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ABSTRACT: Effectiveness of floods and landslide early warning systems can be clearly improved by reliable quantitative predictions of rainfall, which represents the main precursor.

With this aim, a methodology for probabilistic rainfall nowcasting, based on a coupling between a stochastic model and outputs provided by a Numerical Weather Prediction (NWP) model is proposed in this paper. The coupling among different types of models usually allows for improving the prediction, as the positive aspects of all the model components are merged.

In this paper, the hybrid model, named PRAISE-ME (Prediction of Rainfall Amount Inside Storm Events with MEteo), is proposed. This model allows improving the rainfall prediction at hydrological scales, where only NWP models are not so suitable and the simple use of stochastic models provides the same forecast, regardless of weather forecasts as they depend only on previous rainfall. PRAISE-ME provides probabilistic quantitative predictions and it can be easily set up as input in other models for Rainfall-Runoff or Landslide prediction, as in the application case here illustrated.  In this work, PRAISE-ME was used with the empirical FLaIR model (Forecasting of Landslides Induced by Rainfall, Capparelli and Versace 2011) in order to obtain in real-time indications about exceedance probabilities associated to specific thresholds. The procedure was applied for a landslide case study, occurred in Montenero di Bisaccia (Central Italy) on March 2006. The obtained results encourage the use of this methodology as component of early warning systems.
INTRODUCTION

Rainfall nowcasting clearly plays a crucial role in early warning systems (EWS) concerning water-induced hazards in natural environments (e.g. Alfieri et al.2012). In this context, hourly and sub-hourly rainfall heights may almost instantaneously trigger flooding, debris flow and landslides in steep area with a thin soil depth. Moreover, aggregated precipitation in several hours may trigger these type of hazards also in less steep areas with deeper soils, due to the gradual build-up of soil saturation and pore pressure.
In literature, two main type of forecasting are used (De Luca, 2013): 1) deterministic and 2) probabilistic. A deterministic forecast specifies a single estimate of the predicted rainfall as part of a future single time series or a space-time series. A probabilistic forecast specifies a probability distribution of the rainfall. Since the mechanism of rainfall generation is both dynamic and complex (because of the chaotic and non-linear nature of meteorological system), a forecaster should prefer a probabilistic prediction. Only with such a probabilistic approach, it is then possible for a forecaster to quantify the risk associated with induced phenomena, thereby making a rational decision.
Regarding the types of rainfall nowcasting tools, the most adopted models can be categorised into: 1) meteorological, 2) extrapolation from remote sensing observations, 3) stochastic and 4) hybrid models.
Meteorological models, also indicated as Numerical Weather Prediction (NWP) models, still requires more improvement for many hydrologic applications (Brath, 1999); this is particularly crucial for catchments with small/medium sizes. In fact, NWP models only provide valid qualitative quantitative rainfall forecasting tools for 24-72 hours and over large areas; at these forecasting horizons, an absolute precise forecast is not required, but rather an order of magnitude forecast is sufficient. On the contrary, when the forecasting lag time and the size of the studied areas both decrease, the effectiveness and the precision of this kind of models also decrease (Sharma et al., 2007). Since these models are based on atmospheric phenomena developing on a synoptic scale, they are unable, especially for complex orography, to provide a reliable forecast for small temporal and spatial scales, which are of course necessary in hydrological applications.
The use of remote sensing observations as radar data and satellite images, which nowcasts rainfall based on the extrapolation of current weather conditions, has been developed over the years. (Bellon and Austin, 1978, Browning et al., 1982, Dixon and Wiener, 1993, Handwerker, 2002, Seed, 2003, Rasmussen et al., 2003, Mueller et al., 2003, Turner et al., 2004, Fox and Wikle, 2005, Ruzanski et al., 2011). However, also this methodology presents some limits, particularly due to the fact the rainfall values are not observed (like in rain gauges), but are estimates.
Stochastic models provide reliable predictions over small temporal and spatial scales, which are of interest in hydrological applications. Depending on the spatial scale, temporal or space-temporal models may be used. Temporal models are adopted at slope scales or for small basins, where uniformly distributed precipitation can be assumed. In medium size basins, as spatial variability of precipitation becomes important, space-time models are required. Moreover, they can be grouped into two main classes: (1) the model-driven class, in which the identification of the type of relationships among the variables (model identification) is required; (2)
the data-driven class, that comprises all the models which depend on the available data to be “learned”, without a priori hypothesis about the kind of relationships. However, stochastic models are Markovian processes, i.e. in this context they depend on antecedent (rainfall) data only, so they can only exhibit reliable results in the case of nowcasting “inside a storm event” (i.e. after the commencement of a rainfall event), and they provide the same prediction, whether meteorological models forecast a wet period or a dry one. In this context, by analyzing both negative and positive aspects of the previous three groups of models, it appears very useful to couple different types of models, i.e. realizing hybrid models, in order to improve the nowcasting at the scales of interest. With this goal, in this work a particular hybrid model, named PRAISE-ME (Prediction of Rainfall Amount Inside Storm Events with MEteo), is adopted. PRAISE-ME couples a stochastic model named PRAISE (Prediction of Rainfall Amount Inside Storm Events, Sirangelo et al., 2007) and outputs from a meteorological model, and it allows for improving the nowcasting “outside a storm event” (i.e. prior to the commencement of rainfall).
The relevance of PRAISE-ME mainly lies in the use in early warning systems for hydrogeological risk reduction, that are non-structural actions, which are being increasingly applied worldwide, mainly because of their lower economic costs and environmental impact, compared to structural measures. EWS aim at reducing the loss-of-life probability and other adverse consequences from landslide or floods events by informing individuals, communities, and organizations threatened by landslides to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss (UNISDR 2015). In this paper, Authors focused on risk mitigation of landslide induced by rainfall, showing in particular, how it is possible to improve efficiency for warning purposes by using an assessment of the relationship between triggering factors and landslide events and a properly rainfall forecasting.  Landslide EWS exist in several countries and their capabilities generally rely on the ability to predict the evolution of critical conditions sufficiently in advance.

