References
Aebischer-Gumy, C., Moretti, P., Little, T. A., & Bertschinger, M. (2018). Analytical assessment of clonal derivation of eukaryotic/CHO cell populations. Journal of Biotechnology , 286 , 17–26. https://doi.org/10.1016/j.jbiotec.2018.08.020
Bandyopadhyay, A. A., O’Brien, S. A., Zhao, L., Fu, H.-Y., Vishwanathan, N., & Hu, W.-S. (2018). Recurring genomic structural variation leads to clonal instability and loss of productivity: BANDYOPADHYAY et al. Biotechnology and Bioengineering . https://doi.org/10.1002/bit.26823
Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., & Yarranton, G. T. (1992). High-Level Expression of a Recombinant Antibody from Myeloma Cells Using a Glutamine Synthetase Gene as an Amplifiable Selectable Marker. Bio/Technology , 10 (2), 169. https://doi.org/10.1038/nbt0292-169
Biological Approvals by Year—2017 Biological License Application Approvals . (n.d.). [WebContent]. Retrieved March 8, 2019, from https://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/BiologicalApprovalsbyYear/ucm547553.htm
Biologics-revolution-in-the-production-of-drugs.pdf . (n.d.). Retrieved March 7, 2019, from https://www.fraserinstitute.org/sites/default/files/biologics-revolution-in-the-production-of-drugs.pdf
Bort, J. A. H., Stern, B., & Borth, N. (2010). CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution.Biotechnology Journal , 5 (10), 1090–1097. https://doi.org/10.1002/biot.201000095
Choi, D.-K., Bae, J., Shin, S.-M., Shin, J.-Y., Kim, S., & Kim, Y.-S. (2014). A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells. MAbs ,6 (6), 1402–1414. https://doi.org/10.4161/mabs.36389
Doyle, F., Lapsia, S., Spadaro, S., Wurz, Z. E., Bhaduri-McIntosh, S., & Tenenbaum, S. A. (2017). Engineering Structurally Interacting RNA (sxRNA). Scientific Reports , 7 (1). https://doi.org/10.1038/srep45393
Fischer, S., Handrick, R., & Otte, K. (2015). The art of CHO cell engineering: A comprehensive retrospect and future perspectives.Biotechnology Advances , 33 (8), 1878–1896. https://doi.org/10.1016/j.biotechadv.2015.10.015
Frye, C., Deshpande, R., Estes, S., Francissen, K., Joly, J., Lubiniecki, A., Munro, T., Russell, R., Wang, T., & Anderson, K. (2016). Industry view on the relative importance of “clonality” of biopharmaceutical-producing cell lines. Biologicals ,44 (2), 117–122. https://doi.org/10.1016/j.biologicals.2016.01.001
Gallagher, C., & Kelly, P. S. (2017). Selection of High-Producing Clones Using FACS for CHO Cell Line Development. Methods in Molecular Biology (Clifton, N.J.) , 1603 , 143–152. https://doi.org/10.1007/978-1-4939-6972-2_9
Ghorbaniaghdam, A., Chen, J., Henry, O., & Jolicoeur, M. (2014). Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform. PloS One ,9 (3), e90832–e90832. PubMed. https://doi.org/10.1371/journal.pone.0090832
Haddad-Mashadrizeh, A., Zomorodipour, A., Izadpanah, M., Sam, M. R., Ataei, F., Sabouni, F., & Hosseini, S. J. (2009). A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells.The Journal of Gene Medicine , 11 (10), 941–950. https://doi.org/10.1002/jgm.1367
Kang, D., Skalsky, R. L., & Cullen, B. R. (2015). EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival. PLOS Pathogens , 11 (6), e1004979. https://doi.org/10.1371/journal.ppat.1004979
Kaufman, R. J., & Sharp, P. A. (1982). Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. Journal of Molecular Biology ,159 (4), 601–621. https://doi.org/10.1016/0022-2836(82)90103-6
Kim, J. Y., Kim, Y.-G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Applied Microbiology and Biotechnology , 93 (3), 917–930. https://doi.org/10.1007/s00253-011-3758-5
Kim, S.-Y., Lee, S., Lee, Y.-K., Lee, J., Shin, H.-S., & Kim, Y.-S. (n.d.). Human β-Globin Second Intron Highly Enhances Expression of Foreign Genes from Murine Cytomegalovirus Immediate-Early Promoter . 7.
