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CMIP6 models underestimate the Holton-Tan effect
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Key Points:

 The CMIP6 models underestimate the weakening of the polar vortex expected 

when QBO easterlies exist in the tropical lower stratosphere

 Potential vorticity (PV) maps reveal that pooling of PV over mid-latitude Asia is 

important for coupling the QBO with the polar vortex

 The models underestimate the teleconnection because the 10 hPa QBO 

westerlies are too weak and too narrow
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Abstract

The teleconnection between the Quasi-Biennial Oscillation (QBO) and the Arctic polar 

vortex is investigated using Coupled Model Intercomparison Project phase 6 (CMIP6) 

models. We use 14 CMIP6 models, reanalysis, three experiments with prescribed 

QBOs, one of which has no free polar stratospheric variability, and branched runs in 

which a QBO is imposed in runs previously devoid of a QBO. Each CMIP6 model 

underestimates the Holton-Tan effect (HTE), the weakening of the polar vortex with 

QBO easterlies in the lower stratosphere. To establish why, 850 Kelvin potential vorticity

(PV) maps are used to study zonal asymmetries in the teleconnection. The QBO 

initiates the HTE by promoting equatorward (poleward) intrusion of high (low) PV over 

mid-latitude Asia (60°E-120°E). The presence of the PV intrusion in a model response is

highly correlated with polar cap warming and the HTE. Models with stronger 10 hPa 

QBO amplitudes generally include the PV intrusion.

Plain Language Summary

In the tropics at altitudes between two and three times as high as commercial airplanes 

cruise, the winds alternate between blowing to the east for about a year before 

switching direction and blowing to the west for the next year. This pattern of winds is 

called the Quasi-Biennial Oscillation (QBO). Despite being high up in the tropical 

atmosphere, the QBO affects the global circulation in ways that ultimatey influence 

regional weather. One example of this occurs during winter, when the QBO changes the

strength of the jet-stream. Althouch scientists have known about this phenomenon for 
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over 40 years, this long-distance relationship is complicated. Models of the coupled 

land, ocean, atmosphere system have steadily improved at representing the QBO. 

These models also represent the QBO’s relationship with the jet-stream, but each 

model does it differently. We evaluate how the models perform in this study. The 

difference between models that represent the QBO-jet-stream relationship well and 

models that do not teaches us more about the relationship. We learn here that the QBO 

begins communicating with the jet by changing the atmospheric circulation 30 

kilometers above Asia, nearly over the Tibetan Plateau. This phenomenon is best 

represented by models that have stronger QBOs.

1 Introduction

The Quasi-Biennial Oscillation (QBO) influences the global circulation through a suite of

teleconnections (Gray et al. 2018). It modulates tropical convection (Son et al. 2017), 

upper tropospheric mid-latitude flow (Wang et al. 2018; Hitchman et al. 2021), and polar

stratospheric flow in the southern (Yamashita et al. 2018) and northern hemispheres 

(Holton and Tan 1980; Lu et al. 2020). Each teleconnection is sensitive to the QBO’s 

structure, its meridional extent (Hansen et al. 2013), the configuration of its easterly and

westerly jets (Garfinkel et al. 2012; Gray et al. 2018), its vertical extent (Andrews et al. 

2019), and how deep it reaches into the lower stratosphere (Collimore et al. 2003). Now

with the Coupled Model Intercomparison Project 6 (CMIP6) models spontaneously 

generating the QBO, there is variability in how the models represent its structure 

(Richter et al. 2020). This suggests that there is variability in how the models represent 

the QBO teleconnections (Rao et al. 2020a,b). This study focuses on one of these 
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teleconnections, the boreal winter polar stratospheric response to the QBO, the Holton-

Tan effect (HTE, Holton and Tan 1980). We have two goals: (1) better understand why 

the CMIP6 models underestimate the HTE (Fig. 1) while (2) also learning how the 

middle stratospheric, 850 Kelvin, branch of the teleconnection varies over longitude.

