Data Availability Statement
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
References
Ajami, H., Troch, P. A., Maddock, T., Meixner, T., & Eastoe, C. (2011).
Quantifying mountain block recharge by means of catchment‐scale
storage‐discharge relationships. Water Resources
Research , 47 (4), W04504. https://doi.org/10.1029/2010WR009598.
Anderson, M. G., & Burt, T. P. (1980). Interpretation of recession
flow. J. Journal of Hydrology , 46 (1-2), 89-101.
https://doi.org/10.1016/0022-1694(80)90037-2.
Arumí, J. L., Maureira, H.,
Souvignet, M., Pérez, C., Rivera, D., & Oyarzún, R. (2016). Where does
the water go? Understanding geohydrological behaviour of Andean
catchments in south-central Chile. Hydrological Sciences
Journal , 61 (5), 844-855.
https://doi.org/10.1080/02626667.2014.934250.
Bart, R., & Hope, A. (2014). Inter-seasonal variability in baseflow
recession rates: The role of aquifer antecedent storage in central
California watersheds. Journal of Hydrology , 519 , 205-213.
https://doi.org/10.1016/j.jhydrol.2014.07.020.
Barnes, B. S., 1939. Barnes, B. S. (1939). The structure of
discharge‐recession curves. Eos, Transactions American Geophysical
Union , 20 (4), 721-725. https://doi.org/10.1029/TR020i004p00721.
Beck, H. E., van Dijk, A. I., Miralles, D. G., de Jeu, R. A.,
Bruijnzeel, L. S., McVicar, T. R., & Schellekens, J. (2013). Global
patterns in base flow index and recession based on streamflow
observations from 3394 catchments. Water Resources
Research , 49 (12), 7843-7863.
https://doi.org/10.1002/2013WR013918.
Berghuijs, W. R., Hartmann, A., & Woods, R. A. (2016). Streamflow
sensitivity to water storage changes across Europe. Geophysical
Research Letters , 43 , 1980-1987.
https://doi.org/10.1002/2016GL067927.
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession
curves. Geophysical Research Letters , 37 (24), L24403.
https://doi.org/10.1029/2010GL045415
Biswal, B., & Marani, M. (2014). ‘Universal’recession curves and their
geomorphological interpretation. Advances in water
resources , 65 , 34-42.
https://doi.org/10.1016/j.advwatres.2014.01.004.
Biswal, B., & Nagesh Kumar, D. (2013). A general geomorphological
recession flow model for river basins. Water Resources
Research , 49 (8), 4900-4906. https://doi.org/10.1002/wrcr.20379.
Bogaart, P. W., Van Der Velde, Y., Lyon, S. W., & Dekker, S. C. (2016).
Streamflow recession patterns can help unravel the role of climate and
humans in landscape co-evolution. Hydrology and Earth System
Sciences , 20 (4), 1413-1432.
https://doi.org/10.5194/hess-20-1413-2016.
Brooks, P. D., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M.,
McNamara, J. P., & Tague, C. (2015). Hydrological partitioning in the
critical zone: Recent advances and opportunities for developing
transferable understanding of water cycle dynamics. Water Resources
Research, 51(9), 6973-6987. https://doi.org/10.1002/2015WR017039.
Brutsaert, W. (2005). Hydrology: an introduction . Cambridge, UK:
Cambridge University Press.
Brutsaert, W. (2008). Long‐term
groundwater storage trends estimated from streamflow records: Climatic
perspective. Water Resources Research , 44 , W02409.
https://doi.org/10.1029/2007WR006518.
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow
hydrographs from a mature glaciated plateau. Water Resources
Research , 13 , 637-643. https://doi.org/10.1029/WR013i003p00637.
Buttle, J. M. (2016). Dynamic storage: A potential metric of inter‐basin
differences in storage properties. Hydrological
processes , 30 (24), 4644-4653. https://doi.org/10.1002/hyp.10931.
Buttle, J. M. (2018). Mediating stream baseflow response to climate
change: The role of basin storage. Hydrological
Processes , 32 (3), 363-378. https://doi.org/10.1002/hyp.11418.
Central Geological Survey. (2012).Hydrogeology Investigation and Groundwater Resource Assessment for
Taiwan-Groundwater Recharge Estimation and Model Simulation Pingtung
Plain . Central Geological Survey. Taipei, ROC: Central Geological
Survey. (in Chinese)
Cheng, L., Zhang, L., &
Brutsaert, W. (2016). Automated selection of pure base flows from
regular daily streamflow data: Objective algorithm. Journal of
Hydrologic Engineering , 21 (11), 06016008.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001427.
