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Abstract: This paper reports on the results of research aimed to translate biometric 3D 45	

face recognition concepts and algorithms into the field of protein biophysics in order to 46	

precisely and rapidly classify morphological features of protein surfaces. Both human 47	

faces and protein surfaces are free-forms and some descriptors used in differential 48	

geometry can be used to describe them applying the principles of feature extraction 49	

developed for computer vision and pattern recognition. The first part of this study 50	

focused on building the protein dataset using a simulation tool and performing feature 51	

extraction using novel geometrical descriptors. The second part tested the method on 52	

two examples, first involved a classification of tubulin isotypes and the second 53	

compared tubulin with the FtSZ protein, which is its bacterial analogue. An additional 54	

test involved several unrelated proteins. Different classification methodologies have 55	

been used: a classic approach with a Support Vector Machine (SVM) classifier and an 56	

unsupervised learning with a k-means approach. The best result was obtained with SVM 57	

and the radial basis function (RBF) kernel. The results are significant and competitive 58	

with the state-of-the-art protein classification methods. This opens a new area for 59	

protein structure analysis. 60	

Keywords: 3D Face Analysis; Protein Classification; Tubulin; SVM; Geometrical 61	

Descriptors; Differential Geometry; Machine Learning 62	
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1. Introduction 68	

The structure of a protein is an important indicator of its potential biological 69	

functions, especially its surface, which is exposed to the solvent and participates in 70	

interactions with other proteins and ligands. In a recently published work [1] it was 71	

shown how to capture fingerprints of a protein using deep learning methodology and a 72	

strong correlation was demonstrated between the structure of a protein and its biological 73	

behavior. Another work [2] showed the relevant role of protein-protein interactions using 74	

local structural features. In this latter paper geometrical features were found to be 75	

interesting in this context.  76	

The first step in the process of classifying proteins is to acquire a realistic (usually 77	

experimental) 3D dataset regarding a protein’s structure. X-ray crystallography has made 78	

the largest and most important contribution to our understanding of protein 79	

structure. Nuclear Magnetic Resonance (NMR) and cryogenic electron microscopy (cryo-80	

EM) are other methods by which to determine the protein structure [3] but they have 81	

various limitations. As an alternative to crystallographic structure determination, a 82	

computational method can be used to generate its prediction using a three-dimensional 83	

model [4]. However, proteins are non-static molecular structures, thus a crystallography-84	

generated image is only a snapshot in time of a protein structure and not a fully realistic 85	

representation of all protein states, which can be quite dynamic. Therefore, molecular 86	

dynamics (MD) is a useful computational tool that can be used to produce atomic 87	

coordinate trajectories in order to provide a sampling of structural representations of a 88	

given protein. The method we propose in this paper is agnostic to the origin of the data, 89	

which in the case of proteins can either be obtained from experiments such as cryo-EM or 90	
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synthetically generated from computational approaches such as MD. The key aspect is to 91	

have an atomistic model of the objects studied [3], which serves as the starting point for 92	

feature extraction based on the protein surface.  Such a model provides a high-resolution 93	

representation of the object of interest, which is later on processed and characterized by a 94	

manageable number of parameters. 95	

 A protein can have different equilibrium conformational states that depend on 96	

ambient conditions. Moreover, some proteins are expressed by several genes leading to 97	

different isotypes with a high degree of structural similarity making accurate comparison 98	

important, so a good dataset with different frames is important in order to have a 99	

statistically significant and valid test set. The most difficult task would be to distinguish 100	

between very closely related proteins or indeed the same protein in its wild type form and 101	

a mutated protein structure. For clearly distinct protein structures, standard approaches 102	

for their comparisons such as the use of the RMSD (root mean squared deviation) may 103	

work reasonably well but providing a single parameter only for structure comparisons 104	

may not always be useful or sensitive enough to distinguish subtle structural changes 105	

involving, for example, single point mutations or a small number of amino acid 106	

substitutions. It should also be mentioned that while sequence comparison methods are 107	

rapid and reliable, since there is no general solution to the protein folding problem, 108	

sequence comparisons are insufficient by themselves to inform us about subtle structural 109	

changes that can distinguish between highly similar protein structures. 110	

Some experimentation has already been undertaken to classify proteins according to 111	

their states. Tsuda et al. adopted a Support Vector Machine (SVM) classifier for fast 112	

protein classification [5]. They obtained 13 classes and reached an accuracy of about 113	



	 5	

90%. Weston et al. [6] used a semi-supervised classification with a kernel cluster and 114	

reached a result of 94.3%. Another interesting result has been obtained using a random 115	

forest approach and fifteen different supervised methods with about 11,000 pairs of 116	

protein domains leading to an accuracy of 97.0% [7]. Our focus in this paper is on 117	

accurate differentiation between structurally-similar proteins, which is a much harder 118	

problem to solve than comparing vastly different protein structures. Many cases of 119	

protein families can be found and it is important to be able to find characteristic features 120	

distinguishing proteins belonging to the same family between each other. This could be 121	

valuable with respect to their functional roles in cell biology as well as potential 122	

applications in rational drug design. To the best of our knowledge, no methodology exists 123	

in the literature that deals with this particular situation. 124	

One of the most important proteins abundantly expressed in all eukaryotic cells is the 125	

family of tubulin proteins, which will be studied in this paper as a challenging test case 126	

for this methodology. It is also highly homologous with its bacterial ancestor, FtSZ, 127	

which will also be used here for comparison. We should stress again that comparing 128	

protein sequences is a trivial problem in bioinformatics while 3D structural features of 129	

folded proteins pose a much greater challenge, which is addressed here. These structures 130	

are obtained from various experiments such as X-ray, NMR or cryo-electron 131	

crystallography or from computational simulations such as MD, as mentioned above. 132	

