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Abstract 19 

Many long-term genetic monitoring programs began before next-generation sequencing became 20 

widely available. Older programs can now transition to new marker systems usually consisting of 21 

1000s of SNP loci, but there are still important questions about comparability, precision, and 22 

accuracy of key metrics estimated using SNPs. Ideally, transitioned programs should capitalize 23 

on new information without sacrificing continuity of inference across the time series. We 24 

combined existing microsatellite-based genetic monitoring information with SNP-based 25 

microhaplotypes obtained from archived samples of Rio Grande silvery minnow (Hybognathus 26 

amarus) across a 20-year time series to evaluate point estimates and trajectories of key genetic 27 

metrics. Demographic and genetic monitoring bracketed multiple collapses of the wild 28 

population, and included cases where captive-born repatriates comprised the majority of 29 

spawners in the wild. Even with smaller sample sizes, microhaplotypes yielded comparable and 30 

in some cases more precise estimates of variance genetic effective population size, multilocus 31 

heterozygosity and inbreeding compared to microsatellites because many more microhaplotype 32 

loci were available. Microhaplotypes also recorded shifts in allele frequencies associated with 33 

population bottlenecks. Trends in microhaplotype-based inbreeding metrics were associated with 34 

the fraction of hatchery-reared repatriates to the wild, and should be incorporated into future 35 

genomic monitoring. Although differences in accuracy and precision of some metrics were 36 

observed between marker types, biological inferences and management recommendations were 37 

consistent.  38 

	39 

40 
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Introduction 41 
 42 

Genetic monitoring quantifies trajectories of individual- and population-level metrics that 43 

include heterozygosity, gene diversity and genetic effective population size (Ne) over 44 

contemporary time series (Schwartz et al. 2007). Tracking these metrics facilitates adaptive and 45 

evolutionary-cognizant management. For the past three decades, microsatellites were the 46 

workhorse for genetic monitoring programs (e.g., Koelewijn et al. 2010; Beatty and Provan 47 

2014; Dowling et al. 2014). Long-term monitoring programs are now transitioning to next-48 

generation high-throughput genomic approaches based on single-nucleotide-polymorphisms 49 

(SNPs) and microhaplotypes (i.e., multiple SNPs haplotyped at the same locus); raising 50 

questions about continuity and consistency across the time series as well as the relative accuracy, 51 

precision and comparability of metrics estimated with different genetic marker classes. The 52 

transition process also offers opportunities to adjust metrics and analytical procedures to better 53 

capitalize on whole-genome screening, preferably without loss of information. Microsatellite 54 

panels typically represent few loci and a small fraction of the genome, but often exhibit high 55 

rates of evolution and many distinct alleles per locus. High-throughput protocols generate SNP 56 

datasets that include numerous loci (often > 1000) that are widespread throughout the genome, 57 

but possible allelic states at each locus is limited. Next-generation sequencing typically identifies 58 

multiple SNPs on a single DNA fragment but to avoid issues with linkage, only a single SNP per 59 

fragment is retained (O’Leary et al. 2021). However, SNPs found on the same fragment can be 60 

kept as multi-allelic microhaplotypes to increase power for estimating key metrics (Baetscher et 61 

al. 2017). Increased power may be especially important for rare and endangered species with 62 

depleted genetic variation. What do differences between marker types portend for comparative 63 
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inferential power and, in the case of conserved populations, recommendations based on 64 

monitoring made to resource managers? 65 

Performance of microsatellites and other types of markers (biallelic SNPs, 66 

microhaplotypes) has been evaluated in the context of spatial patterns of genetic variation, for a 67 

variety of organisms, e.g., threespine stickleback (Gasterosteus aculeatus; DeFaveri et al. 2013), 68 

bighorn sheep (Ovis canadensis; Miller et al. 2014), brown trout (Salmo trutta; Lemopoulos et 69 

al. 2018), northern pike (Esox lucius; Sunde et al. 2020) and walleye (Bootsma et al. 2020). The 70 

consensus is that marker types recovered similar patterns of broad-scale population structure, but 71 

the relative performance of different marker types is context dependent (i.e., number of loci, 72 

alleles, etc.). We are not aware of any study that explicitly compares key metrics across marker 73 

types over time to evaluate trends in genetic diversity and effective size, even though temporal 74 

studies are the foundation of genetic monitoring. 75 

At the individual-level, some studies reported weak correlations of estimates obtained 76 

from microsatellite and SNP data across metrics of relatedness, individual-level heterozygosity, 77 

parentage, and population diversity (e.g., Fischer et al. 2017; DeFaveri et al. 2013). In most 78 

cases, this is attributed to heterogeneity across the genome that may weaken correlations between 79 

markers. Chakraborty (1981) showed that individual heterozygosity estimated from a small 80 

number of molecular markers does not adequately represent genome-wide heterozygosity 81 

(GWH) especially in the absence of identity disequilibrium (ID, i.e., non-random associations of 82 

genotypes between loci; DeWoody and DeWoody 2005; Ljungqvist et al. 2010). For correlations 83 

between genome-wide heterozygosity and diversity, populations must display ID (Ljungqvist et 84 

al. 2010), without which, all loci within the genome will be heterozygous or homozygous 85 

independently of each other (Szulkin et al. 2010). Identity disequilibrium occurs when there are 86 
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some consanguineous matings in the population (Bennett and Binet 1956; Ohta and Cockerham 87 

1974) and ID can be used as a proxy for inbreeding (Miller et al. 2014). Population bottlenecks 88 

and genetic drift, as a cause and consequence of small population size, lead to matings between 89 

related individuals resulting in ID. Likewise, admixture can result in temporary ID because 90 

individuals with ancestors from divergent populations are outbred, relative to individuals 91 

originating from a shared ancestral population. 92 

 Importantly, genetic monitoring potentially provides real-time insight into the 93 

relationship between heterozygosity and fitness (i.e., heterozygosity fitness correlation [HFC]), 94 

including variation in reproductive success. Within populations, variation in inbreeding affects 95 

genome-wide genotypic variation among individuals and causes subsequent fitness differences 96 

among them (Sin et al. 2021). Studies measuring HFC are conducted to detect evidence of 97 

inbreeding depression which can compromise population viability and conservation efforts (e.g., 98 

Hoffman et al. 2014; Townsend and Jamison 2013). Until recently, microsatellites were the 99 

marker of choice for genetic monitoring and HFC studies due to their high variability and 100 

minimal development costs. However, ascertainment bias caused by selecting only the most 101 

polymorphic microsatellite loci results in reduced sensitivity for assessing genome-wide genetic 102 

diversity (Väli et al. 2008) while the small number of microsatellite loci typically employed 103 

limits power to detect inbreeding (Szulkin et al. 2010). Furthermore, estimates of inbreeding and 104 

individual heterozygosity obtained from few loci are poorly correlated under most realistic 105 

situations (Balloux et al. 2004; Miller and Coltman 2014). Moreover, microsatellite datasets are 106 

often replete with missing data, null alleles and scoring errors that impact some population-level 107 

metrics, most notably FIS (e.g., David et al. 2007) and genetic effective population size (Marandel 108 

et al. 2020). SNPs appear to improve accuracy and precision of GWH estimates and inbreeding 109 
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(Hoffman et al. 2014; Sin et al. 2021). Yet, although there are numerous molecular-based 110 

surrogates for inbreeding (e.g., realized individual inbreeding [F], internal relatedness [IR], 111 

multilocus heterozygosity [MLH] and g2; Table 2), these are not typically measured in genetic 112 

monitoring programs. As monitoring programs begin to transition toward genomic scale data, 113 

uncertainties remain regarding the utility of these alternate statistics related to inbreeding.  114 

