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Abstract

In this paper, we present the mathematical model for severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak of SARS-CoV-2
has led to 2,192,469 confirmed cases as of April 17, 2020 and total deaths are
147,360 in 210 different countries, area or territories. The basic reproductive
number is formulated using next generation approach. The sensitivity analy-
sis of reproductive number and local stability analysis of mathematical model
are discussed. Also, we present numerical approximations for the disease free
and endemic equilibrium points for infection of SARS-CoV-2. Also, we propose
an efficient SKAZI scheme. Lastly, we present numerical experimentation of
SKAZI scheme. The disease free and endemic equilibrium points are graphical
reveal for stability and instability of mathematical model.
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1 Introduction

The SARS-CoV-2 encloses to a family of viruses which probably show numerous symptoms
for example fever, pneumonia, lung infection and breathing difficulty [1]. The WHO offi-
cially declared the 2019 novel coronavirus as coronavirus disease (COVID-19). The WHO
established that the epidemic of the SARS-CoV-2 was related with Seafood Marketplace of
the Huanan South China [11], but no specific animal was identified. After that researchers
and scientists instantly started to investigate the source of the SARS-CoV-2, and the first
genome of COVID-19 was investigated by Prof. Yong-Zhen Zhang, on 10 January 2020
[8]. SARS-CoV-2 has now been confirmed as a Public Health Emergency of International
Concern by the WHO [7]. By recent research, early cases are exposed by contact direct
belongs to original seafood market [4, 10]. After that, a secondary source of infection of
SARS-CoV-2 was transmitted by close contact [3].

The emergence and transmission of a SARS-CoV-2 from Wuhan, China, has turned
out to be a worldwide health concern. Unfortunately, the recognition of the SARS-CoV-2
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in late December 2019, numerous countries have reported random imported cases in the
midst of travelers returning from China. The epidemic was first acknowledged in Wuhan,
China, in December, 2019, with untimely cases being accounted in the city. Most globally
exported cases reported to date have history of travel to Wuhan. Initially steps of a new
contagious disease is epidemic. It is essential to comprehend the transmission dynamics
of the infection. Approximation of modifications in transmission of SARS-CoV-2 along
with time can supply imminent into the epidemiological condition and recognize whether
epidemic control procedures are having a quantifiable outcome. It can report to prediction
regarding potential future growth, help out guesstimate menace to other countries, and lead
us to design of substitute interventions.

A respiratory pathogen of fairly high virulence from a virus cluster that has an strange
ability of emerging species restrictions in a major population center and travel core shortly
prior to the largest travel period of the year the Chinese Spring festival. Early genomic
evaluation exposed for the most part directly associated viruses to SARS-CoV-2 came from
bats [4].

For numeric solution, there is no exact formula to compute the analytic solution of
ordinary differential equation which could be either linear or non-linear. The equilibrium
point both disease free and endemic, are approximated by SKAZI scheme. When the SKAZI
scheme converges, the numerical solution converges to equilibrium point of the iteration.
Also, SKAZI scheme is guarantee convergence to the exact solution along with optimal
minimum percentage error.

1.1 Overview of the article

Section 2 gives the basic framework and mathematical model for proposed epidemi-
ological model of infection SARS-CoV-2. The proposed model (1) is a non-linear system
of first order ordinary differential equations. The qualitative analysis for disease free and
endemic equilibrium points and local stability analysis are analyzed in (Theorem 2.1). The
basic reproductive number is formulated and sensitivity analysis is presented.

In section 3, the SKAZI scheme along with uncertainty level Ψ is introduced. The
bounds of global error of SKAZI scheme in terms of truncation error is analyzed (Theorem
3.1). The convergence of SKAZI scheme is analyzed (Theorem 3.2) by means of consistency
condition relative minimization of truncation error. The discrete transformation of purposed
model (1) is formulated.

Finally, in section 4, we present the numerical simulation computed by SKAZI scheme.

2 Mathematical model of SARS-CoV-2

The schematic model for the Reservoir-People (RP) SARS-CoV-2 transmission network
model is presented in Figure 1. The presenting model is highly non-linear bio-mathematical
model [2].
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Figure 1: Dynamic illustration of SARS-CoV-2 model.

The state variable and associated parameter for this model is given in Table 1 and Table
2.

Table 1: The state variables of SAR-CoV2 infection model.

Symbol Denoted by
SP (t) Susceptible people
EP (t) Exposed people
IP (t) Symptomatic infected people
AP (t) Asymptomatic infected people
RP (t) Removed people
W (t) SARS-CoV-2 in reservoir (the seafood market)

Based on the flow chart of transmission of SARS-CoV2 infection in human population
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as depicted in figure 1, we have the following system of equations:

dSP
dt

= ΛP − βPSP (κAP + IP )−mPSP − βWWSP

dEP
dt

= βPSP (κAP + IP )− EPmP − EP (1− δP )ωP − EP δPω′P +WSPβW

dIP
dt

= EP (1− δP )ωP − IP (mP + γP )

dAP
dt

= EP δPω
′
P −AP

(
mP + γ′P

)
dRP
dt

= APγ
′
P + IPγP −mPRP

dW

dt
= APµ

′
P + IPµP − εW

(1)

The feasible region of model (1) is Ω = {(SP , EP , IP , AP , RP ,W ) ∈ R6
+ : N ≤ ΛP

mP
}, where

N(t) = SP (t) + EP (t) + IP (t) +AP (t) +RP (t) +W (t).

