References
[1] Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., & Zhang, Q. (2020). Coronavirus infections and immune responses. Journal of medical virology92 (4), 424-432.
[2] https://www.worldometers.info/coronavirus/coronavirus-death-toll/
[3] Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses12 (3), 254.
[4] Raj, V. S., Mou, H., Smits, S. L., Dekkers, D. H., Müller, M. A., Dijkman, R., & Thiel, V. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature495 (7440), 251-254.
[5] Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., & Phoolcharoen, W. (2020). Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pacific Journal of Allergy and Immunology38 (1), 10-18.
[6] Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., & Jiang, S. (2017). MERS-CoV spike protein: a key target for antivirals. Expert opinion on therapeutic targets21 (2), 131-143.
[7] Kruse, R. L. (2020). Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Research9 .
[8] Jin, Y. H., Cai, L., Cheng, Z. S., Cheng, H., Deng, T., Fan, Y. P., & Han, Y. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research7 (1), 4.
[9] Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery6 (1), 1-18.
[10] Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. https://doi.org/10.1038/s41422-020-0282-0 (2020).
[11] Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., & Diaz, G. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine .
[12] Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., & Chen, H. D. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579 (7798), 270-273.
[13] De Clercq, E. (2019). New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chemistry–An Asian Journal14 (22), 3962-3968.
[14] Oestereich, L., Lüdtke, A., Wurr, S., Rieger, T., Muñoz-Fontela, C., & Günther, S. (2014). Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral research105 , 17-21.
[15] Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses—drug discovery and therapeutic options. Nature reviews Drug discovery15 (5), 327.
[16] Canonico, P. G., Jahrling, P. B., & Pannier, W. L. (1982). Antiviral efficacy of pyrazofurin against selected RNA viruses. Antiviral research2 (6), 331-337.
[17] Buchanan, J. G. (1983). The C-nucleoside antibiotics. In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products  (pp. 243-299). Springer, Vienna.
[18] Hacksell, U., & Daves Jr, G. D. (1985). 1 The Chemistry and Biochemistry of C-Nucleosides and C-Arylglycosides. In Progress in medicinal chemistry  (Vol. 22, pp. 1-65). Elsevier.
[19] De Clercq, E. (2009). Another ten stories in antiviral drug discovery (part C):“old” and “new” antivirals, strategies, and perspectives. Medicinal research reviews29 (4), 611-645.
[20] De Clercq, E. (2015). Curious (old and new) antiviral nucleoside analogues with intriguing therapeutic potential. Current medicinal chemistry22 (34), 3866-3880.
[21] De Clercq, E. (2016). C-Nucleosides to be revisited: Miniperspective. Journal of medicinal chemistry59 (6), 2301-2311.
[22] Ren, D., Wang, S. A., Ko, Y., Geng, Y., Ogasawara, Y., & Liu, H. W. (2019). Identification of the C‐Glycoside Synthases during Biosynthesis of the Pyrazole‐C‐Nucleosides Formycin and Pyrazofurin. Angewandte Chemie International Edition58 (46), 16512-16516.
[23] Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New insights into the antiviral effects of chloroquine. The Lancet infectious diseases6 (2), 67-69.
[24] Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K. F., Wei, Y., & Jiang, C. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell research23 (2), 300-302.
[25] Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal2 (1), 69.
[26] Liu, W., Morse, J. S., Lalonde, T., & Xu, S. (2020). Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembiochem .
[27] Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care .
[28] Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents105932 .
[29] Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., & Zhan, S. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases .
[30] Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug development research .
[31] Li, G., Hu, R., & Zhang, X. (2020). Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension. Hypertension Research , 1-3.
[32] Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., & Choe, H. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature426 (6965), 450-454.
[33] Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ‐protective Effect of Angiotensin‐converting Enzyme 2 and its Effect on the Prognosis of COVID‐19. Journal of Medical Virology .
[34] Voiriot, G., Philippot, Q., Elabbadi, A., Elbim, C., Chalumeau, M., & Fartoukh, M. (2019). Risks Related to the Use of Non-Steroidal Anti-Inflammatory Drugs in Community-Acquired Pneumonia in Adult and Pediatric Patients. Journal of clinical medicine8 (6), 786.
[35] Little, P. (2020). Non-steroidal anti-inflammatory drugs and covid-19. BMJ (Clinical research ed .), 368, m1185.