Simulation studies offer some guidance on the comparative sensitivity of microsatellites 115 

and biallelic SNPs to detect population declines over time, and under different demographic 116 

scenarios and sampling schemes at conservation-relevant timescales (Hoban et al. 2014). Data 117 

from real populations are scarce (but see Lehnert et al. 2018) and the relative power of 118 

microhaplotypes has not been investigated to our knowledge. A long-term genetic and 119 

demographic monitoring program of the Rio Grande silvery minnow (Hybognathus amarus) 120 

provides an opportunity to conduct a side-by-side comparison between microsatellites and 121 

microhaplotypes obtained from representative archived samples. Over the last 70 years, this 122 

species has contended with habitat changes associated with river fragmentation, dewatering, and 123 

flood control that have caused significant range contraction (Platania 1993). Since listing under 124 

the Endangered Species Act in 1994 (U.S. Fish and Wildlife Service 1994), droughts and water 125 

extraction have caused periodic population collapses associated with recruitment failure 126 

(Archdeacon and Reale 2020; Archdeacon et al. 2020). A full-scale captive breeding and 127 

augmentation program began in 2002-2003 (U.S. Fish and Wildlife Service 2018) and progeny 128 

from this program sometimes comprise the majority of the spawning stock in the wild. 129 

Population bottlenecks and genetic drift associated with augmentation are expected to impact 130 

GWH (Szulkin et al. 2010) and genetic monitoring of the population should reveal signatures of 131 

these events in the genome provided genetic markers have sufficient power. 132 
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Like other conservation programs, maintenance of genome-wide diversity and adaptive 133 

potential are major tenets of the Rio Grande silvery minnow conservation program, but whether 134 

findings from small panels of microsatellites accurately reflect genome-wide patterns have been 135 

widely debated (e.g., Miller et al. 2014). Results obtained from microhaplotypes also must be 136 

directly comparable to previous results to preserve the continuity and comparability of the time 137 

series. Using a genetic monitoring time series spanning two decades we: (i) summarized patterns 138 

of genetic variation, divergence and effective size using microsatellites and microhaplotypes, (ii) 139 

assessed whether measures of population genetic diversity, individual diversity, divergence and 140 

contemporary genetic effective population size were correlated between microsatellites and 141 

microhaplotypes; and (iii) assessed whether other metrics (i.e., MLH, IR, g2) estimated from 142 

genomic data, would be a valuable addition to the genetic monitoring programs. Leveraging the 143 

power of genomic data could provide additional insight not afforded by microsatellite markers, 144 

thereby strengthening the value of genetic monitoring to ongoing adaptive management of the 145 

species.  146 

 147 

Methods 148 

Demographic Monitoring Data and Modeling 149 

Rio Grande silvery minnow is a small-bodied, short-lived (Horwitz et al. 2018) cyprinid that was 150 

widely distributed in the Rio Grande from northern New Mexico to the Gulf of Mexico, and in 151 

the Pecos River from northern New Mexico to the confluence of the Rio Grande in Texas 152 

(Pflieger 1980). A remnant population persists in the Rio Grande in New Mexico extending from 153 

downstream of Cochiti Dam to Elephant Butte Reservoir (Bestgen and Platania 1991). This river 154 

reach is referred to as the middle Rio Grande. Platania (1993) first documented the rapid decline 155 
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of the species in the middle Rio Grande in the late 1980s. Since 1993, systematic demographic 156 

monitoring has been conducted from April to October at 20 localities encompassing the species 157 

current range, revealing recurrent order-of-magnitude declines in the population (e.g., Dudley et 158 

al. 2019). Population declines are typically associated with periods of reduced spring runoff and 159 

prolonged periods of low flow over the summer months (Archdeacon 2016; Dudley et al. 2019; 160 

Figure 1). Conversely, periods of elevated and protracted spring flows and limited summer 161 

drying are associated with increased abundance. Periods of greatly reduced densities (<1 fish per 162 

100 m2) were documented between 2000-2004, 2006, 2012-2015 and in 2018 (Dudley et al. 163 

2019) while 1996, 2010 and 2011 were only marginally better (1-2 fish per 100 m2). Highest 164 

densities were recorded in 1995, 2005 and 2017 (estimated densities 23.17 – 44.85 fish per 100 165 

m2). These data confirm that declines can be precipitous from one year to the next, and that the 166 

species has the capacity to recover following periods of low abundance. Large-scale propagation 167 

began in 2002-2003 with annual spring collections of hundreds of thousands of eggs from 168 

riverine spawning. Eggs were reared in captivity and released as pre-reproductive adults the 169 

following winter. Incorporation of eggs produced from riverine spawning into hatchery 170 

activities, captive spawning of wild-origin individuals, and annual augmentation are now 171 

cornerstones of recovery efforts for the species (U.S. FWS 2018a). Genetic monitoring began in 172 

1999 and is conducted annually using microsatellites and mitochondrial DNA markers (Osborne 173 

et al. 2012). Metrics tracked include standard diversity measures (Nei's unbiased gene diversity 174 

[uHS], observed heterozygosity [HO] and allelic richness [AR]), the variance genetically effective 175 

population size (NeV), and the linkage disequilibrium effective population size (NeD). 176 

To allow genetic data to be interpreted with reference to population demography, the 177 

number of wild-born and augmented fish in each year were estimated using a population model 178 
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(Yackulic et al., In Press). The model integrates Rio Grande silvery minnow abundance estimates 179 

made from 2008-2011 (Dudley et al. 2012), with catch-per-unit-effort (CPUE) data collected 180 

monthly between April and November, along with estimates of habitat availability. Abundances 181 

were directly estimated by the model for each year between 2002 – 2018. Abundances for 1999 182 

and 2000 were extrapolated by analyzing observed river discharge and catch-per-unit-effort data 183 

in a Bayesian model that used parameter estimates and associated uncertainty to estimate prior 184 

distributions.  185 

 186 

Sample selection 187 

Samples for SNP identification were selected from archived Rio Grande silvery minnow held at 188 

the Museum of Southwestern Biology, Division of Fishes. Samples were selected based on: (1) 189 

preservation method (frozen or 95% ethanol); (2) year of collection (the earliest ethanol/frozen 190 

material was collected in 1999); and (3) collection locality (Table S1). We selected samples that 191 

represented the temporal scale of ongoing genetic monitoring (1999-2018) and bracketed 192 

population bottlenecks identified from demographic monitoring (Figure 1). We included ~10 193 

samples from each of three populated river reaches (Angostura, Isleta and San Acacia - when 194 

available) to reflect the spatial scale of monitoring, which encompasses the entire geographic 195 

range of the species. Population genetic analysis was based on total number of samples (pooled 196 

across reaches), since there is little evidence of population structure between reaches (Osborne et 197 

al. 2012). Additional samples were included from 1999 and 2000 to provide redundancy in the 198 

event of poor sample quality (i.e., degraded DNA) in older samples, and to obtain genomic data 199 

prior to the beginning of the conservation hatchery and augmentation program. To ensure 200 

representative coverage of the time series (i.e., a sample every 2 years) we purified archived 201 
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DNA (originally isolated using a proteinase-K and phenol-chloroform protocol) when tissue 202 

samples were not available (Table 1). A total of 379 samples were included for DNA 203 

sequencing. Sequence quality was assessed by preservation type using the non-parametric 204 

Kruskal-Wallis test implemented in the R package stats v. 4.0.3 (details in Figure S1). 205 

 206 

NextRAD Sequencing 207 

Isolation of DNA from tissue samples was performed using E.Z.N.A.® tissue DNA (Omega Bio-208 

Tek Inc, Norcross, GA, USA) or ZymoTM Quick-DNA (Zymo Research Corp, Irvine, CA, USA) 209 

kits according to the procedures outlined by the manufacturer. Isolations of DNA from previous 210 

genetic monitoring were purified using ZymoTM DNA clean and concentrator® kits to remove 211 

phenol which can inhibit DNA sequencing. All samples were treated with RNase A. Each isolate 212 

was evaluated for the presence of high molecular weight DNA and the absence of RNA 213 

contamination by electrophoresis on a 1.2 % agarose gel. Double-stranded DNA was quantified 214 

using Qubit BR assays (Invitrogen, Thermo Fisher Scientific) and samples with sufficient high-215 

quality DNA were submitted for sequencing at SNPsaurus, LLC (University of Oregon, OR, 216 