Decades of research on landslide triggering mechanisms, rainfall thresholds for landslide occurrence, real-time monitoring, and related topics have provided the technical basis for early warnings (Wilson 2004; Hong Y, Adler RF, 2007; Baum and Godt, 2010; Capparelli and Tiranti 2010; Mirus, et al. 2018; Segalini et al., 2019)
The key aspect for a successful EWS lies in the ability to identify and measure in real time significant indicators, which represents the precursors for landslide occurrences. Consequently, effective EWS for precipitation-induced landslides must have strong meteorological, hydrogeological, and geotechnical components.

Recent advances in the development of monitoring instrumentation (e.g. radar interferometry, both space-borne or ground-based, LiDAR, total station, GPS and photogrammetric techniques) has increased the potential to obtain high reliable measurements of different quantities which can be subsequently adopted to detect the activity preceding a slope failure (Versace et al., 2017; Intrieri et al. 2017;. Casagli et al. 2010).  

There are also many cases based on the use of empirical models which, starting from the rainfall analysis, identify triggering threshold values in terms intensity-duration or accumulated rainfall on short and long duration (e.g., Caine 1980; Godt et al. 2006; Guzzetti et al. 2008; Baum and Godt 2010; Berti et al. 2012). Following this approach and purpose, this paper proposes an integrated use of PRAISE-ME model in a general framework of landslides forecasting, combining the rainfall forecasting with an empirical model, named FLaIR (Forecasting of Landslides Induced by Rainfall, Capparelli and Versace, 2011). The procedure was applied for a landslide case study, occurred in Montenero di Bisaccia (Central Italy) on March 2006. The obtained results encourage the use of this methodology as component of early warning systems.
Method: THE PRAISE-ME MODEL

The hybrid model named PRAISE-ME (Prediction of Rainfall Amount Inside Storm Events with MEteo, De Luca, 2013, De Luca et al., 2010) couples the temporal stochastic model PRAISE (Prediction of Rainfall Amount Inside Storm Events, Sirangelo et al. 2007) with outputs from a meteorological model, regarding the spatial cell where the rain gauge of interest is located. Obviously, adoption of a temporal model is clearly suitable for nowcasting at slope scales, for which analyses of spatial rainfall variability is not necessary.