2.1 Equiliria and stability analysis

The mathematical model (1) have following equilibrium points,

• Disease free equilibrium points E0 =
(
S0
P , 0, 0, 0, 0, 0

)
, where

S0
P =

ΛP
mP

• The endemic equilibrium points E∗ = (S∗P , E
∗
P , I

∗
P , A

∗
P , R

∗
P ,W

∗),

S∗P = −
cεc′ (mP + δPω

′
P − (δP − 1)ωP )

c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P
(
εκβP + βWµ′P

)
E∗P =

cδPω
′
P (εc′mP − ΛP (εκβP + βWµ

′
P )) + c′ (cεmP − (δP − 1)ωP (cεmP − ΛP (εβP + µPβW )))(

mP + δPω′P − (δP − 1)ωP
) (
c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P

(
εκβP + βWµ′P

))
I∗P = − εc′mP (δP − 1)ωP

c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P
(
εκβP + βWµ′P

) − (δP − 1) ΛPωP

c
(
mP + δPω′P − δPωP + ωP

)
A∗P =

δPω
′
P

(
cδPω

′
P (εc′mP − ΛP (εκβP + βWµ

′
P )) + c′

(
cεm2

P − (δP − 1)ωP (cεmP − ΛP (εβP + µPβW ))
))

c′
(
mP + δPω′P − (δP − 1)ωP

) (
c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P

(
εκβP + βWµ′P

))
R∗P = −

B
(
cδPω

′
P (εc′mP − ΛP (εκβP + βWµ

′
P )) + c′

(
cεm2

P − (δP − 1)ωP (cεmP − ΛP (εβP + µPβW ))
))

cc′mP

(
mP − (δP − 1)ωP + δPω′P

) (
c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P

(
εκβP + µ′PβW

))
W ∗ = −

D
(
cδPω

′
P (εc′mP − ΛP (εκβP + βWµ

′
P )) + c′

(
cεm2

P − (δP − 1)ωP (cεmP − ΛP (εβP + µPβW ))
))

cεc′
(
mP + δPω′P − (δP − 1)ωP

) (
c′ (δP − 1)ωP (εβP + µPβW )− cδPω′P

(
εκβP + βWµ′P

))
(2)
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where B = c′γP (δP − 1)ωP − cδPγ′Pω′P , D = c′ (δP − 1)µPωP − cδPµ′Pω′P , c = mP +γP
and c′ = mP + γ′P . The reproductive number R0 is evaluated by next generation approach
[5] along with following Jacobian matrix J0 (for disease free equilibrium E0) with infection
matrices F and rest of transmission matrix V .

J0 =



−mP 0 −βP ΛP
mP

−κβP ΛP
mP

0 −βW ΛP
mP

0 −mP + (δP − 1)ωP − δPωP βP ΛP
mP

κβP ΛP
mP

0 βW ΛP
mP

0 − (δP − 1)ωP −mP − γP 0 0 0
0 δPωP 0 −mP − γ′P 0 0
0 0 γP γ′P −mP 0
0 0 µP µ′P 0 −ε


,

(3)

V =



mP 0 0 0 0 0
0 mP − (δP − 1)ωP + δPωP 0 0 0 0
0 − (1− δP )ωP mP + γP 0 0 0
0 −δPωP 0 mP + γ′P 0 0
0 0 −γP −γ′P mP 0
0 0 −µP −µ′P 0 ε

 . (4)

And

F =



0 0 −βP ΛP
mP

−κβP ΛP
mP

0 −βW ΛP
mP

0 0 βP ΛP
mP

κβP ΛP
mP

0 βW ΛP
mP

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (5)

The basic reproductive number is the spectral radius of matrix FV −1 that is, ρ(FV −1) and
given as,

R0 =
βPΛPωP (εmP ((κ− 1)δP + 1) + ε (κγP δP − δPγ′P + γ′P ))

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

)
+

ΛPωPβW (mP (δPµ
′
P − δPµP + µP ) + (δP − 1)µP (−γ′P ) + γP δPµ

′
P )

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

) (6)

Theorem 2.1 For disease free equilibrium E0 the system (1) is locally asymptotically stable
if Re(λi) < 0 and unstable if Re(λi) > 0 for i = 1, 2, · · · 6.

Proof: Let the system (1) holds for disease free equilibrium E0 and J0 be the Jacobian
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matrix of system (1),

J0 =



−mP 0 −βP ΛP
mP

−κβP ΛP
mP

0 −βW ΛP
mP

0 −mP + (δP − 1)ωP − δPωP βP ΛP
mP

κβP ΛP
mP

0 βW ΛP
mP

0 − (δP − 1)ωP −mP − γP 0 0 0
0 δPωP 0 −mP − γ′P 0 0
0 0 γP γ′P −mP 0
0 0 µP µ′P 0 −ε


,

(7)
Then the eigenvalues of Jacobian matrix J0 (7) along with the numerical values of parameters
given in Table 2 are given as follows,

λ1 = −0.351549 < 0, λ2 = −0.190414 < 0, λ3 = −0.100507 < 0,

λ4 = −0.048658 < 0, λ5 = −0.018 < 0, λ6 = −0.018 < 0.