Cheng, L., Zhang, L., Chiew, F. H., Canadell, J. G., Zhao, F., Wang, Y.
P., … & Lin, K. (2017). Quantifying the impacts of vegetation changes
on catchment storage‐discharge dynamics using paired‐catchment
data. Water Resources Research , 53 (7), 5963-5979.
https://doi.org/10.1002/2017WR020600.
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P. H., & Al-Malki,
A. (2003). Evaluation of aquifer thickness by analysing recession
hydrographs. Application to the Oman ophiolite hard-rock
aquifer. Journal of hydrology , 274 (1-4), 248-269.
https://doi.org/10.1016/S0022-1694(02)00418-3.
Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., &
Thompson, S. E. (2017). Event-scale power law recession analysis:
quantifying methodological uncertainty. Hydrology and Earth System
Sciences , 21 (1), 65-81. https://doi.org/10.5194/hess-21-65-2017.
Dwivedi, R., Meixner, T.,
McIntosh, J. C., Ferré, P. T., Eastoe, C. J., Niu, G. Y., … &
Chorover, J. (2019). Hydrologic functioning of the deep critical zone
and contributions to streamflow in a high‐elevation catchment: Testing
of multiple conceptual models. Hydrological
processes , 33 (4), 476-494. https://doi.org/10.1002/hyp.1336.
Eckhardt, K. (2005). How to construct recursive digital filters for
baseflow separation. Hydrological Processes: An International
Journal , 19 (2), 507-515. https://doi.org/10.1002/hyp.5675.
Eckhardt, K. (2008). A comparison of baseflow indices, which were
calculated with seven different baseflow separation
methods. Journal of Hydrology , 352 (1-2), 168-173.
https://doi.org/10.1016/j.jhydrol.2008.01.005.
Famiglietti, J. S. (2014). The global groundwater crisis. Nature
Climate Change , 4 (11), 945.
https://doi.org/10.1038/nclimate2425.
Huang, C. C., & Yeh, H. F.
(2019). Hydrogeological Parameter Determination in the Southern
Catchments of Taiwan by Flow Recession
Method. Water , 11 (1), 7.
https://doi.org/10.3390/w11010007.
IPCC. (2014) Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of
Working Group II to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change . Cambridge, UK and New York, NY: Cambridge
University Press.
Kingsford, R. T., Thomas, R. F., 2002. Environmental Flows on the Paroo
and Warrego Rivers: Progress Report Year 2. National Parks &
Wildlife Service, Sydney, NSW, Australia .
Kirchner, J. W. (2009). Catchments as simple dynamical systems:
Catchment characterization, rainfall‐runoff modeling, and doing
hydrology backward. Water Resources Research , 45 (2), 1-34.
https://doi.org/10.1029/2008WR006912.
Li, W., Zhang, K., Long, Y., &
Feng, L. (2017). Estimation of Active Stream Network Length in a Hilly
Headwater Catchment Using Recession Flow
Analysis. Water , 9 (5), 348.
https://doi.org/10.3390/w9050348.
Lin, L., Gao, M., Liu, J., Wang, J., Wang, S., Chen, X., & Liu, H.
(2020). Understanding the effects of climate warming on streamflow and
active groundwater storage in an alpine catchment: the upper Lhasa
River. Hydrology and Earth System Sciences , 24 (3),
1145-1157. https://doi.org/10.5194/hess-24-1145-2020.
Lin, K. T., & Yeh, H. F. (2017). Baseflow recession characterization
and groundwater storage trends in northern Taiwan. Hydrology
Research , 48 (6), 1745-1756. https://doi.org/10.2166/nh.2017.237.
Liu, S. C., Shiu, C. J., Chen, J. P., & Fu, C. B. (2008, August).
Changes of precipitation intensity in East Asia. 2008 Taiwan
Climate Change Conference . Taipei, ROC. (in Chinese)
Lu, M. M., Cho, Y. M., Lee, S.Y., Lee, C. T., & Lin, Y. C. (2012).
Climate variations in Taiwan during 1911-2009. Atmospheric
Science , 40 (3), 297-321. (in Chinese)
Mendoza, G. F., Steenhuis, T. S., Walter, M. T., & Parlange, J. Y.
(2003). Estimating basin-wide hydraulic parameters of a semi-arid
mountainous watershed by recession-flow analysis. Journal of
Hydrology , 279 (1-4), 57-69.
https://doi.org/10.1016/S0022-1694(03)00174-4.
