REFFERENCES
Álvarez-Fernández, A., Paniagua, P., Abadía, J., & Abadía, A. (2003). Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). Journal of Agricultural and Food Chemistry 51 , 5738-5744.
Bastow, E. L., De La Torre, V. S. G., Maclean, A. E., Green, R. T., Merlot, S., Thomine, S., & Balk, J. (2018). Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiology 177 , 1267-1276.
Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell16 , 332-341.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30,2114-2120.
Bouguyon, E., Perrine-Walker, F., Pervent1, M., Rochette1, J., Cuesta, C., Benkova, E., Martinière, A., Bach, L., Krouk, J., Gojon, A., & Nacry, P. (2016). Nitrate controls root development through posttranscriptional regulation of the NRT1. 1/NPF6. 3 transporter/sensor. Plant physiology 172, 1237-1248.
Briat, J. F., Dubos, C., & Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science20, 33-40.
Brown, J. C., & Chaney, R. L. (1971). Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiology  47, 836-840.
Canales, J., Contreras-López, O., Álvarez, J. M., & Gutiérrez, R. A. (2017). Nitrate induction of root hair density is mediated by TGA 1/TGA 4 and CPC transcription factors in Arabidopsis thaliana. The Plant Journal 92, 305-316.
Cao, H., Qi, S., Sun, M., Li, Z., Yang, Y., Crawford, N. M., & Wang, Y. (2017). Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation. Frontiers in Plant Science8, 1703.
Cassol, D., De Silva, F. S. P., Falqueto, A. R., & Bacarin, M. A. (2008). An evaluation of non-destructive methods to estimate total chlorophyll content. Photosynthetica  46 , 634.
Cassin, G., Mari, S., Curie, C., Briat, J.F. & Czernic, P. (2009) Increased sensitivity to iron deficiency in Arabidopsis thaliana over accumulating nicotianamine. Journal of Experimental Botany60, 1249–1259.
Cataldo, D. A., McFadden, K. M., Garland, T. R., & Wildung, R. E. (1988). Organic constituents and complexation of nickel (II), iron (III), cadmium (II), and plutonium (IV) in soybean xylem exudates.Plant Physiology 86, 734-739.
Chen, M. L., Huang, Y. Q., Liu, J. Q., Yuan, B. F., & Feng, Y. Q. (2011). Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry. Journal of Chromatography B 879, 938-944.
Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology 154, 810-819.
Clemens, S. (2019). Metal ligands in micronutrient acquisition and homeostasis. Plant, cell & environment 42 , 2902-2912.
Connorton, J. M., Balk, J., & Rodríguez-Celma, J. (2017). Iron homeostasis in plants–a brief overview. Metallomics 9,813-823.
Colangelo, E. P., & Guerinot, M. L. (2004). The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell 16 , 3400-3412.
Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. F., & Walker, E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature409, 346.
Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Mission, J., Schikora, A., Czernic, P., & Mari, S. (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of botany 103 , 1-11.
Chu, H. H., Chiecko, J., Punshon, T., Lanzirotti, A., Lahner, B., Salt, D. E., & Walker, E. L. (2010). Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant physiology, 154(1), 197-210.
Durrett T.P., Gassmann W. & Rogers E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology 144, 197–205.
Fourcroy, P., Siso-Terraza, P., Sudre, D., Saviron, M., Reyt, G., Gaymard, F., Abadia, A., Abadia, J., Alvarez-Fernandez, A., & Briat, J. F. (2014). Involvement of the ABCG 37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytologist 201, 155-167.
Fredes, I., Moreno, S., Díaz, F. P., & Gutiérrez, R. A. (2019). Nitrate signaling and the control of Arabidopsis growth and development.Current opinion in plant biology 47, 112-118.
Gao, F., Robe, K., Gaymard, F., Izquierdo, E., & Dubos, C. (2019). The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors. Frontiers in plant science 10, 6.
García, M. J., Lucena, C., Romera, F. J., Alcántara, E., & Pérez-Vicente, R. (2010). Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. Journal of Experimental Botany 61,3885-3899.
Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research , 1763 , 595-608.
Gratz, R., Manishankar, P., Ivanov, R., Köster, P., Mohr, I., Trofimov, K., Steinhorst, L., Meiser , J., Mai, H. J., Drerup, M., Arendt, S., Holtkamp, M., Karst, U., Kudla, J., Bauer, P., & Brumbarova, T. (2019). CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling.Developmental cell 48 , 726-740.
Grillet, L., & Schmidt, W. (2019). Iron acquisition strategies in land plants: not so different after all. New Phytologist .
Guerinot, M. L. (2000). The ZIP family of metal transporters.Biochimica et Biophysica Acta (BBA)-Biomembranes1465 , 190-198.
Haydon M.J. & Cobbett C.S. (2007) Transporters of ligands for essential metal ions in plants. New Phytologist 174, 499–506.
Heim, M. A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., & Bailey, P. C. (2003). The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution20, 735-747.
Henriques, R., Jásik, J., Klein, M., Martinoia, E., Feller, U., Schell, J., Pasi, M. S. & Koncz, C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant molecular biology 50, 587-597.
Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P., Nussaume, L., & Thibaud, M. C. (2006). Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88, 1767-1771.
Hu B., Jiang Z., Wang W., Qiu Y., Zhang Z., Liu Y., Li A., Gao X., Liu L., Qian Y., Huang X., Yu F., Kang S., Wang Y., Xie J., Cao S., Zhang L., Wang Y., Xie Q., Kopriva S. & Chu C. (2019). Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants . 5, 401-413.
Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., … & Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings.Journal of Biological Chemistry 284, 3470-3479.
Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, K., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+‐phytosiderophore and as Fe2+The Plant Journal  45, 335-346.
Ivanov, R., Brumbarova, T., & Bauer, P. (2012). Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant  5, 27-42.
Jeong, J., & Guerinot, M. L. (2009). Homing in on iron homeostasis in plants. Trends in Plant Science  14, 280-285.
Jeong, J., Merkovich, A., Clyne, M., & Connolly, E. L. (2017). Directing iron transport in dicots: regulation of iron acquisition and translocation. Current Opinion in Plant Biology  39,106-113.
Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants.Annual review of plant biology 63, 131-152.
Krauss, A. (1978). Tuberization and abscisic acid content in Solanum tuberosum as affected by nitrogen nutrition. Potato Research 21,183-193.
Kumar, R. K., Chu, H. H., Abundis, C., Vasques, K., Rodriguez, D. C., Chia, J. C., Huang, R., Vatamaniuk, O. K., & Walker, E. L. (2017). Iron-nicotianamine transporters are required for proper long-distance iron signaling. Plant physiology 175 , 1254-1268.
Lei, G. J., Zhu, X. F., Wang, Z. W., Dong, F., Dong, N. Y., & Zheng, S. J. (2014). Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in A rabidopsis.Plant, cell & environment 37, 852-863.
Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P., & Bauer, P. (2011). Interaction between the bHLH transcription factor FIT and ethylene insensitive3/ethylene intensive3-like1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell  23, 1815-1829.
Liu, K. H., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H. S., Lei Li, l., Boudsocq, M., McCormack, M., Maekawa, S., Ishida, T., Zhang, C., Shokat, K., Yanagisawa, S., & Sheen, J. (2017). Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks.Nature 545, 311.
Li, X., Zhang, H., Ai, Q., Liang, G., & Yu, D. (2016). Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiology  170, 2478-2493.
Lucena, C., Waters, B. M., Romera, F. J., García, M. J., Morales, M., Alcántara, E., & Pérez-Vicente, R. (2006). Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Journal of Experimental Botany57, 4145-4154.
Ma, F., Jazmin, L. J., Young, J. D., & Allen, D. K. (2014). Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proceedings of the National Academy of Sciences111, 16967-16972.
Ma, F., Jazmin, L. J., Young, J. D., & Allen, D. K. (2017). Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants. In Photorespiration (pp. 167-194). Humana Press, New York, NY.