USA). Genomic DNA was converted into Nextera-tagmented reductively-amplified DNA 217 

genotyping-by-sequencing (nextRAD) libraries and sequenced according to Russello et al. 218 

(2015). Additional details are provided in the supplementary material. Genomic DNA fragments 219 

were pooled in two nextRAD libraries, each sequenced on two Illumina® Hi-Seq 4000 lanes of 220 

150 base pair (bp) single-end reads.  221 

 222 

Microsatellites 223 



 11 

Microsatellite data from nine loci previously genotyped in samples spanning the period 1999 – 224 

2010 (Osborne et al. 2012; supplementary material) were used in this study for comparative 225 

analysis. In addition, microsatellite data was included from 1,570 individuals collected as part of 226 

ongoing monitoring for 2012, 2015, 2017, and 2018 from the Rio Grande using methods 227 

described previously. These data from these additional years were paired directly with 228 

microhaplotype data.  229 

 230 

Variant calling and quality filtering 231 

Raw DNA sequences obtained from nextRAD sequencing from 379 individuals were 232 

demultiplexed by sequencing lane and unique DNA barcode combinations that identified 233 

individuals. Raw reads were trimmed and aligned to a draft female Rio Grande silvery minnow 234 

reference genome. Resulting nextRAD loci were used to call variants that were subsequently 235 

filtered to obtain a biallelic SNP dataset. Next, the variable positions in each locus were 236 

haplotyped (hereafter referred to as microhaplotypes) using the dDocent pipeline (Willis et al. 237 

2017). Finally, we tested microhaplotypes for deviations from Hardy-Weinberg equilibrium 238 

(HWE) and in linkage disequilibrium (LD). A detailed description of the procedure, software, 239 

filters and options employed to obtain the final dataset is presented in Table S2.  240 

 241 

Genetic diversity  242 

We calculated the percentage of missing data (% MD) per individual and locus for both datasets 243 

using program GenoDive (Meirmans 2020). Large % MD affects estimation of some metrics 244 

(e.g., FIS and Ne), adding uncertainty that confounds interpretation of downstream results (e.g., 245 

Marandel et al. 2020). We calculated standard genetic diversity metrics typically used in genetic 246 
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monitoring programs, including Nei's unbiased gene diversity (Nei 1987) and heterozygosity for 247 

each temporal sample using the program GenoDive v. 3.0 (Meirmans 2020) to enable 248 

comparisons between marker types. Allelic richness and average inbreeding coefficients (FIS) 249 

were calculated using the R package diveRsity v. 1.9.90 (Keenan et al. 2013). The 95% 250 

confidence intervals (CIs) were calculated for uHS, HO and FIS. For microsatellites, 251 

GENEPOP’007 (Rousett 2008) was used to test for departures from Hardy-Weinberg equilibrium 252 

(HWE) using the procedure of Guo and Thompson (1992) and to perform global tests for linkage 253 

disequilibrium for all pairs of loci in each collection. Sequential Bonferroni correction (Rice 254 

1989) was applied to account for inflated Type I error rates associated with multiple 255 

simultaneous tests. We used Pearson correlations to examine whether % MD was correlated with 256 

diversity metrics and to evaluate concordance between comparable metrics estimated from 257 

microsatellites and microhaplotypes. 258 

 259 

Genetic effective population size 260 

The linkage disequilibrium method (Hill 1981) was used to estimate the NeD for each collection 261 

of Rio Grande silvery minnow as implemented in the NeEstimator v. 2.0 software package (Do 262 

et al. 2014). Low frequency alleles (Pcrit = 0.02) were excluded from the microsatellite dataset 263 

singleton alleles were removed for microhaplotypes prior to analysis. Estimates of NeD are an 264 

approximation of the effective number of parents that produced the year class from which the 265 

sample was taken (Waples 2005). For microhaplotypes 95% CIs for NeD were calculated using a 266 

jackknife approach recommended for datasets with large numbers of loci (Jones et al. 2016) 267 

because parametric confidence intervals are too narrow when locus pairs are not entirely 268 

independent (Gilbert and Whitlock 2015). For consistency, we also used the jackknife method to 269 
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generate CIs for microsatellites, but these did not differ greatly from parametric CIs. Three 270 

estimates of NeD = ∞ were obtained across the two datasets (1999, 2000- microsatellites; 2000- 271 

microhaplotypes; see Results section). Infinite estimates occur when results can be explained 272 

entirely by sampling error, and is usually interpreted as a large value of NeD (Waples and Do 273 

2010). We used the equation 274 

 275 

Ne(inf)  = Ne(max) + SDNe 276 

 277 

to adjust estimates for subsequent analysis, where Ne(inf) is the value used to replace infinite 278 

estimates, Ne(max) is the largest Ne estimate obtained, and SDNe is the standard deviation 279 

calculated across all Ne estimates by marker type (Gossieaux et al. 2019). 280 

 Variance effective population size (NeV) was calculated using the temporal method (Nei 281 

and Tajima 1981). Confidence intervals for NeV were obtained using the parametric approach 282 

(Waples 1989). We used a Pcrit=0.02 to exclude low frequency alleles (Waples and Do 2010) to 283 

reduce biased estimates of Ne associated with rare alleles (Hedrick 1999; Turner et al. 2001). To 284 

account for small deviations from the discrete generation model, we corrected consecutive 285 

estimates (i.e., 1999-2000, 2008-2009, 2009-2010, 2017-2018) of NeV for overlapping 286 

generations as described previously (Turner et al. 2006; Osborne et al. 2012). We used Rosner’s 287 

Test (Rosner 1983) to detect outliers in NeV and NeD estimates. Four outlier NeD values (1999, 288 

2000, 2010, 2012) were detected in the microsatellites data. Consequently, a Spearman 289 

correlation was used to examine the relationship between NeD estimates obtained with 290 

microsatellites and microhaplotypes.  Single outlier NeV values were detected in the 291 

microsatellite and microhaplotype dataset; 2015-2017 and 2002-2004 respectively. Relationships 292 
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between NeV obtained with microsatellites and microhaplotypes were evaluated using Pearson 293 

correlation as the outliers did not affect this analysis. These analyses were performed in R using 294 

the ggpubr package v. 0.4.0.999 (Kassambra 2020). 295 

 296 

Temporal differentiation 297 

Temporal genetic structure was evaluated using k-means clustering to estimate the optimal 298 

number of population groups in our datasets and using discriminant analysis of principle 299 

components (DAPC). DAPC summarizes genotypes in principle components which are used to 300 

construct linear functions that maximize among group variation while minimizing within group 301 

variation. Both analyses were performed using the R package adegenet v. 1.3-1 (Jombart and 302 

Ahmed 2011). K-means clustering was used for de novo group identification, where k is the 303 

number of groups, using both datasets. A group was defined as a distinct genetic sample taken at 304 

a particular time. Bayesian Information Criteria (BIC) were used to select k with the lowest BIC 305 

value. Prior to DAPC we replaced missing data within each group using the Breiman’s 306 

regression random forest algorithm (Breiman 2001) implemented in R package randomForest v. 307 

4.6–14 (Liaw and Wiener 2002). Values of missing data in the microhaplotype (3% total MD) 308 

and microsatellite (2% total MD) datasets were predicted from 500 independently constructed 309 

regression trees and 50 bootstrap iterations with default bootstrap sample size. This was 310 

preferred over the default “mean method” (i.e., missing genotypes are replaced by the average 311 

estimated across the dataset) implemented in adegenet, to ensure that we did not artificially 312 

increase similarity of allele frequencies across years. For each marker type, a first DAPC was 313 

performed using years as groups, without scaling allele frequencies, retaining all PCA and DA 314 

axes, and keeping other options as default. The a-score method was used with the results of the 315 
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first DAPC to select the optimal number of principle components retained for the final DAPC, 316 

while keeping the other options as in the first DAPC. Levels of diversity (number of alleles and 317 

heterozygosity) differ between microsatellites and microhaplotypes (dominated by biallelic 318 