When QBO westerlies are in the middle stratosphere (10 hPa) and QBO easterlies in 

the lower stratosphere (50 hPa), the polar vortex is weaker than in climatology. This 

configuration of the QBO, denoted QBOE50, influences where planetary wave breaking 

occurs in the stratosphere (Hitchman and Husesmann 2009; Lu et al. 2020). QBO 

easterlies concentrate planetary waves and their breaking into the northern hemisphere 

(Holton and Tan 1980; Lu et al. 2020). The QBO induced mean meridional circulation 

(QBO-MMC) is also important for this teleconnection.

The QBO-MMC acts as a residual mean meridional circulation that maintains the 

dynamically forced temperature response to the QBO against radiative relaxation 

(Plumb and Bell 1982; Pahlavan et al. 2021; Hitchman et al. 2021). Westerly (easterly) 

QBO shear coincides with tropical warming (cooling), which is generated by adiabatic 

descent (ascent). At subtropical to mid-latitudes, the QBO-MMC induces vertical motion 

in the opposite direction of that in the tropics, yielding opposite temperature responses 

(Fig. 1q). The QBO-MMC changes the mid-latitude middle stratospheric mean flow 

geometry, forcing more poleward refraction of planetary waves (Garfinkel et al. 2012; Lu

et al. 2014), which would otherwise propagate equatorward. This weakens the polar 

vortex.
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It is not clear how this process varies over longitude. We hypothesize that it does as the

QBO demonstrates zonally asymmetric teleconnections elsewhere. It has unique 

impacts on the North Pacific and North Atlantic jets (Wang et al. 2018). Further, we find 

that the QBO preferentially communicates with the mid-latitude North Pacific lower 

stratosphere by inducing more planetary wave absorption there relative to other 

longitudes (Elsbury et al. 2021). A more speculative hypothesis is that the QBO’s 

zonally asymmetric structure (Hamilton et al. 2004; Hitchman and Huesmann 2009; 

Tegtmeier et al. 2020) predisposes it to have zonally asymmetric impacts on the 

extratropical circulation. 

2 Methods

The HTE is analyzed over the 1850-2014 period using the same historical CMIP6 

models used by Richter et al. (2020) to facilitate comparison between the extratropical 

responses (this study) and the QBO qualities in each model (their study). The CMIP6 

responses to the QBO are compared to 1979-2019 ERA5 reanalysis (Hersbach et al. 

2020). 

Four experiments with the specified chemistry version of the Whole Atmosphere 

Community Climate Model (SC-WACCM4, Smith et al. 2014) use a prescribed QBO 

and are therefore useful for comparing with the CMIP6 models. The model domain is 

the surface up to 145 kilometers over 66 vertical levels with horizontal resolution of 1.9° 

latitude, 2.5° longitude. To simulate the QBO, the tropical stratospheric winds from 86 
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hPa-4 hPa and 22°S-22°N are relaxed toward a climatological 28-month QBO cycle 

derived from radiosondes (Hansen et al. 2013). The first of the experiments, referred to 

as PAMIP-WCSC, is a 1500-year simulation with a repeating annual cycle of sea 

surface temperature (SST) corresponding to present-day climate and a suite of different

Arctic sea ice forcings (we neglect a potential influence of Arctic sea ice conditions on 

the QBO teleconnections). The second experiment, AMIP-WCSC, is a 370-year dataset

made up of 10 ensemble members, run from 1978 to 2016, forced by the observed 

chronology of SST and sea ice variability. The third experiment, CPS-WCSC, is a 300-

year simulation forced in the same way as PAMIP-WCSC except the polar stratospheric

variability poleward of 60°N is relaxed toward a climatological polar stratospheric state 

allowing us to diagnose the influence of the QBO on the atmosphere in the absence of a

polar stratospheric response to the QBO. The fourth experiment allows us to diagnose 

the transient atmospheric response to imposing the QBO. A 100-year control simulation 

devoid of the prescribed QBO is run and restarts are saved for each November 1st. We 

branch from November 1st and then impose the QBOE50 profile. The QBO propagates 

downward and the runs last until January 31st. More details on PAMIP-WCSC, CPS-

WCSC, and the transient runs are given in Elsbury et al. (2021). 