In the computational experiment reported below SVM was used because the quantity 133	

of data tested was relatively low, and a deep learning approach requires large data sets to 134	

achieve a high level of confidence. The novelty of our approach rests with the feature 135	

extraction using geometrical descriptors and its general applicability to 3D structure 136	
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characterization, because geometric feature surfaces were used with significant results in 137	

many other applications before, e.g. [8, 9]. We believe that the classification provided 138	

here can be further improved with more data, more classes and a complex neural 139	

network, all of which is planned for future work, especially within the context of 140	

geometric deep learning [10], which nowadays is the state-of-the art of classification. 141	

Tubulin is a key cytoskeletal protein, which has been exhaustively studied for its 142	

applications in several fields including being the target for various anti-cancer drugs [11] 143	

and the discrimination of the Saccharomyces complex [12]. It is a globular protein with a 144	

molecular weight of 55 kDa per monomer and its numerous isotypes expressed by 145	

separate genes have a broad distribution in animal and plant cells [13]. Tubulin is a 146	

building block of microtubules (MTs) and its stable form is an αβ -heterodimer. MTs play 147	

various important roles in all eukaryotic cells including cell motility, material transport 148	

and most importantly cell division where MTs form mitotic spindles [12-13].  149	

The novelty of the present work rests with the application of geometrical descriptors 150	

coming from the field of face analysis to the classification of surfaces of proteins, with 151	

the aim of adopting this geometrical information as descriptive features and 152	

discriminating elements to classify proteins. Here, we test the method on the examples of 153	

tubulin isotypes and related proteins (e.g. FtsZ). The method can, of course, be applied to 154	

an arbitrary protein or indeed a protein complex but being able to discriminate between 155	

highly homologous proteins based on the geometrical shapes of their surfaces opens the 156	

door to numerous applications across the field of protein science. The idea comes from 157	

the realization that geometrical properties can well describe the surface of a 3D object 158	

such as a protein and could identify characteristic features when comparing two or more 159	
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similar structures. Proteins surfaces can be split into two outer surfaces by cutting a plane 160	

through the data set including the main axis of rotational symmetry. These two halves of 161	

the outer surface, similarly to human faces, differ from one another depending on the 162	

protein type, and also can change their conformational states dynamically, similarly to 163	

human facial expressions. Thus, what in the field of pattern recognition is called face 164	

recognition could be transferred to the context of protein classification according to the 165	

typology. These common points have fostered the interest of uncovering the potentiality 166	

of cross-fertilization between these two fields with the aim of better categorization. 167	

All eukaryotic organisms carry multiple genes coding for α and β tubulin (and other 168	

variants, e.g. γ), which are referred to as isoforms when comparing tubulin expressed by 169	

different organisms. When a single organism is discussed, various tubulin genes code for 170	

what are called tubulin isotypes. Isotypes have highly homologous amino acid sequences 171	

that appear to have diverged as a result of accumulated mutations since their separation 172	

by distinct speciation events [14]. Amino acid sequence similarity is very high for all 173	

tubulin proteins both within and between diverse species making structural comparisons 174	

difficult. At the cellular level, the roles of the α and β tubulin isotypes are essential, a 175	

result of subtle structural variations within their sequences [15] Several isotypes of the α 176	

and β tubulins have been identified in human cells, their existence and distribution 177	

providing a link to their specific roles in the polymerization and stability of MTs, among 178	

other roles [8] making structural differences correlate with functional roles in cells, 179	

importantly including cancer cells. For example, βII tubulin has been a common target 180	

for chemotherapy drug action and is involved in protein-protein interactions [2]. Hence 181	

again, the structural differences between tubulin isotypes significantly assist in drug 182	
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design targeting specific isotypes such as βIII, which is overexpressed in all cancer cells. 183	

Through a search of available protein sequence databases, a total of ten unique β tubulin 184	

isotypes can be found, all of which have highly similar amino acid sequences and are 185	

generally well conserved. Sequence alignment, similarity and identity values of the 186	

studied isotype proteins (see below for details) range between 78% and 98%, indicating a 187	

major level of similarity between these structures. The question that remains is how do 188	

these sequence variations translate into structural differences. 189	

As stated above, MTs are dynamic cytoskeleton polymers present in all eukaryotic 190	

cells made up of the protein tubulin. FtsZ is a close structural homologue of tubulin 191	

within prokaryotic cells, and plays an important functional role during bacterial cell 192	

division. A close relationship between FtsZ and tubulin can be seen from their very 193	

similar protein structures (Figure 1a). Both α and β tubulin share an approximate 35% 194	

sequence identity with FtsZ [16]. Both FtsZ and tubulin can assemble to form straight 195	

filaments. This association is regulated by guanosine triphosphate (GTP), which is bound 196	

in the junction between adjacent monomers (Figure 1b). FtsZ forms long protofilaments 197	

consisting of a single string of FtsZ proteins in contrast to tubulin, which makes 198	

cylindrical MTs. Unlike tubulin, FtsZ does not appear to provide a structural role 199	

throughout the cell cycle, but instead just plays a structural role during bacterial cell 200	

division, when it forms a band, known as the Z-ring, around the inner cell wall at the 201	

location where the cell will divide.  202	

Figure 1 203	

The main goal of the research reported here has been to investigate the following issues: 204	
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• whether it is possible to rely on features coming from the field of pattern 205	

recognition and face analysis to geometrically describe (and classify) the 206	

geometrical properties of the protein surface; 207	

• whether it is possible to recognize different isotypes of the same protein from a 208	

different set of molecular dynamics snapshots; 209	

• whether it is possible distinguish between two highly structurally similar but not 210	