[36] Little, P., Moore, M., Kelly, J., Williamson, I., Leydon, G., McDermott, L., & Stuart, B. (2013). Ibuprofen, paracetamol, and steam for patients with respiratory tract infections in primary care: pragmatic randomised factorial trial. Bmj347 , f6041.
[37] Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature reviews. Drug discovery , 19(3), 149.
[38] Haviernik, J., Štefánik, M., Fojtíková, M., Kali, S., Tordo, N., Rudolf, I., & Ruzek, D. (2018). Arbidol (Umifenovir): a broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses10 (4), 184.
[39]https://www.drugtargetreview.com/news/58915/nafamostat-inhibits-sars-cov-2-infection preventing covid19transmission/fbclid
[40] Debar, S., Kumarapeli, P., Kaski, J. C., & De Lusignan, S. (2010). Addressing modifiable risk factors for coronary heart disease in primary care: an evidence-base lost in translation. Family practice27 (4), 370-378.
[41] Stellbrink, H. J., Arastéh, K., Schürmann, D., Stephan, C., Dierynck, I., Smyej, I., & Mariën, K. (2014). Antiviral Activity, Pharmacokinetics, and Safety of the HIV-1 Protease Inhibitor TMC310911, Coadministered With Ritonavir, in Treatment-Naive HIV-1–Infected Patients. JAIDS Journal of Acquired Immune Deficiency Syndromes65 (3), 283-289.
[42] Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature biotechnology .
[43] Wang, Z., Chen, X., Lu, Y., Chen, F., & Zhang, W. (2020). Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends .
[44] Chu, C. M., Cheng, V. C. C., Hung, I. F. N., Wong, M. M. L., Chan, K. H., Chan, K. S., & Peiris, J. S. M. (2004). Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax59 (3), 252-256.
[45] Teissier, E., Zandomeneghi, G., Loquet, A., Lavillette, D., Lavergne, J. P., Montserret, R., & Pécheur, E. I. (2011). Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PloS one6 (1).
[46] Wang, Y., Ding, Y., Yang, C., Li, R., Du, Q., Hao, Y., & Yang, Z. (2017). Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret). Biomedicine & Pharmacotherapy91 , 393-401.
[47] Dong, L., Hu, S., & Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics14 (1), 58-60.
[48] Ziółkowska, N. E., O’Keefe, B. R., Mori, T., Zhu, C., Giomarelli, B., Vojdani, F., & Wlodawer, A. (2006). Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure14 (7), 1127-1135.
[49] O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K., McMahon, J. B., & McCray, P. B. (2010). Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. Journal of virology84 (5), 2511-2521.
[50] Kakuda, T. N., Crauwels, H., Opsomer, M., Tomaka, F., van de Casteele, T., Vanveggel, S., & de Smedt, G. (2015). Darunavir/cobicistat once daily for the treatment of HIV. Expert review of anti-infective therapy13 (6), 691-704.
[51] Gallant, J. E., Koenig, E., Andrade-Villanueva, J., Chetchotisakd, P., DeJesus, E., Antunes, F., & Liu, Y. (2013). Cobicistat versus ritonavir as a pharmacoenhancer of atazanavir plus emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV type 1–infected patients: week 48 results. The Journal of infectious diseases208 (1), 32-39.
[52] Elion, R., Cohen, C., Gathe, J., Shalit, P., Hawkins, T., Liu, H. C., & Warren, D. R. (2011). Phase 2 study of cobicistat versus ritonavir each with once-daily atazanavir and fixed-dose emtricitabine/tenofovir df in the initial treatment of HIV infection. Aids25 (15), 1881-1886.
[53] Santos, J. R., Curran, A., Navarro-Mercade, J., Ampuero, M. F., Pelaez, P., Pérez-Alvarez, N., & Moltó, J. (2019). Simplification of antiretroviral treatment from darunavir/ritonavir monotherapy to darunavir/cobicistat monotherapy: effectiveness and safety in routine clinical practice. AIDS research and human retroviruses35 (6), 513-518.
[54] Mathias, A. A., German, P., Murray, B. P., Wei, L., Jain, A., West, S., & Kearney, B. P. (2010). Pharmacokinetics and pharmacodynamics of GS‐9350: a novel pharmacokinetic enhancer without anti‐HIV activity. Clinical Pharmacology & Therapeutics87 (3), 322-329.
[55] Momattin, H., Al-Ali, A. Y., & Al-Tawfiq, J. A. (2019). A Systematic Review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Travel medicine and infectious disease30 , 9-18.