REFFERENCES
Álvarez-Fernández, A., Paniagua, P., Abadía, J., & Abadía, A. (2003).
Effects of Fe deficiency chlorosis on yield and fruit quality in peach
(Prunus persica L. Batsch). Journal of Agricultural and Food
Chemistry 51 , 5738-5744.
Bastow, E. L., De La Torre, V. S. G., Maclean, A. E., Green, R. T.,
Merlot, S., Thomine, S., & Balk, J. (2018). Vacuolar iron stores gated
by NRAMP3 and NRAMP4 are the primary source of iron in germinating
seeds. Plant Physiology 177 , 1267-1276.
Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic
synthesis of nitric oxide by plant tissues. The Plant Cell16 , 332-341.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30,2114-2120.
Bouguyon, E., Perrine-Walker, F., Pervent1, M., Rochette1, J., Cuesta,
C., Benkova, E., Martinière, A., Bach, L., Krouk, J., Gojon, A., &
Nacry, P. (2016). Nitrate controls root development through
posttranscriptional regulation of the NRT1. 1/NPF6. 3
transporter/sensor. Plant physiology 172, 1237-1248.
Briat, J. F., Dubos, C., & Gaymard, F. (2015). Iron nutrition, biomass
production, and plant product quality. Trends in Plant Science20, 33-40.
Brown, J. C., & Chaney, R. L. (1971). Effect of iron on the transport
of citrate into the xylem of soybeans and tomatoes. Plant
Physiology 47, 836-840.
Canales, J., Contreras-López, O., Álvarez, J. M., & Gutiérrez, R. A.
(2017). Nitrate induction of root hair density is mediated by TGA 1/TGA
4 and CPC transcription factors in Arabidopsis thaliana. The Plant
Journal 92, 305-316.
Cao, H., Qi, S., Sun, M., Li, Z., Yang, Y., Crawford, N. M., & Wang, Y.
(2017). Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the
Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate
signaling and assimilation. Frontiers in Plant Science8, 1703.
Cassol, D., De Silva, F. S. P., Falqueto, A. R., & Bacarin, M. A.
(2008). An evaluation of non-destructive methods to estimate total
chlorophyll content. Photosynthetica 46 , 634.
Cassin, G., Mari, S., Curie, C., Briat, J.F. & Czernic, P. (2009)
Increased sensitivity to iron deficiency in Arabidopsis thaliana over
accumulating nicotianamine. Journal of Experimental Botany60, 1249–1259.
Cataldo, D. A., McFadden, K. M., Garland, T. R., & Wildung, R. E.
(1988). Organic constituents and complexation of nickel (II), iron
(III), cadmium (II), and plutonium (IV) in soybean xylem exudates.Plant Physiology 86, 734-739.
Chen, M. L., Huang, Y. Q., Liu, J. Q., Yuan, B. F., & Feng, Y. Q.
(2011). Highly sensitive profiling assay of acidic plant hormones using
a novel mass probe by capillary electrophoresis-time of flight-mass
spectrometry. Journal of Chromatography B 879, 938-944.
Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., &
Zheng, S. J. (2010). Nitric oxide acts downstream of auxin to trigger
root ferric-chelate reductase activity in response to iron deficiency in
Arabidopsis. Plant Physiology 154, 810-819.
Clemens, S. (2019). Metal ligands in micronutrient acquisition and
homeostasis. Plant, cell & environment 42 , 2902-2912.
Connorton, J. M., Balk, J., & Rodríguez-Celma, J. (2017). Iron
homeostasis in plants–a brief overview. Metallomics 9,813-823.
Colangelo, E. P., & Guerinot, M. L. (2004). The essential basic
helix-loop-helix protein FIT1 is required for the iron deficiency
response. The Plant Cell 16 , 3400-3412.
Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J.
F., & Walker, E. L. (2001). Maize yellow stripe1 encodes a membrane
protein directly involved in Fe (III) uptake. Nature409, 346.