identical proteins such as tubulin and FtsZ, and whether it is possible to 211	

distinguish arbitrary proteins with no relation to each other. 212	

It is worth stating in this context that in general the main goal of a classifier is to separate 213	

objects belonging to different classes using a number of possible linear separators as 214	

shown in the examples presented in Figure 2. 215	

Figure 2 216	

It is reasonable to expect that using one of these separators one can get a datum 217	

that is on the other side of the hyperplane, which would then be misclassified because the 218	

hyperplane is really near   the ham data [17]. SVM is able to find a solution with a larger 219	

margin for the two-separator classifier as shown in Figure 2(a). This hyperplane works 220	

better than others as it is expected to reduce the number of misclassifications, because it 221	

is the one with the highest margins from the two sets of data. 222	

The first part of this paper describes the development of the dataset using tubulin isotypes 223	

and FtsZ protein as test cases. Then, geometrical descriptors are computed on the 3D 224	

surface of these proteins. They are then converted into histograms and saved in a file. 225	

This file is the input of the classifiers. The code is provided in a github repository [18]. 226	

The entire process is summarized in Figure 3. 227	
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Figure 3 228	

This paper is organized as follows. In Section 2 geometrical descriptors used for 229	

implementing the feature extraction are described. Section 3 is the core of the paper and it 230	

outlines feature extraction and classification methods with a detailed description of the 231	

strategies and techniques performed. Section 4 summarizes and discusses the results 232	

comparing them with the-state-of-art results. Finally, Section 5 summarizes the work and 233	

discusses future developments. 234	

2. Material and methods 235	

2.1 Geometrical descriptors  236	

The surfaces representing both human faces and proteins are geometrically 237	

considered as a free form. Thus, features coming from the field of differential geometry 238	

can be applied in order to understand their local and global properties. Geometrical 239	

descriptors are widely used in the area of 3D face recognition with significant results 240	

reported elsewhere in the literature [19, 20]. They underline different characteristics of a 241	

free-form and are an important tool for feature extraction [21] within the context of face 242	

analysis [22]. In this work, for the first time we apply these descriptors to proteins and 243	

use them for structural classification purposes [19]. 244	

The geometrical descriptors used in this research are the following novel geometrical 245	

descriptors [22, 23]: mean curvature (𝐻!"#$), Gaussian curvature (𝑔!"#$), principal 246	

curvatures (𝑘!!"#$  and 𝑘!!"#$%& ), the shapes type of a surface (S!"#$ ), and the 247	

symmetry property (F!"#$,). Considering that these descriptors rely on the derivatives of 248	

the surface (hx, hy), they well describe the changes in surface curvature (k!!"#$, sing, 249	

k!!"#$%& , g!"#$ , H!"#$), depressions and peaks (local minima and maxima) of the 250	
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surface (k!!"#$, sing, k!!"#$%&, g!"#$, H!"#$), the shapes in terms of the types of 251	

surfaces (S!"#$), and the surface’s symmetry property (F!"#$,). These parameters are 252	

highly informative of the investigated surface’s geometrical properties. Each descriptor 253	

can underline a specific characteristic of a certain surface. These descriptors are briefly 254	

described below in regard to their conceptual order. The first and second fundamental 255	

forms provide the first six descriptors of the set. They are used to measure distance on 256	

surfaces and are defined by the formula 257	

 𝑑𝑠! =  𝐸𝑑𝑢! + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣! ( 1) 258	

where E, F, G, e, f and g are their coefficients given by:  259	

 260	

𝐸 = 1+ ℎ!!, ( 2) 261	

𝐹 = ℎ!ℎ! , ( 3) 262	

𝐺 = 1+ ℎ!!  , ( 4) 263	

𝑒 =  !!!

!!!!!!!!!
, ( 5) 264	

𝑓 =  !!"

!!!!!!!!!
, ( 6) 265	

𝑔 =  !!!

!!!!!!!!!
. ( 7)  266	

Curvatures are used to measure how a regular surface x bends in. If D is the 267	

differential and N is the normal plane to a surface, then the determinant of DN is the 268	

product of the principal curvatures, and the trace of DN is the negative of the sum of 269	

principal curvatures. At point P, the determinant is the Gaussian curvature K of x at P. 270	

The negative of half of the trace of DN is called the mean curvature H of x at P.  271	
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The principal curvatures k1, k2 are the roots of the quadratic equation given below:  272	

x2 − 2Hx + K = 0 (8)  273	

Thus, we can choose k1 and k2 so that: 274	

k1: 𝑯+  𝑯𝟐 −𝑲 and k2: 𝑯−  𝑯𝟐 −𝑲 (9) 275	

where 276	

𝐾 =  !"!!
!

!"! !!
 (10) 277	

𝐻 =  
𝑒𝐺 − 2𝑓𝐹 + 𝑔𝐸
2 (𝐸𝐺 −  𝐹!)  (11) 

In terms of the principal curvatures, Gaussian (K) and mean curvatures (H) can be written 278	

as  279	

 𝐾 =  𝑘!𝑘!, (12) 280	

𝐻 =  !!!!!
!

 (13) 281	

where h is a differentiable function representing the three-dimensional surface.  282	

The curvedness index S, which describes the shape of the surface, is defined as:  283	

 284	

𝑆 =  − !
!
𝑎𝑟𝑐𝑡𝑎𝑛 !!!!!