SNPs), hence we calculated pairwise values of G"
ST (Meirmans and Hedrick 2011) and 95% CIs 319 

between temporal samples using diveRsity for both datasets. Confidence intervals were 320 

calculated using 999 bootstrap replicates. We used a Mantel test implemented in R (mantel.rtest) 321 

with 9999 replicates to compare the values of G"
ST  obtained for microsatellite and 322 

microhaplotypes. All analyses were conducted in R studio v. 1.3.1093-1 using R v. 4.0.3 (R Core 323 

Team 2020). 324 

 325 

Evaluation of inbreeding metrics for genetic monitoring  326 

In addition to ‘standard, genetic diversity metrics (Osborne et al. 2012), we added metrics of 327 

inbreeding to the genetic monitoring time-series. We calculated standardized multilocus 328 

heterozygosity (sMLH) for individuals in each temporal sample based on microsatellite and 329 

microhaplotype loci using the package inbreedR (Stoffel 2016) implemented in R. Measures of 330 

inbreeding, including internal relatedness (IR) and mean identity by descent (IBD) inbreeding 331 

co-efficient (!) were calculated using the programs GENHET (Coulon 2010) and EMIBD9 vers 332 

1.0 (Wang 2021), respectively. We used Pearson correlations and biplots to visualize 333 

relationships of ! and sMLH/IR for both datasets.  334 

 335 

We measured identity disequilibrium using the "2 statistic for each temporal sample (Szulkin et 336 

al. 2010; David et al. 2007). To test whether "2 was significantly different from zero, genetic 337 

data were permutated 1000 times to generate a p-value for the null hypothesis of no variance in 338 
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inbreeding (i.e., "2=0; David et al. 2007; Stoffel et al. 2016). Bootstrap replicates (n = 1000) 339 

were used to generate 95% CIs. We used the non-parametric WAVK test (Wang et al. 2008) 340 

(with moving window = 3) using the R package funtimes vers. 8.2 (Lyubchich and Gel 2022) to 341 

examine if there were any significant trends (monotonic or non-monotonic) for values of !pop, "2 342 

or FIS over the time series. Values were considered significant when p < 0.05. In cases where a 343 

significant trend was detected, we used a Mann-Kendall test (MK; Mann 1945) to determine if 344 

the trend was monotonic (reported as Kendall’s t) using the R package trend (Pohlert 2020). The 345 

magnitude of the change was calculated using Sen’s slope (Sen 1968) at the 5% significance 346 

level. The Standard Normal Homogeneity Test (SNHT) implemented in trend was used with one 347 

million Monte-Carlo replicates to identify transitions (i.e., change-points) when a significant 348 

trend was detected (microhaplotype-based !, "2).  349 

	350 

Results 351 

Quality of samples based on preservation method and year of collection 352 

The median number of mapped reads did not differ significantly between DNA isolated from 353 

frozen tissue and purified DNA from archived phenol-chloroform-extracted isolates (Figure S1). 354 

Median number of reads was higher for DNA from frozen tissue samples compared to ethanol-355 

preserved material. There were also differences among temporal collections, but the number of 356 

mapped reads was relatively high in all cases (3.1 – 3.4 M reads per individual for all 357 

preservation methods). 358 

 359 

Variant calling and quality filtering 360 
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After sequencing the nextRAD libraries and demultiplexing the raw sequences, an average 3.4 361 

million (M) sequences per individual (minimum=1.1 M; maximum=5.5 M) were obtained. After 362 

alignment to a draft reference genome, an average of 1.27 M reads per individual were retained 363 

for further SNP search (minimum=0.9 M; maximum=5.3 M). The total number of reads, 364 

variants, and individuals retained after each step of the bioinformatics pipeline are shown in 365 

Table S2. 366 

 367 

Summary of genetic monitoring data for Rio Grande silvery minnow 368 

The final dataset consisted of 3,151 loci comprising 5,549 SNPs from 366 individuals. Loci that 369 

were multiallelic (2-12 alleles per locus) comprised 42.5% of loci. The remainder (57.5%) were 370 

single biallelic SNPs. Although we collectively refer to this dataset as microhaplotypes, we 371 

acknowledge that most loci characterize variation at single sites. Across all years, a total of 8458 372 

microhaplotype alleles were observed compared to microsatellites 240 alleles. Across both 373 

datasets (microsatellite and microhaplotypes) we did not observe correlations between the 374 

percentage of missing data and diversity metrics (Table S3) with the exception of 375 

microhaplotype-based allelic richness (r=-0.71, p=0.011). Likewise, % MD was not correlated 376 

with either "2 or !pop for either dataset. Out of 37,932 total HWE tests (3,161 loci across 12 377 

years) based on microhaplotypes, 9.1% departed from HWE. No loci departed from HWE 378 

consistently across the time-series thus all loci were retained. Additionally, 10 loci were 379 

consistently found in LD and discarded, retaining 3,151 loci. Of 108 total HWE tests (9 loci 380 

across 12 years) based on microsatellite data, departures from HWE were detected in 37% of the 381 

tests. Across years, LD was detected between three pairs of microsatellite loci (Lco6 and Lco7; 382 

Lco1 and Ca6; Lco3 and Ca8). We retained all loci as we have previously shown that this 383 
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strategy does not affect downstream analyses (Turner et al. 2006). Microsatellite-based HO was 384 

lower in 1999-2002 and 2009-2010 compared to other years (Figure 2, Table S4). However, 385 

overlapping CIs for all microsatellite estimates of HO and uHS indicated no difference across 386 

time.  387 

Two NeD estimates based on microsatellites (2004 and 2015) and microhaplotypes (2006 388 

and 2015) were smaller than other temporal samples (Figure 3). Conversely, infinite NeD 389 

estimates were observed in 1999 for both data sets, and likely resulted from small sample size 390 

rather than a true large effective population size. Otherwise, for both datasets, temporal estimates 391 

of variance effective population size, NeV, were uniformly about one order of magnitude smaller 392 

than estimates of NeD and ranged from 33 (1999-2000) to 604 (2015-2017) for microsatellites 393 

and from 122 (2008-2009) to 576 (2002-2004) for microhaplotypes (Table S4).  394 

DAPC based on k-means clustering of microhaplotype and microsatellites data indicated 395 

the best solution as k = 1 (Figure 4). In the DAPC plot based on microsatellites, the 2015, 2017 396 

and 2018 ellipses were shifted to the right on the first discriminant axis indicating a shift in allele 397 

frequencies. Microhaplotype-based DAPC exhibits the same qualitative pattern. Values of 398 

pairwise G"
ST ranged from 0.003 to 0.095 for microsatellites and from 0.002 – 0.008 for 399 

microhaplotypes (Figure S2).  400 

 401 

Comparisons between microsatellites and microhaplotypes  402 

Gene diversity and HO obtained from microsatellites were not significantly correlated with those 403 

obtained from microhaplotypes (Table 3). Allelic richness was negatively correlated between 404 

datasets (r(df=11) = -0.70, p = 0.012) however, the actual difference in microhaplotype-based 405 

values of AR between temporal samples was negligible. Confidence intervals were wider for 406 
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microsatellites compared with microhaplotypes for all diversity metrics (Figure 2). Estimates of 407 

NeD, were similar in magnitude between markers and had overlapping confidence intervals 408 

across the time series (Table S4, Figure 3). Estimates of NeD from microhaplotypes were 409 

significantly correlated with estimates based on microsatellites (rs(df=11) = 0.647, p = 0.023). 410 