Moreover, in this work a simplified version of PRAISE-ME is proposed, more parsimonious and then particularly useful for small sample sizes of data series. In details, the model assumptions are:
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Starting from these assumptions, the structure of PRAISE-ME model is characterized by:

1. the individuation of the extension 
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3. the identification of the joint cumulative density function (CDF) 
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 and its utilization for the real-time forecasting of rainfall depths during a storm event.

All these aspects, together with the procedure for parameter estimation and the use of PRAISE-ME for nowcasting are briefly described in the following sub-sections.
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This stochastic dependence can be considered as negligible if the corresponding sample coefficient of partial autocorrelation is less than a given value close to zero. 

The results obtained with this approach are similar to the more rigorous and less simple general method (Sirangelo et al. 2007).   In fact, the absence of a linear stochastic dependence should be tested by verifying that the sample coefficient of partial autocorrelation exhibits a value inside a confidence interval.  This condition does not permit the rejection of the hypothesis concerning null value for the corresponding theoretical quantity.
The extension of the ‘memory’ for the process 
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After estimation of the parameter 
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in which the coefficients 
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then the final form:
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has coefficients 
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 Estimation of the coefficient 
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The coefficient 
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In details, starting from the trivariate sample of data
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Joint cumulative density function 
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In general, the CDF 
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In nowcasting contexts, the conditional CDF 
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and
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In Eq. (10):
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In this work, authors adopted:
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with 
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· a double power transformation to the standardized bivariate probability density of Moran & Downton (Kotz et al. 2000), obtaining the so called Weibull-Bessel distribution (see Sirangelo et al. 2007, for mathematical details), which is characterized by the following expression in terms of probability density function (PDF): 
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Parameter estimation
Concerning parameter estimation, it should be firstly remarked that (similarly to other kinds of rainfall nowcasting models) sample data can be obviously grouped by months or seasons, and then model parameters can be estimated for a given month or season, in order to take into account the seasonality of the process. 
In details, for a specific season or month:

1. the estimation of  
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2. on the basis of the joint sample of data
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3. According to the method of moments, the parameters of 
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4. Similarly, the parameters of the Weibull-Bessel distribution could be estimated fitting the marginal means and variances for 
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 (see Sirangelo et a., 2007, for further mathematical details).

Operational use of PRAISE-ME for nowcasting
The use of PRAISE-ME for rainfall nowcasting can be schematized as follows:
1. Let t0 be the forecast instant and t1...tN be the successive time instants in which a rainfall forecast is required. The period (tN – t0) is the forecasting lead time.

2. At t0, 
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 and to substitute it into Eq. (9) or Eq. (10), from which, by using the Monte Carlo technique (Kroese et al. 2011), 1,000-10,000 values of 
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 is a generated random number. Numerically, the formula can be solved by using bracketing and regula falsi techniques or other similar techniques (Press et al. 1988).

3. At t2, each generation carried out at t1 is taken into account. In this case, 1,000-10,000 
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 values are calculated, each composed by (
[image: image166.wmf]1

-

n

) observed rainfall data and the generated value of rainfall height in the previous step 1. Also for t2 ,
[image: image167.wmf]1

+

i

S

is known from a meteorological model, and then 1,000-10,000 
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4. Step (3) is repeated up until time tN. For each generation of 
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. This is because beyond this limit the results become unconditional on measured data. As such, updating with new observed rainfall heights in real time is then required. 