Curie,
C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Mission,
J., Schikora, A., Czernic, P., & Mari, S. (2009). Metal movement within
the plant: contribution of nicotianamine and yellow stripe 1-like
transporters. Annals of botany 103 , 1-11.
Chu, H. H., Chiecko, J., Punshon, T., Lanzirotti, A., Lahner, B., Salt,
D. E., & Walker, E. L. (2010). Successful reproduction requires the
function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3
metal-nicotianamine transporters in both vegetative and reproductive
structures. Plant physiology, 154(1), 197-210.
Durrett T.P., Gassmann W. & Rogers E.E. (2007) The FRD3-mediated efflux
of citrate into the root vasculature is necessary for efficient iron
translocation. Plant Physiology 144, 197–205.
Fourcroy, P., Siso-Terraza, P., Sudre, D., Saviron, M., Reyt, G.,
Gaymard, F., Abadia, A., Abadia, J., Alvarez-Fernandez, A., & Briat, J.
F. (2014). Involvement of the ABCG 37 transporter in secretion of
scopoletin and derivatives by Arabidopsis roots in response to iron
deficiency. New Phytologist 201, 155-167.
Fredes, I., Moreno, S., Díaz, F. P., & Gutiérrez, R. A. (2019). Nitrate
signaling and the control of Arabidopsis growth and development.Current opinion in plant biology 47, 112-118.
Gao, F., Robe, K., Gaymard, F., Izquierdo, E., & Dubos, C. (2019). The
transcriptional control of iron homeostasis in plants: a tale of bHLH
transcription factors. Frontiers in plant science 10, 6.
García, M. J., Lucena, C., Romera, F. J., Alcántara, E., &
Pérez-Vicente, R. (2010). Ethylene and nitric oxide involvement in the
up-regulation of key genes related to iron acquisition and homeostasis
in Arabidopsis. Journal of Experimental Botany 61,3885-3899.
Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn
homeostasis in plants. Biochimica et Biophysica Acta
(BBA)-Molecular Cell Research , 1763 , 595-608.
Gratz, R., Manishankar, P., Ivanov, R., Köster, P., Mohr, I., Trofimov,
K., Steinhorst, L., Meiser , J., Mai, H. J., Drerup, M., Arendt, S.,
Holtkamp, M., Karst, U., Kudla, J., Bauer, P., & Brumbarova, T. (2019).
CIPK11-dependent phosphorylation modulates FIT activity to promote
Arabidopsis iron acquisition in response to calcium signaling.Developmental cell 48 , 726-740.
Grillet, L., & Schmidt, W. (2019). Iron acquisition strategies in land
plants: not so different after all. New Phytologist .
Guerinot, M. L. (2000). The ZIP family of metal transporters.Biochimica et Biophysica Acta (BBA)-Biomembranes1465 , 190-198.
Haydon M.J. & Cobbett C.S. (2007) Transporters of ligands for essential
metal ions in plants. New Phytologist 174, 499–506.
Heim, M. A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., &
Bailey, P. C. (2003). The basic helix–loop–helix transcription factor
family in plants: a genome-wide study of protein structure and
functional diversity. Molecular Biology and Evolution20, 735-747.
Henriques, R., Jásik, J., Klein, M., Martinoia, E., Feller, U., Schell,
J., Pasi, M. S. & Koncz, C. (2002). Knock-out of Arabidopsis metal
transporter gene IRT1 results in iron deficiency accompanied by cell
differentiation defects. Plant molecular biology 50, 587-597.
Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P.,
Nussaume, L., & Thibaud, M. C. (2006). Phosphate deficiency promotes
modification of iron distribution in Arabidopsis plants. Biochimie 88,
1767-1771.
Hu B., Jiang Z., Wang W., Qiu Y., Zhang Z., Liu Y., Li A., Gao X., Liu
L., Qian Y., Huang X., Yu F., Kang S., Wang Y., Xie J., Cao S., Zhang
L., Wang Y., Xie Q., Kopriva S. & Chu C. (2019). Nitrate–NRT1.1B–SPX4
cascade integrates nitrogen and phosphorus signalling networks in
plants. Nature Plants . 5, 401-413.
Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki,
K., … & Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated
iron (III)-deoxymugineic acid transporter expressed in the roots and is
essential for iron uptake in early growth of the seedlings.Journal of Biological Chemistry 284, 3470-3479.
Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M.,
Kobayashi, T., Wada, K., Watanabe, S., Matsuhashi, S., Takahashi, M.,
Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up
iron as an Fe3+‐phytosiderophore and as
Fe2+. The Plant Journal 45, 335-346.
Ivanov, R., Brumbarova, T., & Bauer, P. (2012). Fitting into the harsh
reality: regulation of iron-deficiency responses in dicotyledonous
plants. Molecular Plant 5, 27-42.
Jeong, J., & Guerinot, M. L. (2009). Homing in on iron homeostasis in
plants. Trends in Plant Science 14, 280-285.
Jeong, J., Merkovich, A., Clyne, M., & Connolly, E. L. (2017).
Directing iron transport in dicots: regulation of iron acquisition and
translocation. Current Opinion in Plant Biology 39,106-113.
Kobayashi, T., & Nishizawa, N. K.
(2012). Iron uptake, translocation, and regulation in higher plants.Annual review of plant biology 63, 131-152.
Krauss,
A. (1978). Tuberization and abscisic acid content in Solanum tuberosum
as affected by nitrogen nutrition. Potato Research 21,183-193.
Kumar, R. K., Chu, H. H., Abundis,
C., Vasques, K., Rodriguez, D. C., Chia, J. C., Huang, R., Vatamaniuk,
O. K., & Walker, E. L. (2017). Iron-nicotianamine transporters are
required for proper long-distance iron signaling. Plant
physiology 175 , 1254-1268.
Lei, G. J., Zhu, X. F., Wang, Z. W., Dong, F., Dong, N. Y., & Zheng, S.
J. (2014). Abscisic acid alleviates iron deficiency by promoting root
iron reutilization and transport from root to shoot in A rabidopsis.Plant, cell & environment 37, 852-863.
Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube,
C., Blondet, E., Genschik, P., & Bauer, P. (2011). Interaction between
the bHLH transcription factor FIT and ethylene insensitive3/ethylene
intensive3-like1 reveals molecular linkage between the regulation of
iron acquisition and ethylene signaling in Arabidopsis. The Plant
Cell 23, 1815-1829.
Liu, K. H., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H. S., Lei Li,
l., Boudsocq, M., McCormack, M., Maekawa, S., Ishida, T., Zhang, C.,
Shokat, K., Yanagisawa, S., & Sheen, J. (2017). Discovery of
nitrate–CPK–NLP signalling in central nutrient–growth networks.Nature 545, 311.
Li, X., Zhang, H., Ai, Q., Liang, G., & Yu, D. (2016). Two bHLH
transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in
Arabidopsis thaliana. Plant Physiology 170, 2478-2493.
Lucena, C., Waters, B. M., Romera, F. J., García, M. J., Morales, M.,
Alcántara, E., & Pérez-Vicente, R. (2006). Ethylene could influence
ferric reductase, iron transporter, and
H+-ATPase gene expression by affecting
FER (or FER-like) gene activity. Journal of Experimental Botany57, 4145-4154.
Ma, F., Jazmin, L. J., Young, J. D., & Allen, D. K. (2014).
Isotopically nonstationary 13C flux analysis of
changes in Arabidopsis thaliana leaf metabolism due to high light
acclimation. Proceedings of the National Academy of Sciences111, 16967-16972.
Ma, F., Jazmin, L. J., Young, J. D., & Allen, D. K. (2017).
Isotopically nonstationary metabolic flux analysis (INST-MFA) of
photosynthesis and photorespiration in plants. In Photorespiration (pp.
167-194). Humana Press, New York, NY.
Magomya, A. M., Kubmarawa, D., Ndahi, J. A., & Yebpella, G. G. (2014).
Determination of plant proteins via the kjeldahl method and amino acid
analysis: a comparative study. International journal of scientific
& technology research 3, 68-72.