Microhaplotype-based estimates of NeV were not strongly associated with estimates derived from 411 

microsatellites (r(df=9) = 0.136, p = 0.689). Mantel correlations between pairwise values of G"
ST 412 

obtained using these two datasets were significantly positively associated. Microhaplotype-based 413 

estimates of G"
ST were small between temporal samples and not different from zero (Figure S2) 414 

while microsatellite-based values were significantly different from zero except for comparisons 415 

between the most recent temporal collections (2015-2017, 2015-2018).  416 

 417 

Evaluation of inbreeding metrics for genetic monitoring  418 

When compared with microhaplotypes, sMLH and IR based on microsatellites had a wider range 419 

of values within years, but mean values varied little across the time series (Figure 5). 420 

Microhaplotype-based values of IR had a narrower range such that an increase in IR could be 421 

detected for the period 2009-2017 compared to other years (1999-2016, 2018). This same pattern 422 

was not evident from the microhaplotype-based sMLH values. Values of !pop calculated from 423 

microsatellites varied from 0.13 (2015) to 0.27 (2002) while !pop values based on 424 

microhaplotypes were smaller ranging from 0.02 (2017) to 0.14 (2018). At the individual level, 425 

there was a strong correlation between microsatellite-based sMLH (r(df=11) = -0.95, p < 0. 00001) 426 

and IBD ! for microsatellites. This result was mirrored for microhaplotype-based sMLH (r 427 

r(df=11) = -0.76, p < 0.001; Figure 6). IR was also strongly correlated and IBD ! regardless of 428 
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marker type. For both sMLH and IR, the correlation with !	was stronger for microsatellites 429 

compared to microhaplotypes.  430 

No trend was identified by microsatellite-based estimates of !, "2 or FIS or for 431 

microhaplotyped-based FIS across the time series (Table S5, Figure 7). Monotonic trends were 432 

detected for microhaplotype-based estimates of !pop (t = 0.485; p = 0.017; slope = 0.006, p 433 

0.034; Figure 7, Figure 8) and "2 (t = 0.697; p = 0.001; slope = 0.001, p = 0.002) which 434 

increased across the time series. Microhaplotype-based estimates of FIS and !pop had narrower 435 

CIs compared to those derived from microsatellites while some of the CIs for "2 were wider for 436 

microhaplotype-based estimates but these did not overlap with zero. 437 

 438 

Discussion  439 

Summary of genetic monitoring data for Rio Grande silvery minnow- insights from 440 

microhaplotypes 441 

Two decades of microsatellite-based genetic monitoring in Rio Grande silvery minnow has 442 

provided information critical to ongoing adaptive management (Table 5). Conclusions from 443 

microhaplotype data largely agree with interpretations based on microsatellites but inclusion of 444 

additional metrics provide additional insight into the complex dynamics in this population. 445 

Microhaplotype-based estimates of diversity reinforces that genetic variation has been 446 

maintained despite periodic population collapse. This resilience is attributable to ongoing 447 

population augmentation and integrated management of wild and captive populations (Osborne 448 

et al. 2012, 2020). More precise population and individual diversity estimates (uHS, HO, IR) 449 

based on microhaplotypes revealed patterns of genetic change over time not detected by 450 

microsatellites; highlighting one of the benefits of transitioning to microhaplotype-based 451 
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genomic monitoring. Additionally, microhaplotypes were more sensitive to shifts in temporal 452 

genetic diversity where DAPC clearly indicated a distinct allele frequency shift. Larger shifts 453 

corresponded to periods of extremely low wild abundance when heavy population augmentation 454 

was employed to replenish the wild spawning stock resulting in genetic drift. A persistent allele 455 

frequency shift after 2014 marks the replacement of the wild population with stocks derived from 456 

relatively few captive breeders (i.e., slightly different allele frequencies compared to the pre-457 

bottleneck population). 458 

Microhaplotype-based estimates of contemporary genetic effective size were also 459 

consistent with microsatellites in showing that NeV is small (< 250) for most pairwise 460 

comparisons, and values of NeV are consistently smaller than NeD. Estimates of NeV generally had 461 

tight confidence intervals regardless of data types, confirming that alternative sampling strategies 462 

that use (i) more individuals but fewer loci (microsatellites) or (ii) fewer individuals but more 463 

loci have similar power to estimate this metric (e.g., Waples 1989). Consistency of results 464 

obtained from microhaplotypes with previous microsatellite data is important as contemporary 465 

Ne is a critical determinant of diversity loss from the population. The smallest values of NeD 466 

(both data types) were seen in samples collected immediately following population bottlenecks 467 

(2004, 2006, 2015). These findings are consistent with Antao et al. (2010) who found that NeD 468 

reliably detected less severe population declines a few generations after the event.  469 

The underlying causes for differences between NeV and NeD have been explored 470 

previously. Briefly, Carson et al. (2020) used simulations to show that NeD and NeV respond 471 

differently to augmentation and dispersal/ fragmentation. Specifically, NeD measured in the wild 472 

population reflects the global effective size of the total population (wild + hatchery) and hence at 473 

higher augmentation rates NeD should be larger. In contrast, augmentation has the opposite effect 474 
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on NeV because augmentation acts as an additional source of ‘genetic drift’ such that NeV is 475 

reduced with heavier augmentation. In reality, NeV and NeD estimated for the Rio Grande silvery 476 

minnow population do not always respond as predicted because simulations cannot capture all 477 

complex interactions between demography of the wild population that experiences large swings 478 

in population size from year to year, with simultaneous management actions.  479 

Genomic signatures of population bottlenecks and augmentation were also revealed by 480 

considering measures of inbreeding not traditionally used in genetic monitoring programs. 481 

Trends in "2 and ! calculated from microhaplotypes suggested that incorporating these metrics 482 

into genetic monitoring programs would be a valuable addition and could enable study of 483 

relationships of GWH to fitness in a managed population. Further investigation is necessary to 484 

fully understand how these metrics respond to complex demographic scenarios. Microsatellites 485 

appeared to be less sensitive to these temporal trends; likely because of the small number of loci 486 

compared to microhaplotypes.  487 

 488 

Comparisons between microsatellites and microhaplotypes 489 

Comparisons of microsatellites and microhaplotypes allowed us to evaluate the relative 490 

consistency, precision, and sensitivity to missing data between marker types (Table 4). Off all 491 

the metrics we evaluated, we found that only microhaplotype-based estimates of AR were 492 

sensitive to the low levels of missing data in our study. Even with relatively small sample sizes, 493 

microhaplotypes yielded more precise estimates of diversity (uHS, HO, IR) and NeV compared to 494 

microsatellites, allowing temporal changes to be detected in the time-series. On the other hand, 495 

microhaplotye-based AR was not an informative metric. Like other studies (e.g., Zimmerman et 496 

al. 2020; Fischer et al. 2017; Lemopoulos et al. 2019) and important for ongoing monitoring 497 
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efforts in Rio Grande silvery minnow, we found that measures of divergence (G"
ST) were 498 

positively correlated between markers and this was also true of NeD. Hence, when these metrics 499 

(G"
ST and NeD) are measured with only SNP-based markers in the near future, we can be 500 

relatively confident that signals of divergence or changes in effective population size accurate 501 

rather than a consequence of change in marker type. Although CIs were often large for NeD 502 

regardless of data type, trends in annual point estimates makes NeD a particularly important 503 

metric for adaptive species management when interpreted in the context of population 504 

demography. 505 

Weak correlation of diversity metrics between datasets suggests that diversity estimated 506 

from a small number of microsatellites may not sufficiently reflect genomic diversity 507 

(Lemopoulos et al. 2019; Guillot and Foll 2009). Other studies failed to find significant 508 

correlations between some diversity metrics estimated from microsatellites and SNPs (e.g., 509 