Meriö, L. J., Ala‐aho, P., Linjama, J., Hjort, J., Kløve, B., &
Marttila, H. (2019). Snow to Precipitation Ratio Controls Catchment
Storage and Summer Flows in Boreal Headwater Catchments. Water
Resources Research , 55 (5), 4096-4109.
https://doi.org/10.1029/2018wr02303.
Oyarzún, R., Godoy, R., Núñez, J.,
Fairley, J. P., Oyarzún, J., Maturana, H., & Freixas, G. (2014).
Recession flow analysis as a suitable tool for hydrogeological parameter
determination in steep, arid basins. Journal of Arid
Environments , 105 , 1-11.
https://doi.org/10.1016/j.jaridenv.2014.02.012.
Parra, V., Arumí, J. L., Muñoz, E., & Paredes, J. (2019).
Characterization of the Groundwater Storage Systems of South-Central
Chile: An Approach Based on Recession Flow
Analysis. Water , 11 (11), 2324.
https://doi.org/10.3390/w11112324.
Patnaik, S., Biswal, B., Kumar, D. N., & Sivakumar, B. (2015). Effect
of catchment characteristics on the relationship between past discharge
and the power law recession coefficient. Journal of
Hydrology , 528 , 321-328.
https://doi.org/10.1016/j.jhydrol.2015.06.032.
Ploum, S. W., Lyon, S. W.,
Teuling, A. J., Laudon, H., & van der Velde, Y. (2019). Soil frost
effects on streamflow recessions in a subarctic
catchment. Hydrological Processes , 33 (9), 1304-1316.
https://doi.org/10.1002/hyp.13401.
Roques, C., Rupp, D. E., & Selker, J. S. (2017). Improved streamflow
recession parameter estimation with attention to calculation of−
dQ/dt. Advances in water resources , 108 , 29-43.
https://doi.org/10.1016/j.advwatres.2017.07.013.
Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., & Boll,
J. (2015). Baseflow recession analysis in the inland Pacific Northwest
of the United States. Hydrogeology Journal , 23 (2),
287-303. https://doi.org/10.1007/s10040-014-1191-4.
Santos, R. M. B., Fernandes, L. S., Moura, J. P., Pereira, M. G., &
Pacheco, F. A. L. (2014). The impact of climate change, human
interference, scale and modeling uncertainties on the estimation of
aquifer properties and river flow components. Journal of
hydrology , 519 , 1297-1314.
https://doi.org/10.1016/j.jhydrol.2014.09.001.
Savenije, H. H., Hoekstra, A. Y., & van der Zaag, P. (2014). Evolving
water science in the Anthropocene. Hydrology and Earth System
Sciences , 18 , 319-332. https://doi.org/
10.5194/hessd-10-7619-2013.
Shaw, S. B. (2016). Investigating the linkage between streamflow
recession rates and channel network contraction in a mesoscale catchment
in New York state. Hydrological Processes , 30 (3), 479-492.
https://doi.org/10.1002/hyp.10626.
Stoelzle, M., Stahl, K., Morhard, A., & Weiler, M. (2014). Streamflow
sensitivity to drought scenarios in catchments with different
geology. Geophysical Research Letters , 41 (17), 6174-6183.
https://doi.org/10.1002/2014GL061344.
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession
characteristics really characteristic?. Hydrology and Earth System
Sciences , 17 (2), 817-828.
https://doi.org/10.5194/hessd-9-10563-2012.
Sugita, M., & Brutsaert, W. (2009). Recent low-flow and groundwater
storage changes in upland watersheds of the Kanto region,
Japan. Journal of Hydrologic Engineering , 14 (3), 280-285.
https://doi.org/10.1061/(ASCE)1084-0699(2009)14:3(280).
Szilagyi, J., Gribovszki, Z., &
Kalicz, P. (2007). Estimation of catchment-scale evapotranspiration from
baseflow recession data: Numerical model and practical application
results. Journal of hydrology , 336 (1-2), 206-217.
https://doi.org/10.1016/j.jhydrol.2007.01.004.
Thomas, B. F., Vogel, R. M.,
Kroll, C. N., & Famiglietti, J. S. (2013). Estimation of the base flow
recession constant under human interference. Water Resources
Research , 49 (11), 7366-7379. https://doi.org/10.1002/wrcr.20532.
