)

where the overbar indicates the weighted average across the domain.102

The AO index is computed as the leading principal component of JFM-averaged103

mean sea level pressure (MSLP) anomalies poleward of 20◦N (e.g. Thompson & Wal-104

lace, 1998) over the period December 1993–March 2017 in ERA5, which explains 27%105

of the total variance. Anomalies are weighted by the square-root of cosine-latitude to106

give equal area weighting. In the seasonal model forecasts and the ERA5 verification,107

the forecast AO index is computed as the projection of the ERA5 EOF onto the model/reanalysis108

MSLP anomalies, and is scaled to have unit standard deviation over the hindcast period109

in each model and ERA5.110
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Figure 1. (a–f) Average January–March 2020 ensemble-mean 500 hPa geopotential height

(GPH) anomalies, poleward of 20◦N, from 6 seasonal prediction systems nominally initialized on

1 December 2019. Anomalies are expressed with respect to the 1993–2016 hindcast climatology

for each model. (g) Multi-model mean (MMM) of a–f. (h) As in panels a–g but for ERA5 reanal-

ysis. Due to the larger anomaly magnitudes in ERA5, a separate color scale is used. The number

in the top-right of panels a–g indicates the anomaly correlation coefficient (ACC) with ERA5.

(i) ACC between ensemble-mean JFM-mean 500 hPa geopotential height anomalies poleward of

20◦N and ERA5, for nominal initialization dates of October, November, and December 2019. The

MMM is shown as a hatched bar.

3 Tropospheric Forecasts111

We first assess the skill of the seasonal model forecasts by considering predictions112

of the mid-tropospheric flow poleward of 20◦N. Aside from regional subtleties, Figure113

1 shows that all the seasonal models predicted strikingly similar patterns on the hemi-114

spheric scale – both with each other and with ERA5, though with characteristically low115

signal amplitude (e.g. Scaife et al., 2014). The similarity with ERA5 is reflected in the116

high ACCs, which exceed 0.6 for all but Météo-France (0.43) and otherwise range from117

0.63 (ECMWF) to 0.73 (DWD) for the individual models, while the MMM performed118

the best (0.76). There are several key features of the observed wintertime state (Fig. 1h):119

(i) a strongly positive NAO pattern, with an enhanced poleward height gradient in the120

Atlantic sector, (ii) a large anomalous ridge in the northeast Pacific, (iii) a secondary121

ridge anomaly in eastern Asia and the northwest Pacific. All models predicted the Pa-122

cific ridge anomalies, though in Météo-France only 1 anomalous ridge was predicted. All123

but Météo-France predicted the enhanced Iceland low and Azores high; this pattern was124

strongest, and closest to ERA5, in ECMWF and NCEP.125

Another feature of the seasonal model forecasts of winter 2020 was their persistence126

in predicting a similar pattern across different initializations. Equivalent maps as Fig-127

ure 1 but for October and November forecasts are provided in the supporting informa-128

tion (Figure S1–S2). For brevity, we show the ACCs for these forecasts in Figure 1i. The129

highest-performing forecasts were the October and November forecasts from UKMO, which130

had ACCs of 0.76 and 0.77 respectively. The MMM performed very strongly at all three131

initialization dates despite considerable inter-model differences, with an ACC of 0.68-132

0.76, only exceeded by the forecasts from UKMO in October and November.133

The ACC skill of the forecasts for winter 2020 was unusually high with respect to134

the common hindcast period. Figure 2 shows the JFM ACCs for hindcasts nominally135

initialized on 1 December 1993–2016, alongside the ACC for the 2020 forecast. As the136

–4–



manuscript submitted to Geophysical Research Letters

Figure 2. ACCs (gray bars) between ensemble-mean JFM-mean 500 hPa geopotential heights

poleward of 20◦N and ERA5 for nominal 1 December hindcasts in the common period 1993–2016.

Dashed red lines are the respective ACCs from the December 2019 forecast; dotted red lines indi-

cate the 95% confidence interval obtained by re-sampling the forecast ensemble to the size of the

hindcast ensemble 10,000 times (without replacement).

operational forecast ensemble sizes are larger than the hindcast ensembles (c.f. Table S1),137

we also show a 95% confidence interval obtained by randomly sub-sampling the oper-138

ational forecast ensemble to the size of the hindcast ensemble 10,000 times. When ac-139

counting for this uncertainty, the performance of all systems except Météo-France ex-140

ceeded more than half of the hindcast years; without the uncertainty estimate the skill141

of the full ensemble exceeded most years. Only JFM 1998 and 2010 lie within the con-142

fidence interval for CMCC, the lowest resolution model; unlike 2020, both were signif-143

icant El Niño years, and neither were positive AO/NAO winters (2010 in fact was dom-144

inated by an extremely negative AO/NAO). We also note that the mean of the re-sampled145

ACCs was systematically smaller than the ACCs of the full ensemble (not shown), con-146

sistent with the need for large ensemble sizes to produce skillful forecasts (Scaife et al.,147

2014).148

As suggested by Figure 1, all but Météo-France predicted a positive AO for JFM149