Fischer et al. 2017; Zimmerman et al. 2020; DeFaveri et al. 2013). Charkraborty (1981) and 510 

DeFaveri et al. (2013) concluded that variation in heterozygosity across the genome would result 511 

in lack of correlation of diversity measures when estimates from a small number (<20) of 512 

molecular markers; such as in our study. Lack of correlation between markers sets for uHS and 513 

HO may also be caused by (i) ascertainment bias, (ii) typing artefacts (microsatellites), (iii) 514 

underlying evolutionary processes affecting per locus levels of diversity, and (iv) genomic 515 

location of the markers (e.g., DeFaveri et al. 2013).  516 

Microsatellites are typically found in non-coding regions of the genome such as introns 517 

and intergenic regions, evolve primarily by replication slippage, and thus have high mutation 518 

rates (Ellegren 2004). Loci are typically selected for population genetic studies based on levels 519 

of diversity such that more polymorphic loci (higher number of alleles and heterozygosity) are 520 
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preferred, yielding greater sensitivity to changes in population size and genetic diversity. 521 

Reductions in microsatellite allelic diversity were detected in Rio Grande silvery minnow from 522 

1999 to 2000 (before population augmentation began) and in 2012 and 2015 that bracketed order 523 

of magnitude declines in the middle Rio Grande population. Substantial declines in allelic 524 

diversity were not seen in the rest of the time series (except in 2017), a result that we attribute to 525 

repeated population augmentation (Osborne et al. 2012). Declines in AR were not detected with 526 

microhaplotypes because of reduced sensitivity because loci are dominated by biallelic SNPs. 527 

Our results suggest that SNPs obtained from high throughput NGS protocols could be more 528 

important to monitor as they represent a broader picture of genomic variation as many more loci 529 

as assayed; including coding and non-coding regions.  530 

Low allelic variability at individual microhaplotype loci is offset by a substantially higher 531 

number of loci such that the larger number of total number of alleles assayed yielded more 532 

precise estimates of diversity (i.e., smaller confidence intervals) when compared with 533 

microsatellites in Rio Grande silvery minnow. For example, microhaplotype-based 534 

heterozygosity was higher in 2018 (and IR was lower) compared to previous years reflected by a 535 

negative inbreeding coefficient while FIS and IR increased between 2009-2017 compared to 536 

values observed from 1999-2008. These changes are indicative of departures from Hardy-537 

Weinberg proportions. An excess of heterozygotes in 2018 and deficit in 2009-2017 is likely a 538 

‘Wahlund’ or sampling effect (Waples 2015) that occurred when fish from the middle Rio 539 

Grande population and different hatchery sources were mixed by augmentation. Different 540 

proportions of wild to captive fish may also affect the value of FIS because the magnitude of the 541 

Wahlund effect increases with population divergence in allele frequencies and the evenness of 542 

mixture proportions (Waples 2015).  543 
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 544 

Evaluation of inbreeding metrics for genetic monitoring  545 

In Rio Grande silvery minnow, we found that sMLH and IR were strongly associated with !	and 546 

FIS for both datasets. The strength of observed correlations between individual !	and sMLH and 547 

IR in Rio Grande silvery minnow was greater than in other species including zebra finch (range 548 

r2 = 0.46 - 0.49; Forstmeier et al. 2012) but within the range seen in oldfield mice (r2 = 0.74; 549 

Hoffman et al. 2014). Strong correlations were also reported between genomic measure of 550 

inbreeding based on runs of homozygosity (FROH) and heterozygosity (MLH) in wolves (r2 = 551 

0.91; Kardos et al. 2018). The genomic measures of inbreeding used here (e.g., MLH, IR, "2) 552 

characterize variation in inbreeding due to all IBD segments of the genome including those 553 

arising from both recent and distant ancestors (Keller et al. 2011; Kardos et al. 2018). These 554 

metrics may be more accurate than alternative pedigree-based estimates that make the unrealistic 555 

assumption of unrelated ancestors. In cases where there is high variance in ! (e.g., 2018), 556 

genomic measures of individual inbreeding (e.g., IR and sMLH) are expected to be more precise 557 

(Miller et al. 2014; Kardos et al. 2018; Kardos et al. 2014); consistent with microhaplotype data.  558 

Variance in inbreeding in some years (Figure 8) was also reflected in microhaplotype-559 

based values of  "2 that were significantly different from zero. In contrast, microsatellite-based 560 

"2 values were not informative about underlying identity by descent because in the majority of 561 

cases, "2 did not differ from zero. Other authors (e.g., Hoffman et al. 2014; McLennan et al. 562 

2019) also found that compared with microsatellites, "2 estimated from large numbers of SNP-563 

based markers provided a more accurate measure of inbreeding and GWH because of increased 564 

statistical power associated with the number of SNP loci screened. Likewise, Kardos et al. 565 
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(2014) found that when estimated from few microsatellite loci "2, was not significant even in 566 

cases when heterozygosity fitness correlations were present.  567 

Identity disequilibrium ("2) can occur when genetic drift/bottlenecks yield a higher 568 

incidence of consanguineous matings as a consequence of small population size. Moreover, 569 

populations that have experienced multiple bottlenecks may have inflated inbreeding values 570 

(Robinson et al. 2013). Miller et al. (2014) found that ID was substantially higher ("2 = 0.06) in 571 

a population of bighorn sheep that had experienced a population bottleneck and was 572 

subsequently “rescued” by introduction of individuals from a neighboring population, when 573 

compared to a native population ("2 = 0.004). Values of "2 observed in Rio Grande silvery 574 

minnow at several time-points ("2 = 0.01-0.019 in 2008, 2017-2018) are considered high for a 575 

natural population (Hoffman et al. 2014). For example, most microhaplotype-based values of "2 576 

in Rio Grande silvery minnow were larger than in a small red deer population (Cervus 577 

elaphus; 	"2 = 0.001; Huisman et al. 2016) and in a large population in storm petrel 578 

(Oceanodroma leucorhoa; "2 = 0.001; Sin et al. 2021). Like Rio Grande silvery minnow, the 579 

population of deer has experienced bottlenecks and admixture between different populations 580 

(Huisman et al. 2016). Sin et al. (2021) noted that in storm petrel, mating system and inbreeding 581 

between close relatives could not account for variance in inbreeding, and hence, suggested that 582 

observed variance in inbreeding was explained by past population bottlenecks along with more 583 

recent declines in Ne and low levels of admixture between Atlantic and Pacific populations of 584 

petrels. Footprints of bottlenecks persist even after the population has recovered (Bierne et al. 585 

2000) and can still cause inbreeding depression (Sin et al. 2021).  586 

Values of microhaplotype-based inbreeding metrics were notably higher for the majority 587 

of recent time points from 2008- 2018 compared to earlier periods (1999 to 2006). Early 588 
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augmentation efforts (2002-2007) of the wild population of Rio Grande silvery minnow were 589 

comprised largely of stocks reared from wild-caught eggs (WCE) rather than offspring of captive 590 

spawning. Stocks reared from WCE typically have allele frequencies nearly identical to the wild 591 

population (Osborne et al. 2012). After that time, released fish were increasingly derived from 592 

captive spawning and hence derived from fewer parents than wild-produced stocks. Some 593 

increases in microhaplotype-based values of !pop and "2 follow periods of heavy population 594 

augmentation (Figure 1). For example, the estimated breeding population in the spring of 2007 595 

was comprised of roughly equal numbers of wild and augmented fish while from 2013-2015 the 596 

number of augmented fish far exceeded the number of “wild-born” individuals as efforts were 597 

made to rebuild the population following its collapse during the drought from 2012-2014 598 

(Yackulic et al. In Press). Drought years represent periods when genetic drift is expected to be 599 

high because (i) the bottleneck reduces the number of breeders, (ii) captive spawning involves 600 

only a subset of the population, and (iii) only a subset of hatchery fish persist after release. Rio 601 