Marschner, H. (2011). Marschner’s mineral nutrition of higher plants.
Academic press, San Diego, CA.
Miyawaki, K., Matsumoto‐Kitano, M., & Kakimoto, T. (2004). Expression
of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis:
tissue specificity and regulation by auxin, cytokinin, and nitrate.The plant journal 37 , 128-138.
Mora-Macías, J., Ojeda-Rivera, J. O., Gutiérrez-Alanís, D.,
Yong-Villalobos, L., Oropeza-Aburto, A., Raya-González, J.,
Jiménez-Domíngueza, G., Chávez-Calvilloa, G., Rellán-Álvareza, R., &
Herrera-Estrellaa, L. (2017). Malate-dependent Fe accumulation is a
critical checkpoint in the root developmental response to low phosphate.
Proceedings of the National Academy of Sciences-USA, 114(17),
E3563-E3572.
Morrissey, J., Baxter, I. R., Lee, J., Li, L., Lahner, B., Grotz, N.,
Kaplan, J., Salt, D. E., & Guerinota, M. L. (2009). The ferroportin
metal efflux proteins function in iron and cobalt homeostasis in
Arabidopsis. The Plant Cell 21, 3326-3338.
Mukherjee, I., Campbell, N. H., Ash, J. S., & Connolly, E. L. (2006).
Expression profiling of the Arabidopsis ferric chelate reductase (FRO)
gene family reveals differential regulation by iron and copper.Planta 223 , 1178-1190.
Murashige T. & Skoog F. (1962) A revised medium for rapid growth and
bioassays with tobacco tissue culture. Biologia Plantarum15, 473–496.
Palmer, C. M., Hindt, M. N.,
Schmidt, H., Clemens, S., & Guerinot, M. L. (2013). MYB10 and MYB72 are
required for growth under iron-limiting conditions. PLoS Genetics9, e1003953.
Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989).
Determination of accurate extinction coefficients and simultaneous
equations for assaying chlorophylls a and b extracted with four
different solvents: verification of the concentration of chlorophyll
standards by atomic absorption spectroscopy. Biochimica et
Biophysica Acta (BBA)-Bioenergetics 975, 384-394.
Rajniak, J., Giehl, R. F., Chang, E., Murgia, I., von Wirén, N., &
Sattely, E. S. (2018). Biosynthesis of redox-active metabolites in
response to iron deficiency in plants. Nature chemical biology14 , 442-450.
Rellán-Álvarez, J., Giner-Martínez-Sierra, J., Orduna,J., Orera, I.,
Rodríguez-Castrillón, J.A., García-Alonso, J.I., Abadía, J. &
Álvarez-Fernández, A. (2010) Identification of a tri-iron (III),
tri-citrate complex in the xylem sap of iron-deficient tomato resupplied
with iron: new insights into plant iron long-distance transport.Plant and Cell Physiology 51 , 91-102.
Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L.
(1999). A ferric-chelate reductase for iron uptake from soils.Nature 397 , 694-697.
Romera, F. J., Lucena, C., García,
M. J., Alcántara, E., & Pérez-Vicente, R. (2017). The role of ethylene
and other signals in the regulation of Fe deficiency responses by dicot
plants. In Stress Signaling in Plants: Genomics and Proteomics
Perspective, Volume 2 (pp. 277-300). Springer, Cham.
Römheld, V., & Marschner, H. (1986). Evidence for a specific uptake
system for iron phytosiderophores in roots of grasses. Plant
Physiology 80, 175-180.
Roschzttardtz, H., Séguéla-Arnaud, M., Briat, J. F., Vert, G., & Curie,
C. (2011). The FRD3 citrate effluxer promotes iron nutrition between
symplastically disconnected tissues throughout Arabidopsis development.The Plant Cell 23 , 2725-2737.
Santi, S., & Schmidt, W. (2008). Laser microdissection-assisted
analysis of the functional fate of iron deficiency-induced root hairs in
cucumber. Journal of experimental botany 59 , 697-704.
Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency‐induced
proton extrusion in Arabidopsis roots. New Phytologist183, 1072-1084.
Schikora, A., & Schmidt, W. (2001). Iron stress-induced changes in root
epidermal cell fate are regulated independently from physiological
responses to low iron availability. Plant Physiology125, 1679-1687.
Scheible,
W. R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B., Caboche, M.,
& Stitt, M. (1997). Nitrate acts as a signal to induce organic acid
metabolism and repress starch metabolism in tobacco. The Plant
Cell 9 , 783-798.
Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D.,
Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., &
Stitt, M. (2004). Genome-wide reprogramming of primary and secondary
metabolism, protein synthesis, cellular growth processes, and the
regulatory infrastructure of Arabidopsis in response to nitrogen.Plant physiology 136 , 2483-2499.
Schmid, N. B., Giehl, R. F., Döll, S., Mock, H. P., Strehmel, N.,
Scheel, D., Kong, X., Hider, R. C., & von Wirén, N. (2014).
Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron
acquisition from alkaline substrates in Arabidopsis. Plant
Physiology 164 , 160-172.
Séguéla, M., Briat, J. F., Vert, G., & Curie, C. (2008). Cytokinins
negatively regulate the root iron uptake machinery in Arabidopsis
through a growth‐dependent pathway. The Plant Journal55 , 289-300.
Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A.,
Bourgaud, F., Meharg, A. A, Carey, M., Lojkowska, E., & Ihnatowicz, A.
(2018). Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin
biosynthesis and iron-deficiency responses in Arabidopsis. Journal
of experimental botany 69 , 1735-1748.
Smolders, A. J. P., Hendriks, R. J. J., Campschreur, H. M., & Roelofs,
J. G. M. (1997). Nitrate induced iron deficiency chlorosis in Juncus
acutiflorus. Plant and Soil 196, 37-45.
Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M.,
Rogers, E. E., Gassmann, W., Blevins, D. G., & Stacey, G. (2008). The
Arabidopsis AtOPT3 protein functions in metal homeostasis and movement
of iron to developing seeds. Plant physiology 146,589-601.
Takei, K., Ueda, N., Aoki, K.,
Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., & Sakakibara, H.
(2004). AtIPT3 is a key determinant of nitrate-dependent cytokinin
biosynthesis in Arabidopsis. Plant and Cell Physiology45 , 1053-1062.
Teplova, I., Veselov, S., & Kudoyarova, G. (1998). Changes in ABA and
IAA content in the roots and shoots of wheat seedlings under nitrogen
deficiency. In Root Demographics and Their Efficiencies in Sustainable
Agriculture, Grasslands and Forest Ecosystems (pp. 599-605). Springer,
Dordrecht.
Tissot, N., Robe, K., Gao, F., Grant‐Grant, S., Boucherez, J.,
Bellegarde, F., Maghiaoui, A., Marcelin, R., Izquierdo, E., Benhamed,
M., Martin, A., Vignols, F., Roschzttardtz, H., Gaymard, F., Briat, J.
F., & Dubos, C. (2019). Transcriptional integration of the responses to
iron availability in Arabidopsis by the bHLH factor ILR3. New
Phytologist 223 , 1433-1446.
Tsai, H. H., Rodriguez-Celma, J., Lan, P., Wu, Y. C., Vélez-Bermúdez, I.
C., & Schmidt, W. (2018). Scopoletin 8-hydroxylase-mediated fraxetin
production is crucial for iron mobilization. Plant Physiology177 , 194-207.
Wang, F. P., Wang, X. F., Zhang, J., Ma, F., & Hao, Y. J. (2018).
MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43
promoter in plants. Plant and Cell Physiology 59 ,
2476-2489.
Wang, Y. H., Garvin, D. F., & Kochian, L. V. (2001). Nitrate-induced
genes in tomato roots. Array analysis reveals novel genes that may play
a role in nitrogen nutrition. Plant Physiology 127 ,
345-359.
Waters, B. M., Chu, H. H., DiDonato, R. J., Roberts, L. A., Eisley, R.