Throughout the manuscript, anomalies are calculated as deviations from the seasonal 

cycle. These anomalies are then subsampled by QBO phase. The QBOE50 index can be 

defined using westerlies at 10 hPa or easterlies at 50 hPa. Both yield similar results. 

However, the latter captures non-QBO variability for some models. Therefore, the 

QBOE50 index is defined as the December-January (DJ) time averaged, longitudinally 
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averaged, and latitudinally averaged winds between 5°S and 5°N at 10 hPa that exceed

2.5 m/s. Further, similar results are obtained using the phase angle 30 hPa QBO index 

of Huang et al. (2012). This index allows for more control in picking the vertical structure

of the QBO we are interested in, e.g., easterlies at 50 hPa (Fig. S1). Results are 

consistent for all three QBO indices. Here we present results using the QBOE50 index 

and have phase angle duplicates of Fig. 1 and 4 in supplementary (Fig.S2, Fig. S3).

3 Results

3.1 Zonal mean zonal wind

Figure 1 shows zonal mean zonal wind anomalies for all 18 datasets. The models both 

overestimate (1b, g, j, o, p) and underestimate (all others) the peak 10 hPa QBO 

westerlies relative to ERA5 (shown by Richter et al. 2020). The QBO westerlies extend 

upward and poleward between 20°N-40°N in ERA5, but they are confined equatorward 

in CMIP6 models. Each CMIP6 QBO is narrow relative to ERA5 (10 hPa QBO widths 

printed above plots).
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Figure 1: DJ zonal mean zonal wind anomalies. Thin contours show anomalies between +/- 8.5 m/s with intervals of +/- 1m/s. Thick

contours correspond to +10, 15, 20 … m/s. Gray shading denotes statistical significance, p-values < 0.05 via a student’s t-test, when

comparing QBOE50 anomalies to all other anomalies. To the right of model titles is the number of DJ periods averaged together to

make each composite and the 10 hPa latitudinal width of the QBO. Widths are calculated by applying the “half-maximum” method of

Richter et al. (2020) and Bushell et al. (2020) to the anomalous 10 hPa response from each plot. Warm (cool) temperature

anomalies are shown on FIg. 1q with +/- 1 K contours. 

The 50 hPa peak QBO easterlies match ERA5 in four cases (1g, j, o, p) and are 

underestimated otherwise. Each unique QBO coincides with unique tropical 

stratospheric temperature perturbations (not shown), which the QBO-MMC must 

maintain against radiative relaxation. Therefore, the QBO-MMC differs in each model. 

Prescribing the QBO ensures that it has sufficient lower stratospheric amplitude. The 

QBO, in the absence of a HTE, pushes the tropospheric jet poleward (CPS, Fig. 1f). 

This is moderated by an equatorward jet shift in AMIP and PAMIP (Fig. 1l,r) due to a 

warm polar stratosphere caused by the HTE (Elsbury et al. 2021, Fig. 6). These 
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experiments with prescribed QBOs show that when a realistic QBO exists in the model, 

teleconnections more closely resemble observations, notably the HTE.

While some models simulate a weakening of the polar stratospheric winds (BCC-CSM2-

MR, HadGEM3-GC31-MM, MIROC6, UKESM1-0-LL), each model underestimates the 

HTE relative to ERA5 (Fig. 1q) and the prescribed QBO runs (Fig 1l, r). AWI-CM-1-1-

MR, E3SM-1-0, MPI-ESM1-2-HR, and MRI-ESM2-0 each have extratropical easterly 

anomalies, but they are not at polar latitudes. Underestimation of the HTE occurs with 

all three QBO indices (Fig. S2). This should hinder stratospheric interaction with the 

tropospheric jet.

3.2 Zonally asymmetric middle stratospheric teleconnection 

Before assessing the representation of the middle stratospheric HTE, we need to 

establish what this teleconnection looks like in a zonally asymmetric sense. Figure 2 

shows potential vorticity (PV) on the 850 Kelvin isentropic surface (approximately 

10hPa) associated with QBOE50 in ERA5. The standard deviation of the field shows that 

PV varies between 20 and 50 PVU from 30°N to 30°S with larger variability in the North 

Atlantic mid-latitudes than in the North Pacific (Fig. 2b). The largest variations occur at 

polar latitudes, especially over the North Pacific. 