Magomya, A. M., Kubmarawa, D., Ndahi, J. A., & Yebpella, G. G. (2014). Determination of plant proteins via the kjeldahl method and amino acid analysis: a comparative study. International journal of scientific & technology research 3, 68-72.
Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. Academic press, San Diego, CA.
Miyawaki, K., Matsumoto‐Kitano, M., & Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate.The plant journal 37 , 128-138.
Mora-Macías, J., Ojeda-Rivera, J. O., Gutiérrez-Alanís, D., Yong-Villalobos, L., Oropeza-Aburto, A., Raya-González, J., Jiménez-Domíngueza, G., Chávez-Calvilloa, G., Rellán-Álvareza, R., & Herrera-Estrellaa, L. (2017). Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proceedings of the National Academy of Sciences-USA, 114(17), E3563-E3572.
Morrissey, J., Baxter, I. R., Lee, J., Li, L., Lahner, B., Grotz, N., Kaplan, J., Salt, D. E., & Guerinota, M. L. (2009). The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell  21, 3326-3338.
Mukherjee, I., Campbell, N. H., Ash, J. S., & Connolly, E. L. (2006). Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.Planta 223 , 1178-1190.
Murashige T. & Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Biologia Plantarum15, 473–496.
Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S., & Guerinot, M. L. (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genetics9, e1003953.
Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics  975, 384-394.
Rajniak, J., Giehl, R. F., Chang, E., Murgia, I., von Wirén, N., & Sattely, E. S. (2018). Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature chemical biology14 , 442-450.
Rellán-Álvarez, J., Giner-Martínez-Sierra, J., Orduna,J., Orera, I., Rodríguez-Castrillón, J.A., García-Alonso, J.I., Abadía, J. & Álvarez-Fernández, A. (2010) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport.Plant and Cell Physiology 51 , 91-102.
Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils.Nature 397 , 694-697.
Romera, F. J., Lucena, C., García, M. J., Alcántara, E., & Pérez-Vicente, R. (2017). The role of ethylene and other signals in the regulation of Fe deficiency responses by dicot plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2 (pp. 277-300). Springer, Cham.
Römheld, V., & Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology 80, 175-180.
Roschzttardtz, H., Séguéla-Arnaud, M., Briat, J. F., Vert, G., & Curie, C. (2011). The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development.The Plant Cell 23 , 2725-2737.
Santi, S., & Schmidt, W. (2008). Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. Journal of experimental botany 59 , 697-704.
Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. New Phytologist183, 1072-1084.
Schikora, A., & Schmidt, W. (2001). Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology125, 1679-1687.
Scheible, W. R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B., Caboche, M., & Stitt, M. (1997). Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell 9 , 783-798.
Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., & Stitt, M. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen.Plant physiology 136 , 2483-2499.
Schmid, N. B., Giehl, R. F., Döll, S., Mock, H. P., Strehmel, N., Scheel, D., Kong, X., Hider, R. C., & von Wirén, N. (2014). Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology 164 , 160-172.
Séguéla, M., Briat, J. F., Vert, G., & Curie, C. (2008). Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth‐dependent pathway. The Plant Journal55 , 289-300.
Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A., Bourgaud, F., Meharg, A. A, Carey, M., Lojkowska, E., & Ihnatowicz, A. (2018). Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of experimental botany 69 , 1735-1748.
Smolders, A. J. P., Hendriks, R. J. J., Campschreur, H. M., & Roelofs, J. G. M. (1997). Nitrate induced iron deficiency chlorosis in Juncus acutiflorus. Plant and Soil 196, 37-45.
Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., Gassmann, W., Blevins, D. G., & Stacey, G. (2008). The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant physiology  146,589-601.
Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., & Sakakibara, H. (2004). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiology45 , 1053-1062.
Teplova, I., Veselov, S., & Kudoyarova, G. (1998). Changes in ABA and IAA content in the roots and shoots of wheat seedlings under nitrogen deficiency. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems (pp. 599-605). Springer, Dordrecht.