!!!!!
, 𝑆 ∈ −1,1 , 𝑘!  ≤  𝑘!. ( 14) 285	

 286	

Some descriptors highlight particular facial lines, such as 𝑭𝒅𝒆𝒏𝟐, which shows visible 287	

facial part contours. It can be computed using the formula: 288	

𝑭
𝟏 +  (𝒉𝒙)𝟐 +  (𝒉𝒚)𝟐

, (𝟏𝟓) 

where: 289	

• h is the differentiable function z = h (x, y) representing the face/protein surface; 290	
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• 𝒉𝒙  and  𝒉𝒚 are the first derivatives of h with respect to x and y [24]. 291	

In a protein, Fden2 can underline different trends of the free form analyzed. There is a 292	

representation focus in these parameters on the local maxima and local minima of the 293	

protein surface. 294	

The surfaces of human faces are given by depth maps, which are manageable as 295	

matrixes (X Y Z). For each coordinate pair X, Y, there is a unique value of Z. Since 296	

proteins do not have a default form, their surfaces are split up in two parts divided into 297	

two opposite faces: surfaces with a positive Z-axis and those with a negative Z-axis in 298	

order to yield two shells that complete the protein surface. 299	

The descriptors were mapped onto these maps as follows. Considering that the Z 300	

coordinate of the depth map is the one describing the “surface”, and is represented in 301	

these formulas as h, the derivatives hx, hy… were evaluated so that other same-sized 302	

matrices representing the first derivative with respect to x, the first derivative with respect 303	

to y, etc., were generated and stored. The derivatives are computed with the Matlab 304	

function "gradient". Then, the implementation formulas for the descriptors were 305	

calculated on the matrices previously computed and new same-sized matrices were 306	

obtained representing every geometrical descriptor.  307	

The	 descriptors	 used	 are	 mapped	 onto	 the	 surfaces	 as	 described	 in	 Section	 3.3.	308	

These	descriptors	are	calculated	for	all	protein	faces	considered	in	the	following.	An	309	

example	of	𝐹!"#! applied	to	both	a	human	face	and	a	protein	is	shown	in	Figure	4a.	310	

The	 descriptor	 sing	 is	 built	 from	 the	 application	 of	 the	 sine	 standard	 function	311	

applied	to	the	third	coefficient	of	the	second	fundamental	form	(e)	(see	Figure	4b)	312	

[23].	Mean	and	median	filters	have	been	applied	to	the	primary	descriptors	S,	k1,	k2,	313	
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g,	and	H.	Mean	and	median	values	are	computed	in	squared	neighborhoods	of	side	5	314	

around	each	point	of	the	facial	depth	maps	[23].	These	descriptors	are	obtained	as	315	

follows:	𝑆!"#$,	(see	 Figure	 4c),	𝑘!!"#$  (see	 Figure	 4d),	𝑘!!"#$%& 	(see	 Figure	 4e),	316	

𝑔!"#$ 	(see	Figure	4f)	and	𝐻!"#$	(se	e	Figure	4g).	317	

Figure	4 318	

The process we follow in this paper starts with the collection of protein data. In 319	

the present example we focus on tubulin whose bovine structure has been crystallized and 320	

can be found in the Protein Data Bank (PDB). However, its various isotypes have not 321	

been crystallized and hence these structures need to be generated by homology modeling 322	

using the bovine (not human) variant of this protein as a template. To obtain frames of 323	

the protein structure, it is necessary to run MD simulations for some time, typically 10-324	

100 nanoseconds and take snapshots, approximately every nanosecond, at the very 325	

moment when the structure relaxes to an equilibrium conformation. Only the atoms 326	

comprising the protein are kept in the file used for these MD simulations with the ligand 327	

atoms removed in order to avoid false representations of the protein since ligands are not 328	

part of the protein and can form an occlusion during the process of protein recognition. 329	

The next step in this computational experiment is to analyze similar but not identical 330	

proteins and their states, for example tubulin isotypes with each other or a tubulin isotype 331	

and FtsZ and to compare the two for similarities and differences. 332	

The result of these MD simulations is in each case a PDB-formatted file that is a 3D 333	

representation of a protein, which is converted into a MAT file using a MATLAB script. 334	

In the current work several software packages are used: Matlab 9.5 (R2018b) [25] for the 335	

feature extraction using geometrical descriptors, Anaconda 1.9.6 [26] with Python 3.7 336	
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[27] and the library sklearn 0.22 [28] for the implementation of classification methods 337	

and R-3.5.3 for the K-means algorithm [29].  338	

2.2 Molecular dynamics simulations 339	

The tubulin crystal structures available in the PDB are those for bovine protein. 340	

The bovine tubulin structure of tubulin (PDB ID: 1JFF) [30] was used as a template to 341	

construct the homology model for human αβ tubulin isotypes (βI (UniProtKb: P07437), 342	

βIIa (UniProtKb: UniProtKb: Q13885), βIIb (UniProtKb: Q9BVA1), βIII (UniProtKb: 343	

Q13509), βIVa (UniProtKb: P04350), αβIVb (UniProtKb: P68371), αβV (UniProtKb: 344	

Q9BUF5), αβVI (UniProtKb: Q9H4B7) and βVIII(UniProtKb: Q3ZCM7)) using the 345	

Molecular Operating Environment (MOE) software package [31]. Multiple sequence 346	

alignment results contained in Figure 5 show that human β-tubulin isotypes exhibit 347	

residue composition variations at different locations.  348	

Figure 5 349	

Sequence similarity matrix and sequence identity matrix of the tubulin isotypes 350	

are shown in Figure 6(a) and (b), respectively. The matrix values (i, j) for the percentage 351	

identity and similarity metrics are equal to the number of sequence matches between 352	

chains i and j, divided by the number of residues in chain i. Residues are considered 353	

identical if their single-letter code is the same (note that MSE-Selenomethionine and 354	