2020 (Figure 3a). However, the magnitude of the ensemble-mean values from the mod-150

els were about 0.5 σ, much less than the observed value of 2.4 σ; only the ensemble spread151

of DWD and NCEP contained the true value. The lack of an ensemble-mean signal for152
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a positive AO in Météo-France is consistent with its lower hemispheric ACC (c.f. Fig.153

1d). The highest observed JFM-mean AO index in the 1994–2017 climatology is 1.7 σ154

in JFM 2015; thus, there is not a similar year within the common hindcast period with155

which we can compare 2020. The upper-tail of the UKMO model predictions lay out-156

side the model hindcast climatology, and was thus the only model to indicate the po-157

tential for an extreme state. Additionally, inspection of Figure 3b shows that, in con-158

trast with ERA5, the ensemble-mean AO index was not a record for any of the models159

with respect to their hindcasts, and thus the relative magnitude of the anomaly was not160

well forecast.161

4 Stratospheric Polar Vortex Forecasts162

We next consider predictions of the seasonal-mean SPV, defined as the JFM-averaged163

zonal-mean zonal wind at 10 hPa and 60◦N (following e.g. Charlton and Polvani (2007)).164

Boxplots of the ensemble distributions from the December 2019 initializations, along with165

the corresponding hindcast distribution, are shown in Figure 4a. The verifying anomaly166

according to ERA5 was 20.0 m s−1; this is only exceeded by JFM 1997 in the hindcast167

climate period (which had an anomaly of 23.2 m s−1, Fig. 4b). The ensemble-mean of168

all models shown predicted a stronger-than-average SPV with respect to their own cli-169

matological mean state (although the departure was very small for Météo-France), with170

the greatest departure predicted by DWD (7.2 m s−1). Similarly, the true anomaly mag-171

nitude lay within the ensemble spread of all models except Météo-France. Fig. 4b shows172

that the ensemble-mean forecasts for JFM 2020 from both CMCC and DWD models ex-173

ceeded any equivalent in their hindcast periods indicating there was an exceptionally strong174

ensemble-mean signal from these models for a strong seasonal-mean SPV.175

We further assess the relationship between the accuracy of SPV forecasts with the176

accuracy of the AO to assess whether accurate predictions of the anomalous SPV strength177

were associated with more accurate predictions of the large-scale tropospheric state. Fig-178

ure 3c shows that, in all but Météo-France, there was a significant positive correlation179

between the AO error and the SPV error; essentially, ensemble members with a stronger180

SPV tended to have a more positive AO. This linear relationship was strongest in ECMWF181

(r = 0.68), DWD (r = 0.65) and UKMO (r = 0.64). The lack of a significant correla-182

tion in Météo-France is interesting given it predicted both the weakest SPV and least-183

positive AO. It is possible that, by predicting a weaker SPV during the season, Météo-184

France exhibited a less robust relationship between the SPV and AO due to differing timescales185

in the troposphere and stratosphere.186

As seasonal-mean statistics may mask sub-seasonal variability, we also compute the187

probability of strong or weak SPV events using daily data from the December forecasts,188

and compare with the climatological likelihood. The threshold for a strong/weak vor-189

tex is set at the 80th/20th percentiles of the daily hindcast zonal wind distribution for190

JFM 1994–2017 in each model. We apply a relatively long persistence criterion of 5 days191

to capture anomalous SPV states with potentially higher seasonal impact. Figure 5a shows192

that, for all but Météo-France, the probability of a strong vortex in JFM 2020 was sig-193

nificantly elevated with respect to the mean over the JFM 1994–2017 hindcast climate.194

Correspondingly, the probability of a weak vortex was reduced (Fig. 5b). Forecasts from195

DWD indicated a significantly greater probability of a strong vortex than any winter in196

the hindcasts. Similarly, forecasts from CMCC indicated a lower chance of a weak vor-197

tex than any winter in the hindcast period, but this difference was not significant when198

accounting for the different ensemble sizes. These results are consistent with Figure 4b.199

Moreover, the absence of a significant departure in the likelihood of a strong or weak vor-200

tex in Météo-France is in agreement with its poorer ACC and the absence of a signal for201

a strongly positive AO.202
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Figure 3. (a) Forecasts of the average January–March 2020 Arctic Oscillation (non-filled

boxes), for 6 seasonal forecast models nominally initialized on 1 December 2019. Solid gray boxes

show the corresponding hindcast distribution for January–March 1994-2017. Horizontal lines

indicate the mean. Whiskers extend to either 1.5 times the interquartile range or extreme values;

open circles indicate outliers. The observed anomaly from ERA5 (2.4 σ) is shown with a horizon-

tal red line. Units are standard deviations of the corresponding hindcast/reanalysis climatology.

(b) Ensemble-mean AO hindcasts for JFM 1994–2017 (left-hand ordinate) and ERA5 (right-hand

ordinate). The ensemble-mean forecasts and ERA5 for JFM 2020 are also shown.