All of the eigenvalues λi of Jacobian matrix J0 have strictly negative, that is, Re(λi) < 0
for all i = 1 : 6. This completes the proof.

Theorem 2.2 Suppose that the mathematical model (1) consists of all feasible solutions
along with non-negative initial result then it remains non-negative for all time t.

Proof: Let the mathematical model (1) satisfy the initial non-negative solution, i.e,

SP (0) ≥ 0, EP (0) ≥ 0, IP (0) ≥ 0, AP (0) ≥ 0, RP (0) ≥ 0, W (0) ≥ 0.

The rest of principal condition can be computed as follows,

SP
dt

= ΛP −DSP (8)

whereD = βP (κAP + IP )+mP+W (βW ), while the solution of variable SP can be computed
by following result,

SP = SP (0)eG +

∫ t

0
πeH(u)du ≥ 0 (9)

where G = −
∫ t

0 G(u)du and H(u) = −
∫ t

0 G(ω)dω. This gives the non-negativity of SP (0),
that is SP (0) ≥ 0 for all time t ≥ 0 respectively. The non-negativity of rest variables in the
system (1) is presented as follows,

dEP
dt

= βPSP (κAP + IP )− EPmP − EP (1− δP )ωP − EP δPω′P +WSPβW

dIP
dt

= EP (1− δP )ωP − IP (mP + γP )

dAP
dt

= EP δPω
′
P −AP

(
mP + γ′P

)
dRP
dt

= APγ
′
P + IPγP −mPRP

dW

dt
= APµ

′
P + IPµP − εW

(10)
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In term of matrix demonstration, the above system can be expressed as follows,

dF (t)

dt
= H(t) +MF (t) (11)

where,

F (t) =


EP (t)
IP (t)
AP (t)
RP
W

 , H(t) =


0

mP + γp
mP + γ′p

0
0

 (12)

M =


−mP + (δP − 1)ωP − δPωP1

βP ΛP
mP

κβP ΛP
mP

0 βW ΛP
mP

(1− δP )ωP −mP − γP 0 0 0
δPωP1 0 −mP − γP1 0 0

0 γP γP1 −mP 0
0 µP µP1 0 −ε



=


−0.2103 0.1215 0.0607 0 0.2835
0.1826 −0.1904 0 0 0
0.0096 0 −0.1904 0 0

0 0.1724 0.1724 −0.018 0
0 0.0001 0.0005 0 −0.1


(13)

The matrix M is Matzler matrix and therefore, the by result presented in [6], the mathe-
matical model (1) is monotone. This pridict us to the fact that R5

+ is invariant with respect
to stream of the model (1). This completes the proof.

2.2 R0-sensitivity analysis

The sensitivity analysis of reproductive numbers R0 is analyzed by taking partial deriva-
tive with respect to each parameter. These partial differentiation of R0 with respect to
parameters are computed as follows,

∂R0

∂ΛP
=
βPωP (εmP ((κ− 1)δP + 1) + ε (κγP δP − δPγ′P + γ′P ))

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

)
+
ωPβW (mP (δPµ

′
P − δPµP + µP ) + (δP − 1)µP (−γ′P ) + γP δPµ

′
P )

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

) = 0.003913 > 0

∂R0

∂ε
=

ΛPωPβW (mP ((δP − 1)µP − δPµ′P ) + (δP − 1)µPγ
′
P − γP δPµ′P )

ε2mP (mP + γP ) (mP + ωP )
(
mP + γ′P

) = −0.0163414 < 0

∂R0

∂βP
=

ΛPωP (mP ((κ− 1)δP + 1) + κγP δP + (δP − 1) (−γ′P ))

mP (mP + γP ) (mP + ωP )
(
mP + γ′P

) = 37935.3 > 0
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∂R0

∂γ′P
= −

δPΛPωP (εκβP + βWµ
′
P )

εmP (mP + ωP )
(
mP + γ′P

)
2

= −0.0784132 < 0

∂R0

∂κ
=

βP δPΛPωP

mP (mP + ωP )
(
mP + γ′P

) = 0.029181 > 0

∂R0

∂γP
=

(δP − 1) ΛPωP (εβP + µPβW )

εmP (mP + γP ) 2 (mP + ωP )
= −2.91855 < 0

∂R0

∂δP
=

ΛPωP (mP (ε(κ− 1)βP + βW (µ′P − µP )) + εβP (κγP − γ′P ) + βW (γPµ
′
P − µPγ′P ))

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

)
= −0.286363 < 0

∂R0

∂βW
=

ΛPωP (mP (δPµ
′
P − (δP − 1)µP ) + γP δPµ

′
P + (δP − 1)µP (−γP1))