Figure 1 shows the results from Steps (1)-(4), which include the possible realizations in the forecasting lead time. This is called as “spaghetti” plot. 
Figure 1. Qualitative example of a “spaghetti” plot (Adapted from De Luca, 2013)
The Monte Carlo technique is adopted because of the complexity of determining analytical probabilistic distributions for rainfall heights relative to forecasting time instants successive to the first one. In fact, for these distributions, convolution operations should be required. 
THE GENERAL FRAMEWORK TO PREDICT LANDSLIDES AND THE FLAIR MODEL
In early warning systems for landslides prediction, it is possible to define a general framework, which can be essentially composed by: 1) a Rainfall-Nowcasting (RN) module and 2) a Rainfall-Landslide (RL) module that is able to define thresholds or limit values of triggering mechanisms (Greco et al., 2013; Formetta et al. 2015; De Luca and Versace, 2017)
In this work, probabilistic predictions of PRAISE-ME, assumed as RN module, were used as input for the RF module represented by FLaIR model (Capparelli and Versace, 2011).

FLaIR correlates precipitation and landslide occurrence, and it represents a simple conceptual modeling of the hydrological processes caused by rainfall, that produce variations in the hillslope pore-water pressure field and then may trigger landslides. 
A mobility function [image: image177.png]Y(.)



, depending on antecedent rainfall, is defined in FLaIR and related to probability of landslide occurrence at time t 
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in which 
[image: image183.wmf]lim

Y

 is the critical value of 
[image: image184.wmf])

(

t

Y

. 

The mobility function 
[image: image185.wmf])

(

t

Y

 is defined as:


[image: image186.wmf]ò

-

=

t

du

u

P

u

t

t

Y

0

)

(

)

(

)

(

y


 (16)

where 
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 represents the rainfall intensity, 
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 is a filter function that plays a central role in mobility function evaluation. The application of the model, in fact, requires a right choice about the mathematical expression of the filter function 
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 based on historical information on previous landslide dates. Depending on the landslide characteristics, it can assume different expressions, such as rectangular, exponential, gamma, power, mixture of two exponential functions (Iiritano et al. 1998; Capparelli and Versace, 2011) 

When detailed information on historical landslide occurrences is available for a specific site, a punctual procedure of the calibration model, regarding filter parameters and 
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But if this information is not available, as it often happens, it is possible to use regionalization techniques of the model, which suggest a mathematical structure for 
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that are based on information relating to the soil and the kinematic mechanism involved into a wide area (Capparelli et al., 2012). 


Using the FLaIR model into a real-time forecasting framework consists of evaluating the probability that at time 
[image: image194.wmf]t

 the mobility function 
[image: image195.wmf])

(

t

Y

 reaches or exceeds specific critical values 
[image: image196.wmf]a

Y

, which are usually assumed as 
[image: image197.wmf]lim

Y

Y

a

×

=

x

, with 
[image: image198.wmf]1

0

<

<

x

. With this goal, the value 
[image: image199.wmf](

)

t

Y

t

 that the mobility function will assume at time 
[image: image200.wmf]t

, carried out at time 
[image: image201.wmf]t

, with 
[image: image202.wmf]t

<

t

, may be written splitting the function Eq.(16) in two parts:


[image: image203.wmf](

)

(

)

(

)

(

)

(

)

ò

ò

-

+

-

=

t

t

t

y

y

0

t

du

u

P

u

t

du

u

P

u

t

t

Y


 (17)

The first integral, once FLaIR is identified and calibrated (i.e. the filter function parameters are estimated), is deterministically calculated on the basis of the rainfall heights which are observed up to time 
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. The second integral of Eq. (17) requires rainfall predictions from RN module as 
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· for each realization j (Figure 1) the maximum value 
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· after completing the construction of MaxY vector and sorting its values in a decreasing order, a plotting position is associated to each ordered element 
[image: image210.wmf]i

Y

max,

which will correspond to the probability  [image: image212.wmf][

]

i

Y

t

Y

P

max,

)