Relative to the standard deviation, the QBOE50 dominates the tropical and subtropical 

850 K PV variability (Fig. 2a). At polar latitudes, the polar vortex is most disturbed over 

the North Atlantic where low PV anomalies peak at -60 PVU, about 50% of the |
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standard deviation| there. Fig. 2a mirrors the DJ 850 K first empirical orthogonal 

function, which accounts for 36% of the variance (Fig. S4).

Figure 2: ERA5 DJ 850 Kelvin PV anomalies. Anomalies are deviations from the seasonal cycle for QBOE50 indices. Hatching

denotes statistical significance, p-values < 0.05 via a student’ t-test, when comparing QBOE50 anomalies to all other anomalies. The

contour interval in line and shading for all panels is +/- 10 PVU. Fifteen DJ seasons are used to make the composite (a). Panel (b)

shows the standard deviation of the field with contour intervals 10, 20, 30… PVU.

Two bands of anomalous PV span the tropics, negative in the southern hemisphere, 

positive in the northern hemisphere (Fig. 2a). This is the signature of the QBO-MMC. 

Shown by Hitchman and Huesmann (2009), the QBO-MMC converges toward the base 

of the QBO westerlies, “pinching” together the PV contours: high PV from the northern 

hemisphere and low PV from the southern hemisphere are concentrated nearer the 

tropics. The negative PV anomaly in the southern hemisphere shows some zonal 

asymmetry while the northern hemisphere positive PV band shows strong variation over

longitude. 
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Since internal variability may convolute these PV results, we look for these signatures in

dedicated perturbation experiments. Figure 3 shows the evolution of the PV field once a

downward propagating QBOE50 profile is imposed in the control simulation devoid of a 

QBO. Anomalies are calculated as the difference between the transient runs and control

runs from which the transient simulations are branched. 

Figure 3: Anomalies after imposing a QBOE50 profile in the transient runs. (a-c): Zonal mean meridional PV gradient for successive

30-day periods after branching: dashed-negative (solid-positive) contours begin at negative (positive) 1x10-7 K⋅m⋅kg-1 ⋅s-1 and

decrease (increase) by negative (positive) 5x10-7 K⋅m⋅kg-1 ⋅s-1  intervals. The responses at each isentrope are multiplied by (/350)-

9/2 to account for logarithmic change in PV with height. (d-f): Latitude-time Hövmollers of 850 Kelvin PV (+/- 10 PVU) averaged over

0°E-120°E (d), 120°E-240°E (e), and (f) 240°E-360°E. Gray shading denotes statistical significance in (a-f), p-values < 0.05 via a
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student’s t-test, when comparing QBOE50 and control responses. (g-h) Maps of 850 K PV (+/- 10 PVU) anomalies with hatching

denoting statistical significance.

Figs. 3a-c shows change in the meridional gradient of the zonal mean PV, P, once the 

QBOE50 is imposed. Negative anomalies mean that the PV gradient is decreased and 

linear wave propagation into the region is less likely while the opposite holds true for 

regions with positive anomalies. During days 1-30, QBOW is located around 850 K and 

QBOE around 530 K. Planetary waves may propagate through the 850 K westerlies, but

not the 530 K easterlies (Fig. 3a). P weakens in the middle stratosphere between 30°N-

50°N during days 31-60 indicating reduced likelihood for equatorward propagation (Fig. 

3b). Beyond day 61, the polar stratospheric gradient weakens and this signal 

propagates downward (Fig. 3c). How does the spatiotemporal evolution of PV look on a 

horizontal surface, if we do not take a zonal average? 