εmP (mP + γP ) (mP + ωP )
(
mP + γ′P

) = 46.6896 > 0

∂R0

∂µP
=

(1− δP ) ΛPωPβW
εmP (mP + γP ) (mP + ωP )

= 12.9369 > 0

∂R0

∂µ′P
=

δPΛPωPβW

εmP (mP + ωP )
(
mP + γ′P

) = 0.68089 > 0

∂R0

∂ωP
=
βPΛP (εmP ((κ− 1)δP + 1) + ε (κγP δP − (δP − 1) γ′P ))

ε (mP + γP ) (mP + ωP ) 2
(
mP + γ′P

)
+

ΛPβW (mP (δPµ
′
P + (1− δP )µP ) + (δP − 1)µP (−γ′P ) + γP δPµ

′
P )

ε (mP + γP ) (mP + ωP ) 2
(
mP + γ′P

) = 0.254 > 0

It’s clear that, the reproductive number R0 increases with the increment of parameters
ΛP , βP , κ, βW , µP , µ

′
P , ωP and decreases with parameters ε, γP , γ

′
P .

3 SKAZI scheme

In order to compute the analytic solution of differential equations, we face some difficulties.
One of major difficulty is that, the non-linearity behavior of differential equation. Addi-
tionally, there is no such exact formula while computation of the exact solution. To tackle
and solve such type of non-linearity, we use some numerical integration schemes to get the
approximate solution.

Suppose we are dealing by initial value problem as given in model (1) and would like
to resolve the model in a closed interval [t0, tN ]. For this intention, we partitioned the
interval [t0, tN ] with equi-spaced step size h. This can be made by means of mesh points
i.e. tk = t0 + kh for all k = 0 : N such that h = (tN − t0)/N for positive integer N . In this
intellect, we suppose that for each n we obtain a numerical approximation Y (k) in relevant
with Y (tk), that is the analytic solution at a point tk. For a certain initial value problem
with Y (t0) = Y (0), we define,

Y (k+1) = Y (k) + hΨ(Y (k);h), k = 0 : N (14)
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where the term Ψ(Y (k);h) is uncertainty level and given as follows,

Ψ(Y (k);h) = ζ
(

Ψ1(Y (k)) + Ψ3(Ψ2;h)
)

(15)

where ζ ∈ (0, 1), Ψ1(Y (k)) = Y ′, Ψ3 (Ψ2;h) = Ψ1 (Ψ2;h) and Ψ2(Y (k);h) = Y (k) +
hΨ1(Y (k)). The uncertainty level Ψ(Y (k);h) is a continuous function as Ψ1(Y (k)), Ψ2(Y (k);h)
and Ψ3(Y (k);h) are continuous. For the purpose of accuracy and convergence of SKAZI
scheme, we introduced two results based on the global error and truncation error. The
global error GEk of SKAZI scheme is defined as follows,

GEk = Y (k+1) − Yk, (16)

where Y (k) and Yk represent the approximate and analytic solution respectively. The trun-
cation error TEk for SKAZI scheme along with uncertainty level Ψ(Y (k);h) is defined as
follows,

TEk =
∣∣∣Ψ(Y (k);h)− Y (k+1) − Y (k)

h

∣∣∣ (17)

where | · | is the absolute modulus. The bounds of global error along with mixture of
truncation error is formulated by following Theorem 3.1.

Theorem 3.1 Suppose a general method (14) along with continuity of uncertainty level
Ψ(Y ;h) = Ψ(t, Y ;h) around its arguments. Further assume that Ψ(Y ;h) holds for Lipschitz
condition in its neighbour of secondary argument. For region Ω which enclose a parallelop-
iped;

Ω = {(t, Y ) : t0 ≤ t ≤ tN , ||Y − Y0|| ≤ YN} (18)

wit constant tN > t0, YN > 0 and h ∈ [0, h0], there exist Lipschitz constant LΨ such that,

|Ψ(t, Y ;h)−Ψ(t, Z;h)| ≤ LΨ|Y − Z| for(t, Y ), (t, Z) ∈ Ω (19)

Then the bounds |Yk − Y0| ≤ YN , yields that

|GE| ≤ eLΨ(tk−t0)|GE0|+ TE

[
eLΨ(tk−t0) − 1

LΨ

]
(20)

where TE = max0≤k≤N−1 |TEk| for all k = 0 : N .

Assumption

Suppose that the Theorem 3.1 holds and if truncation error TEk tends to zero as step-size
h tends to zero then global error GE tends to zero.
The general numerical scheme (14) is said to be consistent with Y ′ = Ψ1(Y (k)) along with
truncation error TEk if for any ζ > 0 there exist a step-size valued function h(ζ) which
is of course positive and region Ω encloses all pair points (tk, Y

(k)), (tk+1, Y
(k+1)) on its
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graphical simulation. Since the uncertainty level is continuous in [t0, tk], this provides Y ′(tk)
continuous. Thus for a very small step-size h, the truncation error TEk (17) becomes,

TEk = Y ′(tk)−Ψ(tk, Y
(k); 0). (21)

The TEk (21) along with numerical scheme (14) is consistent iff

Ψ(tk, Y
(k); 0) = Ψ1(y). (22)