Grande silvery minnow exhibits type-III survivorship such that females are highly fecund 602 

(Caldwell et al. 2019) but in the wild there is very high mortality of early life stages such that a 603 

small proportion of the offspring survive to recruit to the riverine adult population (Horwitz et al. 604 

2018). In contrast, use of captive spawning reduces variance in reproductive success among 605 

captive spawners and their offspring are eventually released to the river. In the following year, 606 

there may be breeding between slightly related individuals (reflected by larger values of F) as 607 

well as breeding between relatively unrelated individuals (e.g., wild with augmented fish, and 608 

smaller values of F); resulting in greater variance in population F and reflected by significant 609 

values of "2 (e.g., 2018).!Admixture between populations with different allele frequencies causes 610 

gametic associations (i.e., LD) between loci as a function of the difference between the parental 611 
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populations and the admixture rate (Chakraborty and Weiss 1988) and the effects of admixture 612 

can be variable and can either increase or decrease GWH depending on the magnitude of 613 

admixture and the genetic background of the population (Vendrami et al. 2020). Importantly, in 614 

both red deer and storm petrel where variance in inbreeding was less than seen recently in Rio 615 

Grande silvery minnow, general effects HFC were observed implying inbreeding depression in 616 

both a small (Keller et al. 2016) and a large population (Sin et al. 2021). Hence, inclusion of 617 

inbreeding metrics in genetic monitoring of both wild and captive populations of Rio Grande 618 

silvery minnow can provide valuable information for adaptive management of the species (e.g., 619 

altered augmentation strategies). 620 

Recommendations for genetic monitoring of Rio Grande silvery minnow  621 

For ongoing genetic monitoring in Rio Grande silvery minnow, a subset of the loci used in this 622 

study will be incorporated into a Genotyping-in-Thousands by sequencing panel (GT-seq; 623 

Campbell et al. 2015). This is a method of targeted SNP genotyping that uses multiplexed PCR 624 

amplicon sequencing and allows consistent genotyping of hundreds of target SNPs across 625 

hundreds to thousands of individuals. For genetic monitoring programs, GT-seq is time and cost-626 

effective once multiplexed PCRs are optimized. (Campbell et al. 2015). Additionally, GT-seq 627 

panels should allow consistent genotyping across laboratories; which can be troublesome with 628 

microsatellites without considerable validation. Preliminary results show that 300 loci are 629 

sufficient to represent patterns of population and individual diversity contained in the complete 630 

dataset presented in this study (data not shown). Our results demonstrate that it is now possible 631 

for conservation programs to incorporate genomic methods into routine monitoring. 632 

Development of genomic tools for this species and others will allow (i) less expensive 633 

monitoring, (ii) more rapid evaluation of captive stocks prior to release to the wild, (iii) 634 
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retrospective analysis of archived wild and captive material and (iv) will facilitate further 635 

evaluation of inbreeding metrics and selection. 636 

More broadly, results presented herein highlight the importance of archiving both tissue 637 

and DNA samples collected during long-term monitoring so they can be utilized as new genomic 638 

technologies are developed. Despite differences in ages of genetic samples and differences in 639 

how samples were stored, sequencing depth was sufficient to estimate parameters of interest with 640 

generally greater precision than microsatellite data. Archiving biological material (preferably 641 

tissue) is important not only for imperiled species with on-going genetic monitoring programs, 642 

like Rio Grande silvery minnow, but also for species of conservation concern without established 643 

conservation programs; guaranteeing the availability of genetic material in the future. In the case 644 

of Rio Grande silvery minnow and many other imperiled species, sampling is often non-645 

destructive so there may not be tissue samples remaining after DNA isolation and in these cases 646 

archiving DNA samples along with associated metadata is imperative. Our results are 647 

encouraging as they suggest that researchers have some flexibility in sample choice including 648 

DNA isolates when transitioning from one marker set to another.  649 
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Table 1 Temporal and spatial origin of Rio Grande silvery minnow samples for SNP discovery. 

Asterisks denote tissue samples (frozen and ethanol). All other samples were purified from 

previous DNA isolations. The total number of samples was 379 (13 samples were later discarded 

because of missing data). Analyses were based on total number of samples per year, since there 

is no evidence of population structure between river reaches (Osborne et al. 2012). 

 
River 
Reach 1999 2000 2002 2004 2006 2008 2009 2010 2012 2015 2017 2018 

Angostura -- -- 9 9 10* 10* 10* 9* 10 11* 10* 10* 
Isleta -- -- 11 11 10* 10* -- 10* 11 11* 10* 10* 
San Acacia 30* 42* 10 6 10* 10* 20* 10* 9 9* 10* 20* 
Total 30 42 30 28 30 30 30 29 30 31 30 40 
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Table 2 Description of statistics used to measure inbreeding/identity disequilibrium. 
 

 Symbol Statistic Description Reference 
    

"2 
 

Identity 
disequilibrium 

• Low-bias estimate of g2. Measures excess 
of double heterozygotes at two loci 

relative to expectations (equation 8 in 
David et al. 2007). 

David et al. 2007 

sMLH 
Standardized 
multilocus 

heterozygosity 

• Mean heterozygosity across all 
genotyped loci divided by mean 

heterozygosity at loci genotyped in the 
population (i.e., temporal sample). 

Standardizes heterozygosity when not all 
loci are typed in each individual.  

Coltman et al. 
1999 

IR Internal relatedness 
• IR=(2H-∑fi)/ (2N- ∑fi) where H is the 

number of homozygous loci and N is the 
number if loci and fi is the frequency of 

the ith allele in the genotype. Weights rare 
alleles more heavily. 

Amos et al. 2001 

   

FIS Fixation index 

• Inbreeding at the population level with 
respect to nonrandom mating within 

demes. Measures heterozygote 
deficiency/excess per locus. 

FIS=%&'()%*+,%&'(  

Wright 1951 

F IBD inbreeding • F calculated by EMIBD is derived from 
estimates of the 9 condensed IBD 

coefficients between two individuals. !	is 
the average !	for each individual. !pop- 

population average. 
 

Wang 2021 
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Table 3 Pearson correlation coefficients for genetic metrics (unbiased gene diversity [uHs], 

observed heterozygosity [HO], allelic richness [AR], average inbreeding coefficient [FIS], 

variance effective population size (NeV), and Mantel correlation for G"
ST and Spearman 

correlation for linkage disequilibrium effective population size (NeD) and calculated between 

microhaplotypes and microsatellites and associated p-values.  

 
 
 

Metric Correlation p-value 
uHS -0.22 0.490 
HO 0.190 0.550 
AR -0.70 0.012* 
FIS 0.230 0.480 
NeV 0.136 0.689 
G"

ST 0.153 0.023* 
NeD 0.680 0.016* 
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Table 4 Summary of differences/similarities of genetic metrics between datasets and broad 
conclusions.  

 

  

 Genetic 
Metric Microsatellites Microhaplotypes Conclusions 

In
di

vi
du

al
 m

et
ri

cs
 

      
sMLH/IR/! 

Strong correlation 
between sMLH and 

IBD ! 
 

Strong correlation 
between sMLH and 

IBD ! 
 

sMLH/IR- reflect IBD !. 
Microhaplotypes detect 

temporal changes in 
individual diversity. 

"2 /!pop 

Wide CIs for 
sample 

Most "2 estimates 
not >0 

 
Narrow CIs. "2 >0 

 

Microsatellites lack power to 
estimate inbreeding/ID via 

"2 in most cases. 
Temporal changes in 

inbreeding (g2/!pop) detected 
across time series by 

microhaplotypes. 

Po
pu

la
tio

n 
m

et
ri

cs
 

 (uHE, HO, FIS, 
AR) 

Overlapping CIs 
No trend apparent 
for uHE, HO, FIS. 
Reduced AR in 

some years 
corresponding to 

reduced abundance 

Narrow CIs, 
increased precision 

Years with increased 
values of FIS 

Temporal patterns differ, but 
both dataset show genetic 

diversity maintained. 
Increased precision of 
microhaplotype-based 
estimates allows small 
differences between 

temporal samples to be 
detected (i.e., FIS and HO). 