Troch, P. A., Berne, A., Bogaart,
P., Harman, C., Hilberts, A. G. J., Lyon, S. W., … & Verhoest,
N. E. C. (2013). The importance of hydraulic groundwater theory in
catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves
Parlange. Water Resources Research , 49 (9), 5099-5116.
https://doi.org/10.1002/wrcr.20407.
Van Dijk, A. I. J. M. (2010). Climate and terrain factors explaining
streamflow response and recession in Australian
catchments. Hydrology and Earth System Sciences , 14 (1),
159-169. https://doi.org/10.5194/hess-14-159-2010.
van Tol, J. J., & Lorentz, S. A.
(2018). Hydropedological interpretation of regional soil information to
conceptualize groundwater–surface water interactions. Vadose Zone
Journal , 17 (1). https://doi.org/10.2136/vzj2017.05.0097.
Wang, D. (2011). On the base flow
recession at the Panola mountain research watershed, Georgia, United
States. Water Resources Research , 47 (3), W03527, 2011.
https://doi.org/10.1029/2010WR009910.
Wang, D., & Cai, X. (2009). Detecting human interferences to low flows
through base flow recession analysis. Water resources
research , 45 , W07426. https://doi.org/10.1029/2009WR007819.
Wang, D., & Cai, X. (2010).
Comparative study of climate and human impacts on seasonal baseflow in
urban and agricultural watersheds. Geophysical Research
Letters , 37 (6), L06406. https://doi.org/10.1029/2009GL041879.
Wang, D., & Cai, X. (2010). Recession slope curve analysis under human
interferences. Advances in Water Resources , 33 (9),
1053-1061. https://doi.org/10.1016/j.advwatres.2010.06.010.
Ward, A. S., Schmadel, N. M., Wondzell, S. M., Harman, C., Gooseff, M.
N., & Singha, K. (2016). Hydrogeomorphic controls on hyporheic and
riparian transport in two headwater mountain streams during base flow
recession. Water Resources Research , 52 (2), 1479-1497.
https://doi.org/10.1002/2015WR018225.
Water Resources Agency. (1986). Basic Plan of The Regulation
Scheme in Bazhang river . Taipei,
ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2000). Planning of Drainage System and
Environment Rehabilitation of Yanshuei-chi Drainage in Tainan Are a.
Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2004). Development of the Watershed
Digital Topography Information System for Integrated Basin Management .
Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2007). The Regulation and Management
Scheme in The Upstream of Laonong River . Taipei, ROC: Water Resources
Agency. (in Chinese)
Water Resources Agency. (2014). 2014 Annual report on Taiwan water use
statistics. Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2015). Hydrological year book . Taipei,
ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2016). The Third Stage Management Project
of Climate Change Impacts and Adaptation on Water Environment (3/5) .
Taipei, ROC: Water Resources Agency. (in Chinese)
Water Resources Agency. (2017). Assessment of groundwater
potential exploiting zones and groundwater yields in Kaoping and Chianan
Watersheds (2/2) . Taipei, ROC: Water Resources Agency. (in Chinese)
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear
storage processes. Hydrological Processes , 13 (5), 715-726.
https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N.
Wittenberg, H. (2003). Effects of
season and man‐made changes on baseflow and flow recession: case
studies. Hydrological Processes , 17 (11), 2113-2123.
https://doi.org/10.1002/hyp.1324.
Wu, Y. C., Chen, Y. M., & Chu, J. L. (2010). Taiwan’s climate change
trend. National Applied Research Laboratories Quarterly ,25 , 40-46. (in Chinese)
Yeh, H. F., & Huang, C. C.
(2019). Evaluation of basin storage–discharge sensitivity in Taiwan
using low‐flow recession analysis. Hydrological
Processes , 33 (10), 1434-1447. https://doi.org/10.1002/hyp.13411.
Zecharias, Y. B., & Brutsaert, W. (1988). Recession characteristics of
groundwater outflow and base flow from mountainous
watersheds. Water Resources Research , 24 (10), 1651-1658.
https://doi.org/10.1029/WR024i010p01651.
Zhang, L., Brutsaert, W., Crosbie, R., & Potter, N. (2014). Long-term
annual groundwater storage trends in Australian
catchments. Advances in water resources , 74 , 156-165.
https://doi.org/10.1016/j.advwatres.2014.09.001.
Zhang, L., Chen, Y. D., Hickel,
K., & Shao, Q. (2009). Analysis of low-flow characteristics for
catchments in Dongjiang Basin, China. Hydrogeology
journal , 17 (3), 631-640.
https://doi.org/10.1007/s10040-008-0386-y.