MET-Methionine are considered "identical"). Residues are "similar" if their BLOSUM62 355	

substitution score is greater than zero.  356	

  Figure 6 357	

The atomic coordinates of similar but not identical FtsZ dimer were obtained from 358	

the Protein Data Bank as (PDB ID: 1W5B) [32]. The coordinates for the missing residues 359	
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of the proteins were obtained by modeling using the MOE package [31]. Since the C-360	

terminus has not been included in the electron crystallography data for the tubulin 361	

structure, we did not consider it in our calculations. The missing hydrogens for heavy 362	

atoms were added using the tLEAP module of AMBER [33] with the AMBER14SB 363	

force field. The protonation states of all ionizable residues were determined at pH = 7 364	

using the MOE program. Each protein model was solvated in a 12 Å box of TIP3P water. 365	

Na+ and Cl− ions were added in order to bring the salt concentration to the physiological 366	

value of 0.15 M. After minimization, the MD simulations were carried out in three steps: 367	

heating, density equilibration, and production. First, each solvated system was heated to 368	

300 K for 50 ps, with weak restraints on all backbone atoms. Next, density equilibration 369	

was carried out for 50 ps of constant pressure equilibration at 300 K, with weak 370	

restraints. Finally, MD production runs were performed on all systems for 100 ns. 371	

Ligands and ions were all removed from the complex after equilibration in order to avoid 372	

false representations of the protein since ligands can form an occlusion during the process 373	

of protein recognition. After equilibration, density-based clustering algorithm from the 374	

AMBER software was used for cluster analysis of MD trajectories (20). Several 375	

snapshots from top clusters were selected for all further calculations in the study.  376	

The result of our simulation is a PDB-formatted file (a 3D representation of all atoms 377	

comprising the protein), which is converted into a MAT file using a MATLAB script.  378	

2.3 Data augmentation 379	

To expand the dataset for FtsZ, a data augmentation technique is used where each 380	

structure is rotated around the Z-axis in 40° steps. Subsequently, the 3D protein 381	

representation is ready to be used for feature extraction. It was not necessary to follow the 382	
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same procedure for tubulin since we have many examples available. The purpose of 383	

reorienting the z-axis is not only to obtain additional examples, but also in order to not 384	

have a bias inside the classifier, in fact most of the rotated proteins were used during the 385	

test phase. Both hemispheres of the protein were used to have a complete dataset.  Then, 386	

to avoid the over-fitting problem a k-fold cross validation is implemented with k = 5. 387	

One such example is shown in Figure 7 (https://probis.nih.gov/) [34]. 388	

Figure 7 389	

At this point the 3D protein representation is ready and the feature extraction can be 390	

performed. 391	

2.4 Protein samples 392	

In this computational experiment, we used 889 examples of tubulin structure files, 393	

divided into 9 isotypes, as shown in Table 1. 394	

Table 1 395	

Using data augmentation, the 13 FtSZ protein samples were rotated in order to create 65 396	

samples, most of them used only during the test phase. The binary classification between 397	

tubulin and FtSZ was performed using the samples shown in Table 2. 398	

Table 2 399	

2.5 Data processing 400	

The x-, y- and z-coordinates were extracted from the PDB file.  First, the data 401	

were shifted in order to be symmetric with respect to x-, y- and z- axes, i.e. the center of 402	

the coordinate systems is the center of the symmetry of the dataset. Then, the data were 403	

divided into two groups of positive and negative z-values. Finally, for each group, the 404	

exterior surface with a desired resolution was calculated using "meshgrid" and “griddata” 405	
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commands in Matlab with the cubic interpolation method.  The descriptors were mapped 406	

onto the surfaces as follows. The surfaces were given by point clouds where points are 407	

non-connected (not a mesh) and arranged in a square grid. This type of data is called 408	

depth map and can be described by matrices: X, Y, Z, where Z is the one describing the 409	

“surface” and is represented in these formulas as h. Through Matlab “gradient” function, 410	

the derivatives hx, hy… were evaluated so that other matrices representing the first 411	

derivative with respect to x, the first derivative with respect to y, etc., were generated and 412	

stored. Then, the implementation formulas for the descriptors were calculated on the 413	

matrices previously computed and new matrices were obtained representing every 414	

geometrical descriptor. 415	

For each protein the Z axis was divided in two files: one for the positive part and 416	

the second for the negative part using the formula: z – max(z) + (|max(z)-min(z)|)/2 . 417	

Each part represents a “face” of the protein and the geometrical features were computed 418	

for both the faces. Then, for every geometrical descriptor a 9-bin histogram was created 419	

with the same equidistance for the X-axis. 420	

The MATLAB code loaded all data and the following processing steps were performed 421	

for all the datasets: 422	

• the class of the protein was extracted from the filename and the class was 423	

recorded in the first column of the dataset matrix; 424	

• geometrical descriptors were computed from matrix Z (positive and negative); 425	

• histograms were created and each bin was written in the right column of the 426	

dataset matrix; 427	

• at the end of each loop the dataset matrix became the input for the classifier. 428	
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The entire process is summarized in Figure 8. 429	

Figure 8 430	

 In this computational experiment, 9 isotypes were used (indeed, the classifier will work 431	

with 9 classes). The classes were chosen 1 to 9 in an ascendant order as shown in Table 3. 432	

 Table 3 433	

This task was performed using a switch case construct. The right class was written in the 434	

first column of the Features Matrix. 435	

2.6 Feature extraction 436	

For every geometrical descriptor, a 9-bin histogram was created. Since it is 437	

possible that some descriptors have values ∈C (complex), a check was performed first. 438	

The geometrical descriptors were calculated using 9 bins and the X-axis values were 439	

compressed between -0.2 and 0.2, then the Y-axis values were saved and used as features. 440	