Theorem 3.2 Let assumption (3) be hold and approximate solution (14) of initial value
problem Y ′(t) = Ψ1(t, Y (t0)) with Y (t0) = Y (0) enclosed by the region Ω such that the step-
size h ≤ h0. Further assume that the uncertainty level Ψ(”.”; ”.”) is uniformly continuous
on Ω× [0, h0] and it holds for (22) and Lipschitz condition,

|Ψ(t, Y ;h)−Ψ(t, Z;h)| ≤ LΨ|Y − Z| (23)

Then series of approximate solution Y (k) along with respective series of tk = t0 + kh for
k = 0 : N such that step-size h successively decreases to h0, converges to analytic solution
of initial value problem, that is

|Y (k) − Yk| → 0 h→ 0, tk → t ∈ [t0, tk]. (24)

3.1 Proposed SKAZI scheme

Next, we apply the SKAZI scheme on the non-linear model (1) in order to approximate
the solution. The non-linear terms is modeled by introducing sub-functions in Ψ(”.”;h) like

we modeled SPW = S
(k+1)
P W k instead of SPW = S

(k)
P W (k) in Ψ1(”.”), first equation of

system (25). To construct the discrete formulation of SKAZI scheme of non-linear model
(1), we formulate Ψ1(”.”) and Ψ2(”.”;h). The uncertainty level Ψ(”.”;h) for mathematical
model (1) is formulated as follows,

Ψ1(S
(k+1)
P ) = ΛP − βPS(k+1)

P

(
κA

(k)
P + I

(k)
P

)
−mPS

(k+1)
P − βWW (k)S

(k+1)
P

Ψ1(E
(k+1)
P ) = βPS

(k+1)
P

(
κA

(k)
P + I

(k)
P

)
− E(k+1)

P

(
mP + (1− δP )ωP + δPω

′
P

)
+ βWW

(k)S
(k+1)
P

Ψ1(I
(k+1)
P ) = E

(k+1)
P (1− δP )ωP − I(k+1)

P (mP + γP )

Ψ1(A
(k+1)
P ) = E

(k+1)
P δPω

′
P −A

(k+1)
P

(
mP + γ′P

)
Ψ1(R

(k+1)
P ) = A

(k+1)
P γ′P + I

(k+1)
P γP −mPR

(k+1)
P

Ψ1(W (k+1)) = A
(k+1)
P µ′P + I

(k+1)
P µP − εW (k+1)

(25)

10



The function Ψ2(”.”;h) can be formulated using (15) along with Ψ1(”.”) as follows,

Ψ2(S
(k+1)
P ;h) = S

(k+1)
P + h

(
ΛP − βPS(k+1)

P

(
κA

(k)
P + I

(k)
P

)
−mPS

(k+1)
P − βWW (k)S

(k+1)
P

)
Ψ2(E

(k+1)
P ;h) = E

(k+1)
P + hβPS

(k+1)
P

(
κA

(k)
P + I

(k)
P

)
− hE(k+1)

P

(
mP + (1− δP )ωP + δPω

′
P

)
+ hβWW

(k)S
(k+1)
P

Ψ2(I
(k+1)
P ;h) = I

(k+1)
P + h

(
E

(k+1)
P (1− δP )ωP − I(k+1)

P (mP + γP )
)

Ψ2(A
(k+1)
P ;h) = A

(k+1)
P + h

(
E

(k+1)
P δPω

′
P −A

(k+1)
P

(
mP + γ′P

))
Ψ2(R

(k+1)
P ;h) = R

(k+1)
P + h

(
A

(k+1)
P γ′P + I

(k+1)
P γP −mPR

(k+1)
P

)
Ψ2(W (k+1);h) = W (k+1) + h

(
A

(k+1)
P µ′P + I

(k+1)
P µP − εW (k+1)

)
The function Ψ3(”.”;h) in term of Ψ1(Ψ2(”.”;h)) can be evaluated as follows,

Ψ3(S
(k+1)
P ;h) = Ψ1(Ψ2(S

(k+1)
P ;h))

= ΛP − βPΨ2(S
(k+1)
P )

(
κA

(k)
P + I

(k)
P

)
−mPΨ2(S

(k+1)
P )− βWW (k)Ψ2(S

(k+1)
P )

=
(
h
(
βP

(
κA

(k)
P + I

(k)
P

)
+W (k)βW +mP

)
− 1
)

×
(
S

(k+1)
P

(
βP

(
κA

(k)
P + I

(k)
P

)
+W (k)βW +mP

)
− ΛP

)
Ψ3(E

(k+1)
P ;h) = Ψ1(Ψ2(E

(k+1)
P ;h))

= βPS
(k+1)
P

(
κA

(k)
P + I

(k)
P

)
−Ψ2(E

(k+1)
P )

(
mP + (1− δP )ωP + δPω

′
P

)
+ βWW

(k)S
(k+1)
P

= h
(
(mP + ωP (1− δP ) + δPω

′
P )− 1

)
×(

E
(k+1)
P

(
mP − δPωP + δPω

′
P + ωP

)
− S(k+1)