Tissot, N., Robe, K., Gao, F., Grant‐Grant, S., Boucherez, J., Bellegarde, F., Maghiaoui, A., Marcelin, R., Izquierdo, E., Benhamed, M., Martin, A., Vignols, F., Roschzttardtz, H., Gaymard, F., Briat, J. F., & Dubos, C. (2019). Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist 223 , 1433-1446.
Tsai, H. H., Rodriguez-Celma, J., Lan, P., Wu, Y. C., Vélez-Bermúdez, I. C., & Schmidt, W. (2018). Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiology177 , 194-207.
Wang, F. P., Wang, X. F., Zhang, J., Ma, F., & Hao, Y. J. (2018). MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant and Cell Physiology 59 , 2476-2489.
Wang, Y. H., Garvin, D. F., & Kochian, L. V. (2001). Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127 , 345-359.
Waters, B. M., Chu, H. H., DiDonato, R. J., Roberts, L. A., Eisley, R. B., Lahner, B., Salt, D. E., & Walker, E. L. (2006). Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology  141, 1446-1458.
Wintz, H., Fox, T., Wu, Y. Y., Feng, V., Chen, W., Chang, H. S., Zhu, T., & Vulpe, C. (2003). Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry 278 , 47644-47653.
Wu, J., Wang, C., Zheng, L., Wang, L., Chen, Y., Whelan, J., & Shou, H. (2011). Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. Journal of experimental botany 62, 667-674.
Wu, T. Y., Gruissem, W., & Bhullar, N. K. (2018). Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant science 270 , 13-22.
Yan, D., Easwaran, V., Chau, V., Okamoto, M., Ierullo, M., Kimura, M., Endo, A., Yano, R., Pasha, A., Gong, Y., Bi, Y. M., Provart, N., Guttman, D., Krapp, A., Rothstein, S. J., & Nambara, E. (2016). NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature Communications 7,13179.
Yan, J. Y., Li, C. X., Sun, L., Ren, J. Y., Li, G. X., Ding, Z. J., & Zheng, S. J. (2016). A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant physiology 171 , 2017-2027.
Zamioudis, C., Hanson, J., & Pieterse, C. M. (2014). β‐Glucosidase BGLU 42 is a MYB 72‐dependent key regulator of rhizobacteria‐induced systemic resistance and modulates iron deficiency responses in A rabidopsis roots. New Phytologist , 204 , 368-379.
Zhao, Q., Ren, Y. R., Wang, Q. J., Yao, Y. X., You, C. X., & Hao, Y. J. (2016a). Overexpression of Mdb HLH 104 gene enhances the tolerance to iron deficiency in apple. Plant biotechnology journal14 , 1633-1645.
Zhao, Q., Ren, Y. R., Wang, Q. J., Wang, X. F., You, C. X., & Hao, Y. J. (2016b). Ubiquitination-related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis. Plant physiology172 , 1973-1988.
Zhang, J., Liu, B., Li, M., Feng, D., Jin, H., Wang, P., Liu, J., Xiong, F., Wang, J., & Wang, H. B. (2015). The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. The Plant Cell 27, 787-805.
Zheng, L., Huang, F., Narsai, R., Wu, J., Giraud, E., He, F., Cheng, L., Wang, F., Wu, P., Whelan, J., & Shou, H. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology 151 , 262-274.
ZhongYang quanwei. The effect of long-term nitrogen fertilization on soil carbon balance and stability mechanism in wheat field. [D]. North West Agriculture and Forestry University. 2016 (in Chinese).
Zhou, L. J., Zhang, C. L., Zhang, R. F., Wang, G. L., Li, Y. Y., & Hao, Y. J. (2019). The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant physiology 179 , 88-106.
Zhu, X. F., Wu, Q., Zheng, L., & Shen, R. F. (2017). NaCl alleviates iron deficiency through facilitating root cell wall iron reutilization and its translocation to the shoot in Arabidopsis thaliana. Plant and Soil 417, 155-167.