During the first 30 days at 850 K, the QBO-MMC spins up (Figs. 3g-i). The two 

anomalous PV bands indicate equatorward motion of the QBO-MMC from both 

hemispheres and the signal is almost zonally symmetric with more pooling of high PV 

near Asia (Fig. 3g). During the next 30 days, the positive PV anomalies become more 

zonally asymmetric, tilting out of the tropics toward the east (Fig. 3h). The evolution of 

the anomalous negative PV gradient poleward seen in the zonal mean occurs over 

Eurasia between 30°N and 50°N (Fig. 3h). Pooling of high PV over these continents is 

consistent with dilution of high PV over the pole during the last 32 days of the 

simulations (Fig. 3i). 
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Latitude-time Hövmollers make clear the importance of the Eurasia sector for coupling 

the QBO with the polar vortex (Figs. 3d-f). Equatorward (poleward) intrusion of high 

(low) PV occurs between 0°E-120°E during days 30-45 (Fig. 3d). Importantly, this 

anomalous flattening of the PV gradient (Fig. 3d) leads the other sectors (Fig. 3e-f). Fig.

3 suggests that the HTE begins in the middle stratosphere (Fig. 3a-c), particularly over 

Eurasia (Fig. 3d,h).  

While the PV intrusion is broadly located over Africa, Europe, and Asia, subsequent 

results will show that the PV response over mid-latitude Asia is most important for the 

HTE. Therefore, we hereafter refer to this regional PV response as the “PV intrusion” or 

“Asia P.”

3.3 Middle stratosphere in the CMIP6 models
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Figure 4: DJ 850 K PV anomalies for the 18 datasets. Contour intervals are +/- 10 m/s. Hatching denotes statistical significance, p-

values < 0.05 via a student’s t-test, when comparing QBOE50 anomalies to all other anomalies. Black and blue rectangles denote

where the anomalous P is highly correlated with polar cap warming (Table S1).
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Figure 4 shows 850 K PV anomalies for each model. From Fig. 1, the models that 

exhibit extratropical easterlies at polar latitudes (BCC-CSM2-MR, HadGEM3-GC31-MM,

MIROC6, UKESM1-0-LL) or mid-latitudes (AWI-CM-1-1-MR, E3SM-1-0, MPI-ESM1-2-

HR, MRI-ESM2-0) exhibit intrusion of high PV over mid-latitude Asia. Models with 

weaker HTEs (CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, GFDL-

ESM4, IPSL-CM6A-LR) exhibit no pooling of PV over Asia. The CMIP6 PV intrusions 

are equatorward of the intrusions in ERA5 or SC-WACCM4, suggesting why the CMIP6 

extratropical easterly anomalies are ubiquitously equatorward of the polar stratosphere 

in Fig. 1. Note that every dataset’s QBO is zonally asymmetric with stronger flow around

Indonesia or the Indian Ocean, which may explain the location of the PV intrusion (Fig. 

S5).

Enhanced PV over Asia indicates anomalous cyclonic flow there. Stronger westerlies on

its equatorward flank should strengthen P and reduce wave breaking. Stronger 

easterlies on its poleward flank should weaken P and reduce wave propagation. 

Indeed, studies using reanalysis (Fig. 3b of Lu et al. 2014) and model experiments 

(Garfinkel et al. 2012) show that QBOE50 suppresses climatological equatorward 

planetary wave propagation at 850 K between 30°N and 50°N in favor of anomalous 

poleward propagation. These PV results corroborate those studies and we add and 

emphasize that this process occurs over Asia. 
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Fig. 5 suggests that the PV intrusion is associated with the HTE. It establishes the 

relation between the anomalous polar cap temperatures at 10 hPa and P averaged 

between 40°N and 60°N over various 60° longitude windows (Table S1). Various 60° 

longitude windows are used to see over what longitudes P is most strongly associated 

with the polar cap temperature anomalies. Correlations exceed 0.7 from 30°E-150°E 

and peak at 0.82 from 60°E-120°E (Table S1). This is where the PV intrusion is located 

(enclosed by rectangles in Fig. 4). Fig. 5a depicts the relationship between Asia P and 

polar cap temperatures. The more negative Asia P is, the warmer the polar cap is (Fig. 

5a). 

Figure 5: Left: The anomalous meridional PV gradient (P) over Asia is compared to the anomalous 10 hPa polar cap (60°N+) 

temperature. P  is not divided by the radius of Earth when calculating it. Right: The anomalous 10 hPa QBO, longitudinally averaged 

and cosine weighted latitudinally averaged zonal winds between 5°S-5°N, of Figure 1 are compared to P  over Asia. 