T
em

po
ra

l d
iv

er
ge

nc
e 

 

DAPC Weak temporal 
divergence 

Temporal 
divergence between 
old and more recent 

samples 

Temporal shift in allele 
frequencies detected from 

microhaplotypes. 

FST 
Range: 0.003-

0.017/ 
Smaller CIs 

Range: -0.0006-
0.006 

Overlapping CIs 

Strongly correlated. Small 
degree of divergence 

between temporal 
collections. 

Smaller values for 
microhaplotype-based 

estimates. 

Mean FST 0.006 0.002 

E
ff

ec
tiv

e 
po

pu
la

tio
n 

si
ze

  
 

NeV NeV=33-604 
Overlapping CIs 

NeV=122 - 576 
Narrow CIs, 

increased precision  

NeV is small. Both datasets 
show an increase in NeV for 

2015-2017 and decrease 
between 2017-2018. 

Differences between NeV 
estimates can be identified 

with microhaplotypes. 

NeD Wide CIs 
NeD=489 – 12,127 

Wide CIs 
NeD=731-3,579 

Strongly correlated. Both 
datasets detect an order of 

magnitude decline 
associated with population 

collapse in 2012-2014. 
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Table 5 A comparison of key findings and recommendations based on microsatellite data and microhaplotype data for Rio Grande 
Silvery Minnow. Hypothesized biological processes that underlie key findings are listed, as are management recommendations that 
emerged from key findings.  References are provided for microsatellite data. Inferences based on microhaplotypes are described in the 
text. 
 

Key Finding Micro- 
satellites 

Micro- 
haplotypes Underlying Biological Process Management 

Recommendations 

Genetic diversity metrics 
stable over a 20-year time 

series 

yes yes a Sufficient diversity remains in 
wild and hatchery stocks to 

maintain 'neutral' genetic diversity 
despite large population 

fluctuations. 

The comprehensive adaptive 
management strategy is meeting 

many targets for 'neutral' 
genetic diversity.1, 2 

Low AR in some captive 
brood stocks 

yes not tested b Too few captive spawners to form 
a representative brood stock. 

Increase broodstock numbers, 
spawning, and rearing capacity 

in multiple facilities.3 

Inbreeding trends 
detected? 

no yes Microhaplotypes have more 
power to detect inbreeding but 
further evaluation is necessary. 

 

Increase broodstock numbers, 
spawning, and rearing capacity 

in multiple facilities. 

Wild-caught drifting eggs 
(WCE) sufficiently 

represent whole-
population genetic 

diversity 

yes not tested Spawning is triggered by spring 
snowmelt flow pulse, eggs drift 

downstream. Multiple flow peaks 
initiate multiple spawning events. 

Temporal sampling interval 
should span the entire spawning 

season. Eggs should be 
collected from all river reaches. 

WCE prioritized for 
augmentation and refugial 

broodstock. 2, 4, 5 
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FST ≈ 0 across Rio Grande 
sampling localities 

yes not tested High dispersal and gene flow 
throughout the current species 
range. Downstream-biased egg 

and larval dispersal. 

Collect broodstock from all 
river reaches (i.e., the species 

range) to maximize diversity. It 
is not necessary to create 

geographically distinct stocks. 1, 

4, 6, 7 

Ne/N << 0.1 in wild 
populations 

yes yes Downstream transport of pelagic 
eggs past dams introduces high 
variance in reproductive success 

(VRS) among spawning 
aggregates. Other species exhibit 

Ne/N ≥ 0.1. 

Re-engineer dam and diversion 
structures to allow for upstream 

fish passage. Restore 
connectivity to lateral 

floodplain habitat to enhance 
egg retention and recruitment.  

1, 4, 6, 7 

NeV is not correlated with 
N in wild populations 

yes not tested d Inputs from the hatchery and VRS 
strongly influence the relationship 

of Ne and N. 

Ne is not a proxy for wild 
abundance. Demographic and 

genetic monitoring are required 
to evaluate ecological and 

evolutionary effects of 
population fluctuation and 

hatchery inputs. 1, 7, 8 

 
1 Osborne et al. 2012, 2 Osborne et al. 2020, 3 Osborne et al. 2006, 4 Osborne et al. 2005, 5 USFWS 2018a,6 Alò & Turner 2005,7 Turner et al. 
2006 8 Carson et al. 2020 

a Not all metrics perform equally well across marker classes (see text).  
b Not explicitly tested, but AR is not an effective metric for microhaplotype data. 
c Microhaplotypes are more sensitive to inbreeding effects or have more power to detect them. 
d Not tested. 
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Figure 1. Summary of the of the main demographic events and management actions since the 
beginning of genetic monitoring of Rio Grande silvery minnow. This species was listed under 
the Endangered Species Act in 1994. Genetic monitoring (GM) commenced in 1999 and has 
continued annually since (except for 2013-2014 when insufficient samples were available for 
genetic analysis). A captive breeding and rearing program commenced on a limited scale in 2002 
and in 2003 transitioned to a full-scale program with the founding of the captive population from 
922,000 eggs from natural reproduction of the middle Rio Grande population (indicated by the 
purple arrow). The population has been augmented nearly every year since. Samples used for 
SNP discovery are indicated by the red arrows. Population bottlenecks are indicated by the red 
bars. N-estimated wild-born and augmented Rio Grande silvery minnow from Yackulic et al. (In 
Press). 
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Figure 2. Genetic diversity estimates across temporal collections: a) unbiased heterozygosity 
(uHS), b) observed heterozygosity (HO) and c) allelic richness (AR) based on microhaplotype and 
microsatellite (d-f) datasets. Note that the Y-axis scales are different. For uHS and HO the 95% 
confidence intervals are shown.  
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Figure 3. Genetic effective population size results based on linkage disequilibrium (NeD) 
calculated from a) microhaplotypes and b) microsatellites and associated 95% confidence 
intervals. Y-axis is a log scale. Genetic effective population size results based on the variance of 
allele frequencies (NeV) calculated from microhaplotypes (c) and microsatellites (d) using the 
method of Nei and Tajima (1989) and associated 95% confidence intervals.  
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Figure 4. Results of discriminant analysis of principal components (DAPC) based on a) 
microhaplotypes and b) microsatellite data. In each panel the curves represent the density of individuals 
across the first discriminant function (DF) axis. The first DF axis explained 35% of the variance for 
microhaplotypes and 37% of the variance for microsatellites. The inset in each panel shows the ellipses 
representing the 95% confidence level for a multivariate normal distribution, plotted on the first and 
second DF axes. Colors represent temporal samples. 
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Figure 5 a) Mean standardized multilocus heterozygosity (sMLH) and b) mean internal 
relatedness (IR) for temporal samples based on microhaplotypes, and c, d) microsatellites.  
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Figure 6. Correlation between a) standardized multilocus heterozygosity (sMLH) and b) internal 
relatedness (IR) and identity by descent inbreeding co-efficient !	for microhaplotypes,  
and c, d) same metrics based on microsatellites. Pearson correlation co-efficient (r), r2 values 
and p-values are shown on each plot. 
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Figure 7 a) average IBD !pop b) Identity disequilibrium ("2), and c) FIS for temporal samples based on microhaplotypes, and d, e, f) 
and microsatellites. Associated 95% confidence intervals are shown for "2 and FIS, and standard deviation is given for !pop. The 
WAVK test statistics (wk) and p-values are shown for non-significant tests. Mann-Kendall’s t and p-values, and change-points (cp) 
are shown when significant monotonic trends were detected.  
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Figure 8. Values of !	and standard deviation of the mean for individuals by year based on a) 
microhaplotypes and b) microsatellites.  
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