B., Lahner, B., Salt, D. E., & Walker, E. L. (2006). Mutations in
Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their
roles in metal ion homeostasis and loading of metal ions in
seeds. Plant Physiology 141, 1446-1458.
Wintz, H., Fox, T., Wu, Y. Y., Feng, V., Chen, W., Chang, H. S., Zhu,
T., & Vulpe, C. (2003). Expression profiles of Arabidopsis thaliana in
mineral deficiencies reveal novel transporters involved in metal
homeostasis. Journal of Biological Chemistry 278 ,
47644-47653.
Wu, J., Wang, C., Zheng, L., Wang, L., Chen, Y., Whelan, J., & Shou, H.
(2011). Ethylene is involved in the regulation of iron homeostasis by
regulating the expression of iron-acquisition-related genes in Oryza
sativa. Journal of experimental botany 62, 667-674.
Wu, T. Y., Gruissem, W., & Bhullar, N. K. (2018). Facilitated
citrate-dependent iron translocation increases rice endosperm iron and
zinc concentrations. Plant science 270 , 13-22.
Yan, D., Easwaran, V., Chau, V., Okamoto, M., Ierullo, M., Kimura, M.,
Endo, A., Yano, R., Pasha, A., Gong, Y., Bi, Y. M., Provart, N.,
Guttman, D., Krapp, A., Rothstein, S. J., & Nambara, E. (2016).
NIN-like protein 8 is a master regulator of nitrate-promoted seed
germination in Arabidopsis. Nature Communications 7,13179.
Yan,
J. Y., Li, C. X., Sun, L., Ren, J. Y., Li, G. X., Ding, Z. J., & Zheng,
S. J. (2016). A WRKY transcription factor regulates Fe translocation
under Fe deficiency. Plant physiology 171 , 2017-2027.
Zamioudis, C., Hanson, J., & Pieterse, C. M. (2014). β‐Glucosidase BGLU
42 is a MYB 72‐dependent key regulator of rhizobacteria‐induced systemic
resistance and modulates iron deficiency responses in A rabidopsis
roots. New Phytologist , 204 , 368-379.
Zhao, Q., Ren, Y. R., Wang, Q. J., Yao, Y. X., You, C. X., & Hao, Y. J.
(2016a). Overexpression of Mdb HLH 104 gene enhances the tolerance to
iron deficiency in apple. Plant biotechnology journal14 , 1633-1645.
Zhao, Q., Ren, Y. R., Wang, Q. J., Wang, X. F., You, C. X., & Hao, Y.
J. (2016b). Ubiquitination-related MdBT scaffold proteins target a bHLH
transcription factor for iron homeostasis. Plant physiology172 , 1973-1988.
Zhang, J., Liu, B., Li, M., Feng, D., Jin, H., Wang, P., Liu, J., Xiong,
F., Wang, J., & Wang, H. B. (2015). The bHLH transcription factor
bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron
homeostasis in Arabidopsis. The Plant Cell 27, 787-805.
Zheng, L., Huang, F., Narsai, R., Wu, J., Giraud, E., He, F., Cheng, L.,
Wang, F., Wu, P., Whelan, J., & Shou, H. (2009). Physiological and
transcriptome analysis of iron and phosphorus interaction in rice
seedlings. Plant Physiology 151 , 262-274.
ZhongYang quanwei. The effect of long-term nitrogen fertilization on
soil carbon balance and stability mechanism in wheat field. [D].
North West Agriculture and Forestry University. 2016 (in Chinese).
Zhou, L. J., Zhang, C. L., Zhang, R. F., Wang, G. L., Li, Y. Y., & Hao,
Y. J. (2019). The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate
plasma membrane H+-ATPase activity and iron
homeostasis. Plant physiology 179 , 88-106.
Zhu, X. F., Wu, Q., Zheng, L., & Shen, R. F. (2017). NaCl alleviates
iron deficiency through facilitating root cell wall iron reutilization
and its translocation to the shoot in Arabidopsis thaliana. Plant
and Soil 417, 155-167.