Some examples of histograms are shown in Figure 9. 441	

 Figure 9 442	

Finally, when all descriptors for all protein data were computed, the resultant 443	

matrix was copied into a file. For tubulin and other proteins these descriptors can 444	

underline specific characteristic of a certain surface. They can indicate different trends of 445	

the free form analyzed and they can describe the shape of the surface. The features are 446	

extracted with multiple geometrical descriptors to extract more details; using this 447	

approach, also small differences in convexity and concavity can be recognized during the 448	

classification. Analyzing the features extracted, the most important features were found 449	

from parameter values of Fden2 and sing, because analyzing the data these values were 450	

sufficiently different to help the classifier select the right class. 451	
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2.7 Classification 452	

The adopted classifiers were k-means and SVM. First, an unsupervised method 453	

was tested (K-means) using 9 clusters and a limited number of iterations, then a 454	

supervised method (SVM) using linear and non-linear kernels was used. In these cases, it 455	

is not a simply binary classification, but there are many classes (9) and many features 456	

(more than 100), so some distributions cannot separate the dataset in a linear way or with 457	

a linear separator as a high misclassification rate is reached. An interesting improvement 458	

is to use a non-linear separator or a kernel trick. An example of a non-linear kernel is the 459	

RBF kernel, which in this test led to positive results.  460	

A linear and a nonlinear kernel (RBF in our case) were chosen in order to see whether a 461	

non-linear kernel can reach better results. The difference between linear and non-linear 462	

kernel is on the way they divided dataset into classes. A linear kernel uses a linear 463	

function to divide it and it is less time consuming but also less precise. A non-linear 464	

kernel uses a non-linear function, so it can divide better the dataset. The cross validation 465	

is not performed because the results were positive, and the validation part was performed 466	

using a large number of parameters and the best ones were selected for the testing part. 467	

2.8 K-means 468	

An unsupervised approach was performed using a k-means classifier implemented 469	

in R. The  matrix file was loaded and the column with the label was deleted. Then, the 470	

classifier was tasked with finding 9 clusters in the input data and at the end there was a 471	

comparison made between the clustering and the right label. 472	

K-means works in an iterative way and it performs three steps. In the first step, the 473	

dataset is loaded, and the number of clusters is chosen. The centroids are created in a 474	
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random position. In the second step, each data point is assigned to a nearest cluster. The 475	

range for the initialization of the centroids of K-means is set from 2 to 10. The Euclidean 476	

distance is computed between a point and every centroid. The minimum distance centroid 477	

is chosen as the following cluster: 478	

𝑎𝑟𝑔𝑚𝑖𝑛 𝑑𝑖𝑠𝑡(𝑐! , 𝑥)!, 

where c is the centroid and x the data points. In this last phase the centroids are computed 479	

again as the mean of all the data points of the cluster:  480	

𝑐! =  
1
|𝑆!|

𝑥! , 

where S_i is the sum of a single cluster. Therefore, new centroid positions are computed, 481	

and this loop continues until the centroid positions do not change significantly. 482	

The stop condition is given by the following criteria: 483	

• no data points change the cluster; 484	

• the sum of distances is at the minimum; 485	

• the maximum number of iterations is reached. 486	

Therefore, when the convergence is obtained the algorithms stops. 487	

The final result achieved in this example was 76.6%, which is an acceptable 488	

result, considering that it is an unsupervised method. Nonetheless, in order to improve the 489	

method’s accuracy, other types of classifications were tested by us and we discuss them 490	

below. 491	

2.9 Support Vector Machine 492	

The first test was performed using a linear kernel where λ is a key parameter of SVM.  In 493	

fact, the main factors in SVM are setting a large margin and reducing the 494	

misclassification rate. These two properties are inversely proportional, and the λ 495	
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parameter helps to find a trade-off. A large value of λ is for a small margin, whereas a 496	

small value of λ is for a large margin. The right λ parameter depends on the test data. The 497	

steps used are as follows: 498	

• the dataset is loaded and features and labels are divided; 499	

• the dataset is randomly split into 60% training set, 10 % validation set and 30% 500	

test set; 501	

• the training is performed using a linear kernel. We then use different values of λ 502	

in the range 10!! to	10!and it is evaluated on the validation set. The best 503	

parameter found on the validation set is λ	=	10!! with a score of 95.1%; 504	

 the model is tested and scored on the validation set with the best parameters. 505	

The accuracy obtained changes using different λ values. As a matter of fact, by 506	

increasing the λ value, the optimization will choose a smaller margin hyperplane, but the 507	

best parameters depend on the dataset and in this case the best value is obtained as λ	=	508	

10!!. The final evaluation on the test set with the best parameter λ	=	10!!   was found to 509	

be 92.4%. 510	

The dataset was built using 9 different Tubulin isotypes. Hence, the number of 511	

classes used for the SVM classifier was 9; the same number was used in the k-Means test, 512	

in order to have comparable results. The confusion matrix is an important tool to evaluate 513	

the results, since it gives precise information about misclassification. A confusion matrix 514	

without normalization and a normalized confusion matrix are represented in Figure 10. It 515	

this case, the accuracy is very high, since there is misclassification found only in one lass. 516	

 Figure 10 517	
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The second test was performed using an RBF kernel. The number of features used was 518	

112 and the dataset was not large, so an approximation of the RBF kernel was not taken 519	

into consideration (22). The steps used are as follows: 520	

• the dataset is loaded and features and labels are divided; 521	

• the dataset is randomly split into 60% training set, 10 % validation set and 30% 522	

test set; 523	

• the training is done using an RBF kernel.  We then use different λ and gamma 524	

parameters in the range between 10!! to 10!" and it is evaluated on the validation 525	

set. The best parameters on the validation set are found to be: λ = 100 and gamma 526	