(

>

t


that the mobility function exceeds 
[image: image213.wmf]i

Y

max,

 in the forecasting interval.
Operationally, in order to evaluate 
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, which are associated to three criticality levels, named as ordinary, moderate and severe, respectively  (De Luca and Versace, 2017).
RESULTS AND DISCUSSION: APPLICATION FOR CENTRAL ITALY.
Recently, a research activity was carried out by CAMILab laboratory (www.camilab.unical.it) of University of Calabria (southern Italy) for the Italian National Civil Protection Department. In this research, several landslide events, located in many Italian regions, were investigated, also by analyzing various online databases where it was possible to find many information of dates, locations, kinematics and lithologies involved (avi.gndci.pg.cnr.it/; www.apat.gov.it/; sici.irpi.cnr.it; progettoiffi.isprambiente.it). This made possible to analyze the main characteristics of the landslide movements in the several regions and to define, for classes of landslide kinematics and soil lithology, the best-fitted regional FLaIR model and the critical threshold values.

For this work, Authors focused on Molise region (central Italy), that is a predominantly mountainous region, on the Apennine ridge, characterized by the almost total absence of plains.

This region is a particularly complex area from a geological point of view. It is made up exclusively of sedimentary formations, most of which are of a marine environment, on which more recent terrains of a continental environment rest. Over the years, numerous instabilities have occurred which present the same characteristics as similar phenomena in the southern Apennines, obviously with the differences due to the diversity of the lithotypes present. The instability is higher in the northern area, and in the eastern one of the region. 

In this context, a regional calibration for FLaIR model was carried out (Capparelli et al., 2012) by using the daily rainfall data from all the rain gauges with a sample size of at least 30 years, and a gamma function was chosen for 
[image: image219.wmf](.)

y

:


[image: image220.wmf](

)

0

,

0

,

0

)

(

1

>

>

³

G

=

-

-

b

a

a

b

y

a

b

a

t

e

t

t

t

 












(18)

where 
[image: image221.wmf](

)

.

G

 is the complete gamma function (Abramowitz and Stegun, 1970), 
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[days] defines the time scale of the phenomenon and 
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(-), which characterizes the shape of the function, describes the delay in the hydrological response of the phenomenon with respect to the rainfall occurrence. This function for 
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 was found to be particularly flexible and useful for describing the various events examined because its parameters allow it to take on different trends and thus simulate the different links between the rainfall intensity and the mobilization of the landslide. In fact, with this function it is possible to analyze both those types of landslides strongly influenced by the rainfall immediately antecedent the event, and those triggered by rainfall accumulated over a longer time interval.
Then, among all the landslide events analyzed in Molise region, it was possible to check the performance of the proposed nowcasting framework for the landslide of Montenero di Bisaccia (CB) only, occurred on 01/03/2006. In fact, unlike other analyzed cases in Molise, only this landslide was characterized by a reference rain gauge (i.e. close to slope) with continuous time series of sub-daily rain data, which are necessary for PRAISE-ME calibration. In detail, Authors considered Palata rain gauge, which has a historical series of hourly data from 2004 to 2007. Moreover, in order to respect the hypothesis of stationary process, only the data measured during the “rainy season”, 1 October–31 May has been used. In this period, correlation structure, mean and variance of the sample appear significantly homogeneous (Sirangelo et al., 2007).  The sample size for used hourly rain data could seem small for a model calibration with 22 parameters (see Eqs. 5-13), but considering that 4 years of “rainy seasons” regard about 5760 data, then the ratio data/parameters is about 260. Concerning the NWP model, deterministic output from the MM5 model (Anthes & Warner, 1978) was available for this research activity. The MM5 model is the Fifth-Generation NCAR/Penn State Mesoscale Model, and it was developed by Pennsylvania State University (PSU) and by National Center of Atmospheric Research (NCAR) (Anthes and Warner 1978). It is a non-hydrostatic LAM (Limited Area Model), includes multiple-nest and data assimilation capabilities. Further details of the model can be found in http://www.mmm.ucar.edu/mm5/. PRAISE-ME calibration results are reported in Table 1 (see Sirangelo et al., 2007, for further details).  Concerning FLaIR calibration, the landslide occurred on 01/03/2006 in Montenero di Bisaccia involved a clay soil with sandstone levels with a kinematic mechanism referred as rapid debris flow (Figure 2).
Figure 2. Details on  Montenero di Bisaccia landslide (from www. progettoiffi.isprambiente.it)
Table 1. PRAISE-ME calibration results