Ko, P., Misaghi, S., Hu, Z., Zhan, D., Tsukuda, J., Yim, M., Sanford, M., Shaw, D., Shiratori, M., Snedecor, B., Laird, M., & Shen, A. (2018). Probing the importance of clonality: Single cell subcloning of clonally derived CHO cell lines yields widely diverse clones differing in growth, productivity, and product quality. Biotechnology Progress , 34 (3), 624–634. https://doi.org/10.1002/btpr.2594
Lattenmayer, C., Trummer, E., Schriebl, K., Vorauer-Uhl, K., Mueller, D., Katinger, H., & Kunert, R. (2007). Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. Journal of Biotechnology , 128 (4), 716–725. https://doi.org/10.1016/j.jbiotec.2006.12.016
Lee, J. S., Kildegaard, H. F., Lewis, N. E., & Lee, G. M. (2019). Mitigating Clonal Variation in Recombinant Mammalian Cell Lines.Trends in Biotechnology , 37 (9), 931–942. https://doi.org/10.1016/j.tibtech.2019.02.007
Lee, J. S., Park, J. H., Ha, T. K., Samoudi, M., Lewis, N. E., Palsson, B. O., Kildegaard, H. F., & Lee, G. M. (2018). Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells Using Targeted Genome Editing. ACS Synthetic Biology ,7 (12), 2867–2878. https://doi.org/10.1021/acssynbio.8b00290
Li, F., Vijayasankaran, N., Shen, A. (Yijuan), Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production.MAbs , 2 (5), 466–477. https://doi.org/10.4161/mabs.2.5.12720
Mirasol, F. (n.d.). The Challenge of Building Better Biologic Drugs . Retrieved March 7, 2019, from http://www.pharmtech.com/challenge-building-better-biologic-drugs
Monoclonal Antibodies Approved by the EMA and FDA for Therapeutic Use – ACTIP . (n.d.). Retrieved March 8, 2019, from http://www.actip.org/products/monoclonal-antibodies-approved-by-the-ema-and-fda-for-therapeutic-use/
Pilbrough, W., Munro, T. P., & Gray, P. (2009). Intraclonal protein expression heterogeneity in recombinant CHO cells. PloS One ,4 (12), e8432–e8432. PubMed. https://doi.org/10.1371/journal.pone.0008432
Plavsic, M. (2017). Q5D Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products. In ICH Quality Guidelines (pp. 375–393). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118971147.ch13
Research, C. for B. E. and. (n.d.). Biological Approvals by Year—2018 Biological License Application Approvals [WebContent]. Retrieved March 8, 2019, from https://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/BiologicalApprovalsbyYear/ucm596371.htm
Sakuma, T., Takenaga, M., Kawabe, Y., Nakamura, T., Kamihira, M., & Yamamoto, T. (2015). Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids. International Journal of Molecular Sciences ,16 (10), 23849–23866. PubMed. https://doi.org/10.3390/ijms161023849
Tharmalingam, T., Barkhordarian, H., Tejeda, N., Daris, K., Yaghmour, S., Yam, P., Lu, F., Goudar, C., Munro, T., & Stevens, J. (2018). Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnology Progress ,34 (3), 613–623. https://doi.org/10.1002/btpr.2666
Vcelar, S., Melcher, M., Auer, N., Hrdina, A., Puklowski, A., Leisch, F., Jadhav, V., Wenger, T., Baumann, M., & Borth, N. (2018). Changes in Chromosome Counts and Patterns in CHO Cell Lines upon Generation of Recombinant Cell Lines and Subcloning. Biotechnology Journal ,13 (3), 1700495. https://doi.org/10.1002/biot.201700495
Welch, J. T., & Arden, N. S. (2019). Considering “clonality”: A regulatory perspective on the importance of the clonal derivation of mammalian cell banks in biopharmaceutical development.Biologicals: Journal of the International Association of Biological Standardization , 62 , 16–21. https://doi.org/10.1016/j.biologicals.2019.09.006
Wurm, F., & Wurm, M. (2017). Cloning of CHO Cells, Productivity and Genetic Stability—A Discussion. Processes , 5 (4), 20. https://doi.org/10.3390/pr5020020
Würtele, H., Little, K. C. E., & Chartrand, P. (2003). Illegitimate DNA integration in mammalian cells. Gene Therapy , 10 (21), 1791–1799. https://doi.org/10.1038/sj.gt.3302074
Zhang, L., Inniss, M. C., Han, S., Moffat, M., Jones, H., Zhang, B., Cox, W. L., Rance, J. R., & Young, R. J. (2015). Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnology Progress ,31 (6), 1645–1656. https://doi.org/10.1002/btpr.2175
Zhou, H., Liu, Z., Sun, Z., Huang, Y., & Yu, W. (2010). Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system.Journal of Biotechnology , 147 (2), 122–129. https://doi.org/10.1016/j.jbiotec.2010.03.020