= 10!! with a score of 98.0%; 527	

• the model is tested and scored on the validation set with the best parameters. 528	

Note that the achieved accuracy changes significantly using different λ and gamma 529	

values. Indeed, by increasing the λ value, the optimization will choose a smaller margin 530	

hyperplane, but the best parameter depends on the dataset selected and, in this case, the 531	

best is 100. The final evaluation on the test set with the best parameter λ = 100, gamma = 532	

10!! and the accuracy obtained was 96.5%.  533	

The same methodology was applied to tubulin and FtsZ classifications. 534	

3. Results and discussion 535	

In the case of tubulin isotype comparison, the best result was given by the SVM classifier 536	

with an RBF kernel. All results are summarized in Table 4. 537	

Table 4 538	

In the case of tubulin and FtsZ comparison, the best result is also given by the SVM 539	

classifier with an RBF kernel. All results are summarized in Table 5. 540	



	 24	

Table 5 541	

These results are competitive with the state-of-the-art results found in the 542	

literature. A fast protein classification method [5] based on an SVM classifier reached an 543	

accuracy of about 90% with 13 classes. Another study [7] used a semi-supervised 544	

classification with a kernel cluster and achieved a 94.3 % accuracy. Consequently, the 545	

results of the present study appear to be significant. This work is a starting point toward 546	

protein classification based on geometrical features and we expect that even better results 547	

can be reached in the future. A natural continuation of this work can be to study 548	

important features of a protein, for example characterization of a binding pocket [35] for 549	

a ligand, a catalytic domain recognition or a protein-protein interaction interface.  550	

A larger experiment was performed using several additional proteins in order to 551	

provide an increased validation for the method proposed in this paper. This test involved 552	

four arbitrarily chosen FtsZ protein structures, namely:  2R6R, 2VAW, 2VAP and 553	

2VAM. These structures correspond, respectively, to the following biological species: B. 554	

subtilis, Pseudomonas aeruginosa, M. jannaschii and Aquifex aeolicus.  In this test 683 555	

samples were used as listed in Table 6. 556	

 Table 6 557	

The results of this test are very encouraging as shown in Table 7, which summarizes the 558	

use of various classifiers for different tests performed and their accuracy levels achieved. 559	

Table 7 560	

To avoid over-fitting and to generalize the method in a better way a 5-fold cross 561	

validation is performed. In this way the classifier is not biased by the test set and it also 562	

works well with other proteins. The last experiment showed that it also works well with 563	
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four very different proteins. In this test a k-cross validation method was applied using 564	

k=5. 565	

4. Conclusions 566	

A novel method for protein characterization and classification has been proposed 567	

in this paper, which is inspired by and uses the algorithms from the facial recognition 568	

field. The first application of this method involves a challenging case of classification of 569	

highly homologous tubulin isotypes using as features some geometrical descriptors 570	

typically found within the context of face recognition analysis. While human faces and 571	

proteins represent very different biological structures, they are both free-form surfaces 572	

and the same types of geometrical features are adopted for their classification and 573	

recognition. 574	

The aim of this study has been to implement different classifiers to be tested on 575	

the dataset previously built. In this work we used the following approaches: SVM with a 576	

linear RBF kernel, and a K-means algorithm. This methodology and the geometrical 577	

descriptors have been used for protein classification. The first classification was 578	

performed using the tubulin protein and 9 of its isotypes. The second application 579	

performed used two structurally similar proteins: tubulin and FtsZ and third application 580	

involved four unrelated proteins. In all cases very encouraging results were obtained. 581	

It should be stressed that until now the use of RMSD as a measure of similarity has been 582	

prevalent in protein biophysics, especially regarding structural comparisons. However, 583	

this approach relies on a single number, which does not allow for feature extraction or 584	

more detailed shape comparisons, which the present methodology provides. A single 585	

parameter such as an RMSD value can answer the question if two proteins are 586	
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structurally similar or not but does not address the issue regarding which features differ 587	

between them. For this reason, our method can assist in identifying structure-function 588	

dependence when comparing various proteins, even highly similar ones. Since we only 589	

investigate geometrical features, both physical and chemical properties are not directly 590	

involved in our method but can eventually be extracted by mapping geometrical features 591	

back onto to amino acid distributions underlying them. 592	

In this study, MD has been used to generate additional models of each protein for 593	

the training purpose where each of the models is extracted from equilibrated MD 594	

trajectories after clustering. Clustering of the trajectory provides us with different 595	

conformations of the same protein from MD trajectories. We used several snapshots from 596	

each structural cluster, which makes it possible to probe diverse sampling of the 597	

trajectory. In future work, a larger set of protein structures will be used to address the 598	

issue of structural diversity across the entire PDB dataset consisting of over 150,000 599	

entries.  600	

The results obtained and reported here are significant: a 96.5 % accuracy for 601	

tubulin isotype classification, a 98.2 % accuracy for tubulin and FtsZ classification and a 602	

98% accuracy for a set of four arbitrarily chosen protein structures. SVM is a classifier 603	

with competitive performance using a small dataset (< 3000 samples) and in this case the 604	

results are significant. The application of a neural network can be a future development 605	

using a convolutional type on a larger dataset (> 10,000 samples). The conclusion is that 606	

these geometrical descriptors work properly with the description of protein surfaces and 607	

they are accurate enough to properly describe protein surfaces. 608	

Several future developments can be taken in consideration, namely:  609	
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• building a database adding more samples and more proteins; 610	