P

(
κβPA

(k)
P + βP I

(k)
P +W (k)βW

))
Ψ3(I

(k+1)
P ;h) = Ψ1(Ψ2(I

(k+1)
P ;h))

= E
(k+1)
P (1− δP )ωP −Ψ2(I

(k+1)
P ) (mP + γP )

= (h (mP + γP )− 1)
(

(δP − 1)ωPE
(k+1)
P + I

(k+1)
P (mP + γP )

)
Ψ3(A

(k+1)
P ;h) = Ψ1(Ψ2(A

(k+1)
P ;h))

= E
(k+1)
P δPω

′
P −Ψ2(A

(k+1)
P )

(
mP + γ′P

)
=
(
h
(
mP + γ′P

)
− 2
) (
A

(k+1)
P

(
mP + γ′P

)
− δPω′PE

(k+1)
P

)
Ψ3(R

(k+1)
P ;h) = Ψ1(Ψ2(R

(k+1)
P ;h))

= A
(k+1)
P γ′P + I

(k+1)
P γP −mPΨ2(R

(k+1)
P )

=
(
h
(
mP + γ′P

)
− 1
) (
A

(k+1)
P

(
mP + γ′P

)
− δPω′PE

(k+1)
P

)
11



Ψ3(W (k+1);h) = Ψ1(Ψ2(W (k+1);h))

= A
(k+1)
P µ′P + I

(k+1)
P µP − εΨ2(W (k+1))

= (hmP − 1)
(
−γ′PA

(k+1)
P − γP I(k+1)

P +mPR
(k+1)
P

)
The discrete system of ordinary differential equation (1) along with uncertainty level Ψ(”.”;h)
given as follows,

S
(k+1)
P − S(k)

P

h
= ζ(Ψ(S

(k+1)
P ;h)) = ζ(Ψ1(S

(k+1)
P ) + Ψ3(S

(k+1)
P ;h))

E
(k+1)
P − E(k)

P

h
= ζ(Ψ(E

(k+1)
P ;h)) = ζ(Ψ1(E

(k+1)
P ) + Ψ3(E

(k+1)
P ;h))

I
(k+1)
P − I(k)

P

h
= ζ(Ψ(I

(k+1)
P ;h)) = ζ(Ψ1(I

(k+1)
P ) + Ψ3(I

(k+1)
P ;h))

A
(k+1)
P −A(k)

P

h
= ζ(Ψ(A

(k+1)
P ;h)) = ζ(Ψ1(A

(k+1)
P ) + Ψ3(A

(k+1)
P ;h))

R
(k+1)
P −R(k)

P

h
= ζ(Ψ(R

(k+1)
P ;h)) = ζ(Ψ1(R

(k+1)
P ) + Ψ3(R

(k+1)
P ;h))

W (k+1) −W (k)

h
= ζ(Ψ(W (k+1);h)) = ζ(Ψ1(W (k+1)) + Ψ3(W (k+1);h))

(26)

For ζ = 1/2, the above equation (26) can be simplified as follows,

S
(k+1)
P =

−2S
(k)
P + hΛP (−2 + h(βP (I

(k)
P +A

(k)
P κ) +mP + βWW

(k)))

−2 + h(βP (I
(k)
P +A

(k)
P κ) +mP + βWW (k))(−2 + h(βP (I

(k)
P +A

(k)
P kap) +mp + βWW (k)))

E
(k+1)
P =

−2E
(k)
P + h(−2 + h(mp + ωP − δpωP + δpω

′
P ))S

(k+1)
P (βP (I

(k)
P +A

(k)
P κ) + βWW

(k))

−2 + h(mP − (−1 + δP )ωP + δPω′P )(−2 + h(mP − (−1 + δP )ωP + δpω′P ))

I
(k+1)
P =

−(2I
(k)
P + (−1 + δP )E

(k+1)
P h(−2 + h(γP +mP ))ωP

−2 + h(γP +mP )(−2 + h(γP +mP )))

A
(k+1)
P =

2A
(k)
P + 2δPE

(k+1)
P hωP 1− δPE(k+1)

P γ′Ph
2ωP 1− δPE(k+1)

P h2mPωP 1

2 + 2γ′Ph− γ′2P h2 + 2hmP − 2γ′Ph
2mP − h2m2

P

R
(k+1)
P =

−2A
(k+1)
P γ′Ph− 2γPhI

(k+1)
P +A

(k+1)
P γ′Ph

2mP + γPh
2I

(k+1)
P mP − 2R

(k)
P

−2− 2hmP + h2m2
P

W (k+1) =
−2hI

(k)
P µP + εh2I

(k+1)
P µP − 2A

(k+1)
P hµ′P +AP (n+ 1)εh2µ′P − 2W (k)(n)