5 Linking Tropospheric and Stratospheric Forecasts203

In this final section we seek to link features in the tropospheric forecasts with those204

in the stratosphere, using lagged linear regression between different variables across all205
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Figure 4. (a, b) As in Figure 3 but for the zonal-mean zonal wind anomaly at 10 hPa and

60◦N, excluding forecasts from NCEP. (c) Scatter plot of individual ensemble member forecasts

of the JFM 2020 AO and [U]1060, as departures from the ERA5 value. Correlation values are

shown, and an asterisk indicates the correlation is significant at the 95% confidence level after

10,000 bootstrap re-samples with replacement.

ensemble members (also known as “ensemble sensitivity analysis”, e.g. Dacre and Gray206

(2013)). We do this analysis using a multi-model ensemble. First, the individual ensem-207

ble mean is subtracted from each ensemble member to produce a perturbation anomaly,208
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Figure 5. Probability of (a) strong and (b) weak vortex events for JFM from nominal 1 De-

cember initializations, using thresholds based on the hindcast climate in each model. Boxplots

indicate the hindcast distribution, with the mean indicated by the horizontal line. Squares indi-

cate the probability for JFM 2020. Error bars are a 95% uncertainty estimate by re-sampling the

operational ensemble to the size of the hindcast ensemble 10,000 times (without replacement).

and then scaled by the ensemble standard deviation, before then forming the multi-model209

ensemble. The resultant linear regression coefficients are thus in units of standard de-210

viation of the “response” (leading) variable per standard deviation in the “precursor”211

variable.212

The relationship between 500 hPa height anomalies in January and the February–213

March SPV strength is shown in Figure 6. The hemispheric-wide pattern of the regres-214

sion coefficients is similar to both the ERA5 verification and the models with the high-215

est ACCs in Figure 1, with significant destruction to the climatological-mean eddy height216

field. The destructive interference that was related to forecasts of a stronger SPV was217

particularly strong in the North Pacific (destructively interfering with the climatolog-218

ical Aleutian low), western North America, and northeastern Scandinavia and the Ural219

mountains region. The absence of blocking in the Ural region is in contrast to the SSW220

precursor patterns (e.g. Karpechko et al., 2018; Lee et al., 2019; Peings, 2019). Similar,221

albeit weaker, results are found when using 500 hPa heights in December and JFM SPV222

forecasts (not shown). Although non-causal, these results suggest that the accurate pre-223

diction of these mid-latitude anomalies was important in driving the development of the224

extremely strong SPV by suppression of the mean wave field. This is consistent with Lawrence225
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Figure 6. Ensemble sensitivity, across all ensemble members (except NCEP) from the 1

December 2019 initialization, between forecasts of January 500 hPa geopotential height and

February–March (FM) [U]1060. The January 1994–2017 average eddy height field from ERA5 is

shown in contours (every 50 m from -200 to 200 m, excluding 0). Stippling indicates significance

at the 95% confidence level after 10,000 bootstrap re-samples (with replacement).

et al. (submitted) who found that low vertically-propagating tropospheric wave activ-226

ity was present during the winter.227

6 Summary228

In this letter, we have analyzed the performance of forecasts for the exceptional win-229

ter of 2020 from 6 seasonal prediction systems which contribute to the C3S seasonal fore-230

cast database. Our results show that the performance of the majority of the models in231

predicting the extratropical anomaly pattern was among the highest in the common hind-232

cast period, particularly for a positive AO winter in the absence of a major ENSO event.233

We also find that, despite large differences between individual models, the multi-model234

mean had the most persistent high skill – supporting the usefulness of a multi-model ap-235

proach. Otherwise, the most persistently skillful forecasts were from UKMO. Of the fore-236

casts from December 2019, only Météo-France did not predict the positive AO or strong237

SPV, and accordingly had the lowest extratropical skill (though earlier initializations per-238

formed better, c.f. Figure S1-S2). Although the models systematically underestimated239

the extreme magnitude of the anomalous AO, the ensemble-mean SPV forecasts from240

CMCC and DWD exceeded any winter in their hindcasts, indicating the relatively ex-241

treme state was predicted by these models.242

We further find that ensemble members that predicted a stronger SPV also pre-243

dicted a stronger AO, suggesting that the prediction of the strong SPV also played a role244
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in accurate predictions of the large-scale surface circulation pattern, consistent with Scaife245

et al. (2016). For all models except Météo-France, there were significant increases in the246

probability of a strong SPV and a decreased probability of a weak SPV/SSW – though247

this was not exceptional with respect to the hindcast period, except for the case of the248

strong vortex in DWD. Nevertheless, this shows that these seasonal models correctly in-249

dicated the shift in the likelihood of these sub-seasonal phenomena.250

An ensemble sensitivity analysis showed that ensemble members that predicted greater251

destructive interference with the tropospheric stationary waves in early winter predicted252

a stronger SPV later in the winter, in a pattern concordant with the overall anomaly field253

during winter 2020. This result suggests a two-way relationship between the troposphere254

and stratosphere during the winter. Modeling experiments, following those of Hardiman255

et al. (2020) who tied NAO predictability to the Indian Ocean Dipole event in late 2019,256

will likely be required to fully elucidate the cause of this tropospheric predictability, and257

ascertain why it was better captured by some prediction systems at much longer lead-258

times than others.259
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