• computing more features and testing classifiers, using more geometrical 611	

descriptors and filters;  612	

• developing more data augmentation techniques to enlarge the dataset; 613	

• identifying specific important features on a protein, for example a binding pocket 614	

for a ligand or a protein-protein interaction interface. 615	

Other important improvements will be performed in future tests. First, we will 616	

employ neural networks that were applied here with significant results with 3D 617	

geometrical descriptors [19]. Second, using a large dataset with unnecessarily numerous 618	

features the classifier could be slow, so some feature optimization techniques will be 619	

implemented in order to [36] accelerate the training of the kernel machine. 620	
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Figures’ captions:  718	

Figure 1:  Structural similarities between tubulin and FtsZ proteins. The tubulin dimer 719	

consists of an 𝛼-tubulin and a closely related 𝛽-tubulin monomer. 𝛼𝛽-tubulin 720	

heterodimers associate head to tail to form protofilaments and laterally to form the 721	
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cylindrical MT wall. GTP and GDP nucleotides (ball and stick models) are bound to a 722	

and b tubulin, respectively. (b) The FtsZ dimer consists of two identical monomers with 723	

GTP bound to N-terminals (blue). In both (a) and (b) N-terminals (blue) and C-terminals 724	

(red) are separated by H7 helices (green). N-terminal regions show the typical nucleotide-725	

binding motif with parallel b sheets connected by a helices known as the Rossmann fold. 726	

By comparing the two protein structures, the differences in C-terminal regions are 727	

obvious. GDP and GTP are shown in ball and stick models. The figures were rendered 728	

using the MOE (Molecular Operating Environment) software. PDB ID for tubulin: 1JFF. 729	

PDB ID for FtsZ: 1W5B.  730	

Figure 2: Valid solutions can be found with perceptron in a binary case(a) and the best 731	

theoretical solution that a SVM classifier can find (b). 732	

Figure 3: Flow chart of the entire protein characterization and classification process. 733	

Figure 4: Effects of applying different descriptors (a) F_den2 ,(b) sing (c) , 𝑆!"#$ , (d) 734	

𝑘!!"#$  ,(e)  𝑘!!"#$%& , (f), 𝑔!"#$  ,and (g) 𝐻!"#$to a human face (left column) and to 735	

the tubulin protein (right column) 736	

Figure 5: Sequence alignment of β tubulin isotypes. Each of the human β tubulin 737	

isotypes that were identified in our screen of the UniProt databases were aligned using 738	

the MOE package. Prior to performing the alignment, the highly variable carboxy-739	

terminal residues were removed from each sequence. This was done as the template 740	

structure, 1JFF, does not contain any of these residues. At each position within the 741	

alignment, dark blue boxes indicate identical residues; light blue boxes indicate residues 742	

that are conserved, while red boxes indicate residues that are divergent (poorly aligned). 743	
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Figure 6: a) Sequence similarity matrix and (b) sequence identity matrix of the studied 744	

tubulin isotypes 745	

Figure	 7:	Tubulin	protein	 image	 for	 two	different	rotations	with	respect	 to	 the	Z-746	

axis.	747	

Figure 8: Protein data processing overview. The input consists of a 3D structure of a 748	

protein from either the PDB database or from homology modeling combined with MD 749	

simulations. The color selection in the input structure is arbitrarily chosen for better 750	

visualization. The output consists of geometrical descriptor values obtained from a facial 751	

recognition algorithm. 752	

Figure	 9:	 9	 bin	 histograms	 calculated	 using	 (a)	 Fden2,	 (b)	 gmean	 and	 (c)	 Hmean	753	

geometrical	descriptor		754	

Figure	10:	Confusion	matrix	of	SVM	classifier	using	the	RBF	kernel. 755	

Figures:  756	

Figure 1 757	
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Figure 2 759	
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Figure 3 761	
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Figure 4 773	
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  775	
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Figure 5 776	
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Figure 6 779	

 780	
 781	

Figure 7 782	

          783	
Figure 8 784	
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Figure 9 789	

 790	
 791	

Figure 10.  792	

 793	

Tables’ captions: 794	

Table 1: Numbers of tubulin isotype structures used. 795	

Table 2:  Sample numbers in the binary classification between tubulin and FtsZ.  796	

Table	3:	Number	of	Tubulin	isotypes	used. 797	

Table	4:	Tubulin	isotypes	accuracy	results.	 798	

Table 5: Accuracy results for the tubulin and FtsZ binary classification. 799	

Table 6: 2R6R, 2VAM, 2VAP and 2VAM samples. 800	

Table 7: 2R6R, 2VAM, 2VAP and 2VAM experiment. 801	

Tables: 802	
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Table 1 803	

Isotypes Beta I 
Beta 
IIa 

Beta 
IIb 

Beta III 
Beta 
IVa 

Beta 
IVb 

Beta V Beta VI 
Beta 
VIII 

Samples 123 128 94 57 128 68 107 62 125 
          
 804	

Table 2 805	

Protein Samples 
Tubulin 112 
FtsZ 65 

 806	

Table 3 807	

Isotypes Beta I 
Beta  
IIa 

Beta 
IIb 

Beta III 
Beta 
IVa 

Beta 
IVb 

Beta V Beta VI 
Beta 
VIII 

Samples 1 2 3 4 5 6 7 8 9 
 808	

Table 4 809	

Classifier Accuracy 
SVM with RBF kernel 96.5 % 
SVM with linear kernel 92.4 % 
K-means 76.6 % 

 810	

Table 5 811	

Classifier Accuracy 
SVM with RBF kernel 98.2 % 
SVM with linear kernel 97.0 % 
k-means 72.3 % 

 812	

Table 6 813	

Proteins 2R6R    2VAW 2VAP 2VAM 
Samples 175 170 168 170 
     

 814	

Table 7 815	
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Classifier Accuracy 
SVM with RBF kernel 97.1 % 
SVM with linear kernel 98.0 % 
K-means 62.3 % 

 816	