−2− 2εh+ ε2h2

(27)
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Table 2: The parameters of SAR-CoV-2 infection model (1) for disease free equilib-
rium point. Note that the value of NP is taken from WHO https://www.who.int/

redirect-pages/page/novel-coronavirus-(covid-19)-situation-dashboard

Symbol Description values
ωP The rate of incubation period of people 1/5.2 [2]
ω′P The rate of latent period of people 1/5.2 [2]
γP The rate of infectious period of symptomatic infection of people 1/5.8 [2]
γ′P The rate of infectious period of symptomatic infection of people 1/5.8 [2]
δP The proportion of asymptomatic infection rate of people 0.5 [2]
βP The transmission rate from IP to SP 0.000015 Assumed
βW The transmission rate from W to SP 0.000035 Assumed
µP The shedding coefficients from IP to W 0.0001 Assumed
µ′P The shedding coefficients from AP to W 0.00005 Assumed
κ The multiple of the transmissibility of AP to that of IP 0.5 [2]
mP The death rate of people 0.2/11 [2]
ε The rate lifetime of the virus in W 1/10 [2]
NP Total number of people (confirmed cases) 81761 WHO

ΛP Rate of recruiting the susceptible SAR-CoV-2 per unit time.
NPmP

10
[2]

Table 3: The parameters of SAR-CoV-2 infection model (1) for endemic equilib-
rium point. Note that the value of NP is taken from WHO https://www.who.int/

redirect-pages/page/novel-coronavirus-(covid-19)-situation-dashboard

Symbol Description values
ωP The rate of incubation period of people 1/5.2 [2]
ω′P The rate of latent period of people 1/5.2 [2]
γP The rate of infectious period of symptomatic infection of people 1/5.8 [2]
γ′P The rate of infectious period of symptomatic infection of people 1/5.8 [2]
δP The proportion of asymptomatic infection rate of people 0.5 [2]
βP The transmission rate from IP to SP 0.000095 Assumed
βW The transmission rate from W to SP 0.000035 Assumed
µP The shedding coefficients from IP to W 0.0001 Assumed
µ′P The shedding coefficients from AP to W 0.00005 Assumed
κ The multiple of the transmissibility of AP to that of IP 0.5 [2]
mP The death rate of people 0.2/11 [2]
ε The rate lifetime of the virus in W 1/10 [2]
NP Total number of people (confirmed cases) 81761 WHO

ΛP Rate of recruiting the susceptible SAR-CoV-2 per unit time.
NPmP

10
[2]
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4 Numerical implementation

In this section, we present the approximate solution of considered model (1) using our
new SKAZI scheme. All the numerical tests are executed using MATLAB (R2016a) on the
laptop Intel(R) Core(TM) i5 CPU M20 @ 2.40GHz 2.40 GHz 2.00 GB RAM. The MATLAB
codes of Scheme is available at https://sites.google.com/site/sadaqateshu.

The Figure.2 give numerical results of susceptible population SP (t) computed by SKAZI
scheme for disease free equilibrium points such that R0 < 1. The numeric approximations

of SP (t) tend to
ΛP
µT

, that is rate of recruiting the susceptible SAR-CoV-2 per unit time

and rate of decaying (rate of people traveling out) in susceptible SP (t) per unit time. To
analyzed more effects for SP (t) at R0 < 1, we variate the parameters mP and apply SKAZI
scheme. We note that the risk of SAR-CoV-2 to other people increases with increment
of rate of people traveling out from the susceptible population SP (t). But, by this effects
remains the susceptible population SP (t) in infection free situation for all situations (lock
down or heavy rush of population).

The Figure.3 give numerical results of exposed population EP (t) computed by SKAZI
scheme for disease free equilibrium points such that R0 < 1. The exposed population is
directly connected with the transmission rate of infection of SAR-CoV-2 reservoir W (t)
to susceptible population SP (t), that is, βW . By increasing βW , the exposed population
EP (t) tends toward the endemic equilibrium point and at point β ≤ 0.0182957 the exposed
population EP (t) still remains infection free.

The Figure.4-5 give numerical results of symptomatic and asymptomatic infected popu-
lation IP (t) and AP (t) respectively, computed by SKAZI scheme for disease free equilibrium
points such that R0 < 1. The infection of SAR-CoV-2 with infected compartment IP (t) be-
comes very effective with rate of delay from symptom onset to detection/hospitalization,
that is, γ and γ′. The results shows that the infected population tends towards endemic
with increments of γ and γ′. This means that, if the delay is added in infected population
to detection or hospitalization process the infection becomes more maniac. For intense,
for delay less than 15 days the disease becomes remain infection free. But, if the infected
people gets delay more than 15 days the case becomes sensitive and treated as endemic or
incurable.

The Figure.6 give numerical results of removed population (recovered and death) RP (t)
computed by SKAZI scheme for disease free equilibrium points such that R0 < 1. The
recovery of infected population is variate with the variation of rate of moving in or traveling
out of the population region. The result shows that at stage of parameter (Table.??), the
RP (t) decreases more fast with increment of traveling out of region, that is, mP .

The Figure.7 give numerical results of SARS-CoV-2 in reservoir population W (t) com-
puted by SKAZI scheme for disease free equilibrium points such that R0 < 1. In seafood
market, the compartment W (t) is directly related with life time of SARS-CoV-2. The
SARS-CoV-2 stay for a longer time (10 days ) in the unknown hosts in market that is ε. We
variate the stay time of SAR-CoV-2 in an unknown host. The compartment W (t) converges
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rapidly towards infection free status, when we take action quickly against transmission of
SARS-CoV-2. The W (t) tends toward endemic infection for all values grater than ε ≥ 553.