For this type of landslide, the best fitting of the regional transfer function 
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 (Eq. 18) provided 
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mm/day (see Capparelli et al., 2012, for more details about calibration procedure).  QUOTE α=0.9,β=20, ,Y-lim.=5 
Following the numerical procedure previously described, the probabilities of exceeding the thresholds ξ1, ξ2 and ξ3 were estimated in correspondence of the selected historical event.

The simulation results have been summarized in Figure 3. 
Focusing on the interval from 8:00 a.m. of 28th February to 0:00 a.m. of 1st March, indicated on the horizontal axis, hourly rainfall values (from both rain gauge and MM5 model) are represented on the left vertical axis, while in the right vertical axis there is the probability evaluation that the mobility function could exceed threshold values in the following 6 hours.
It is clear that approaching to the landslide date, probability of ξ3 also increases; consequently, it is possible, using FLaIR coupled with PRAISE-ME, to provide, with sufficient advance, the exceedance of the various thresholds. In this specific case, as shown in Figure 3, significant values of exceedance probability for ξ3 were predicted on the day before the historical landslide occurrence.
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Figure 3.  Temporal trend of the exceeding probability of the thresholds ξ1, ξ2, ξ3  within 6 hours the lead time of prediction 
Furthermore, the trends of the exceedance probabilities for the various thresholds are reported in Fig. 4, referring to the 6-h nowcast period in which the threshold ξ1 (Fig. 4a), the threshold ξ2 (Fig. 4b) and the threshold ξ3 (Fig. 4c) are exceeded for the first time with a probability greater than 50%. More in detail, an exceedance probability greater than 50% occurred for the first time on 28/02 at 15:00 for ξ1, at 19:00 for ξ2 and at 22:00 for ξ3.
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Figure 4a.  Exceedance probabilities of the thresholds in the time interval 3:00 9:00 pm (28/02/2006)
Figure 4b.  Exceedance probabilities of the thresholds in the time interval 7:00 pm (28/02/2006) 02:00 am (01/03/2006)
Figure 4c  Exceedance probabilities of the thresholds in the time interval 10:00 pm (28/02/2006) 04:00 am (01/03/2006)
conclusions

A integrated model, including a Rainfall Nowcasting (RN) module and a Rainfall Landslide (RL) module, was proposed, in order to provide predictions in real-time for exceedance probabilities, related to assigned rainfall thresholds and representative of triggering mechanisms.
In details, the framework comprises PRAISE-ME model as RN module and FLaIR model as RL module, and it was applied to the case of Montenero di Bisaccia (central Italy), where on March 2006 a rapid debris flow occurred. Calibration of RN module was carried out by using hourly continuous data series and prediction from MM5 model, while a regional versions of FLaIR model was adopted for RL, which was based on information relating to the soil and the kinematic mechanism involved into the whole area of Molise region.

 The obtained results showed as the combined use of these models makes possible to evaluate, in advance of up to 6 hours and with a good accuracy, the future values of the mobility function and then the occurrence probability of landslide. For this case study, significant values of exceedance probability for the higher threshold were predicted on the day before the historical landslide occurrence. 

Thus, this analysis provides a promising tool for decision making in risk mitigation procedure, and useful lead-time for planning and managing a warning system concerning, in particular, the assessment of the procedures for the activation of attention, alert or alarm states.
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
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