Now a days, the SARS-CoV-2 is rapidly increases and becomes endemic in society.
Therefore, we are interesting to analyze the epidemic behavior of SARS-CoV-2 under the
consideration of different parameters given in Table.3. We formulate analytic solution (2)
and numeric solution obtained by SKAZI scheme (2) of model (1).

In Figure.7, we investigate that the risk of SAR-CoV-2 to other people increases with
increment of rate of people traveling out from the susceptible population SP (t). If the
traveling out rate mP posses a directly relation to susceptible population SP (t). If the rate
of people traveling out is increasing the susceptible SP (t) tends to infection free state. This
means that if we set lock down in an entire region the susceptible population SP (t) is still
remain endemic. The susceptible population SP (t) tends toward infection free for people
1.662 million traveling out to the total population according to considered model.

The population EP (t) exposed by SARS-CoV-2 increases with increment of transmission
rate from W to SP depicted in Figure 9. The exposed population remains endemic over all
values of βW and infection becomes more sensitive with large increment of βW .

The infection of SAR-CoV-2 with infected compartment IP (t) ans AP (t) rapidly in-
creasing by delaying from symptom onset to detection/hospitalization, that is, γ and γ′

respectively, illustrated in Figure.10-11. By considered model, the infected population tends
towards higher endemic case with increments of γ and γ′. This means that, if the delay is
added in infected population to detection or hospitalization process the infection becomes
more maniac. For instance, the delay less than 2 day the disease becomes infection free.
But, if the infected people gets delay more than 1 day the case becomes sensitive and treated
as endemic or incurable.

The recovered and total death RP (t) decreases with increment of traveling out or death
rate respectively as given in Figure.12. The Figure.13 give numerical results of SARS-CoV-2
in reservoir population W (t). In seafood market, the compartment W (t) is directly related
with life time of SARS-CoV-2. The SARS-CoV-2 stay for a longer time (10 days ) in the
unknown hosts in market that is ε. We variate the stay time of SAR-CoV-2 in an unknown
host and results shows a slightly change in endemic behavior of seafood market.
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Figure 2: Numerical results of susceptible population SP (t) with variation of mP

computed by SKAZI scheme along with step size h = 0.001 for disease free equilibrium
points such that R0 < 1.
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Figure 3: Numerical results of exposed population EP (t) with variation of βW com-
puted by SKAZI scheme along with step size h = 0.001 for disease free equilibrium
points such that R0 < 1.
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Figure 4: Numerical results of symptomatic infected population IP (t) with variation
of γP and γ′P computed by SKAZI scheme along with step size h = 0.001 for disease
free equilibrium points such that R0 < 1.
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Figure 5: Numerical results of asymptomatic infected population AP (t) with variation
of γP and γ′P computed by SKAZI scheme along with step size h = 0.001 for disease
free equilibrium points such that R0 < 1.
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Figure 6: Numerical results of removed (recovered and death) population RP (t) with
variation of mP computed by SKAZI scheme along with step size h = 0.001 for disease
free equilibrium points such that R0 < 1.
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Figure 7: Numerical results of SARS-CoV-2 in reservoir (the seafood market) pop-
ulation W (t) with variation of ε computed by SKAZI scheme along with step size
h = 0.001 for disease free equilibrium points such that R0 < 1.
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Figure 8: Numerical results of susceptible population SP (t) with variation of mP

computed by SKAZI scheme along with step size h = 0.001 for endemic equilibrium
points such that R0 < 1.
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Figure 9: Numerical results of exposed population EP (t) with variation of βW com-
puted by SKAZI scheme along with step size h = 0.001 for endemic equilibrium points
such that R0 > 1.
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Figure 10: Numerical results of symptomatic infected population IP (t) with variation
of γP and γ′P computed by SKAZI scheme along with step size h = 0.001 for endemic
equilibrium points such that R0 > 1.
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Figure 11: Numerical results of asymptomatic infected population AP (t) with vari-
ation of γP and γ′P computed by SKAZI scheme along with step size h = 0.001 for
endemic equilibrium points such that R0 > 1.
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Figure 12: Numerical results of removed (recovered and death) population RP (t)
with variation of mP computed by SKAZI scheme along with step size h = 0.001 for
endemic equilibrium points such that R0 > 1.
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Figure 13: Numerical results of SARS-CoV-2 in reservoir (the seafood market) pop-
ulation W (t) with variation of ε computed by SKAZI scheme along with step size
h = 0.001 for endemic equilibrium points such that R0 > 1.
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Conclusion

In this article, a mathematical model of SARS-CoV-2 for transmissibility is presented. The
disease free and endemic equilibrium points are evaluated. The stability analysis of SARS-
CoV-2 model is established. The basic reproduction number R0 is formulated using next
generation approach. Also, we proposed an efficient SKAZI scheme to approximate the
solution (both disease free and endemic equilibrium) of considered model (1).
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