Asia P is a direct response to the QBO – it does not result from the HTE. Indeed, the 

PV intrusion exists in the CPS 850 K response, which reveals the impact of the QBO in 

the absence of a polar stratospheric response (Fig. 4r). Furthermore, imposing the QBO

in the transient simulations promoted the PV intrusion (Fig. 3). Regression between the 

10 hPa QBO westerly velocity and Asia P shows that stronger QBO winds equate to 
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more negative Asia P (Fig. 5b). Citing the strong relationship between Asia P and 

polar cap temperatures, underestimation of the 10 hPa QBO amplitudes is partly 

suppressing the HTE.

4 Discussion

4.1 Importance of the QBO-MMC

Stronger QBOs have larger effects on the extratropical circulation. Of the 14 CMIP6 

models, the eight with strongest 10 hPa QBO westerlies are BCC-CSM2-MR, 

HadGEM3-GC31-MM, MIROC6, UKESM1-0-LL, AWI-CM-1-1-MR, E3SM-1-0, MPI-

ESM1-2-HR, and MRI-ESM2-0 (Fig. 5b, compare with Fig. 2b of Richter et al. 2020). 

The first four models feature some weakening of the polar vortex while the latter four 

exhibit anomalous easterlies equatorward of the polar vortex. The models with the 

weakest 10 hPa QBO westerlies exhibit much weaker easterlies everywhere in the 

stratosphere (Fig. 1c, d, e, h, i, k).

Our Figs. 4 and 5b show that models with stronger 10 hPa QBO amplitudes feature 

stronger PV intrusions over Asia. Garfinkel and Hartmann (2011, Fig. 6) show that 

stronger QBOs have stronger QBO-MMCs, which have larger effects on the 

extratropical circulation. A speculation then is that the PV intrusion may be the 

extratropical signature of the QBO-MMC. By underestimating this feature, which 

confines planetary waves to higher latitudes (Lu et al. 2014), the models underestimate 

the HTE.
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4.2 Limitations of our argument

Underestimating the 10 hPa QBO amplitudes is not the only factor hindering the HTEs. 

For instance, HadGEM3-GC31-MM and UKESM1-0-LL both overestimate the 10 hPa 

QBO winds and still underestimate the weakening of the polar vortex relative to ERA5 

(Fig. 1j,p).

Figure 1 shows that the QBOs are too narrow. We calculate the latitudinal extents of the

QBOs at 10 hPa using the “half-maximum” method of Richter et al. (2020) and Bushell 

et al. (2020); see the model titles in Fig. 1. Regression between these extents and Asia 

P shows little correlation (Fig. S6). Regardless, Hansen et al. (2013) have already 

shown that narrow QBOs coincide with a reduced HTE. 

5 Conclusions

The HTE is analyzed in the CMIP6 historical simulations studied by Richter et al. 2020. 

The CMIP6 models consistently underestimate the amplitude of the HTE during 

December and January relative to ERA5. This conclusion is robust to three different 

QBO indices.

The underestimation of the HTE coincides with underestimation of the 10 hPa QBO 

amplitudes. The desired impact that the models are not representing is the intrusion of 

high PV anomalies over Asia. This signal is highly anticorrelated with polar stratospheric

warming taking place during QBOE50. The transient simulations in which the QBO is 
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imposed in a live running atmosphere devoid of a QBO, and CPS, which includes no 

polar stratospheric variability, both suggest that the QBO promotes the intrusion of high 

PV air over Asia by itself. Further, the presence of this signal in the CMIP6 models that 

simulate HTE, the 1500-year SC-WACCM4 simulation set, and ERA5 suggest this is an 

important feature for the teleconnection in nature.

Why does the PV intrusion occur over Asia? The QBO has a stronger amplitude over 

that sector (Fig. S5), but other factors may play a role too. For instance, orographic 

gravity wave drag over the Tibetan Plateau has a nonnegligible influence on the 

stratospheric mean flow (Xu et al. 2017). This will have to be investigated in future work.
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Biological Environment Research, DE-SC0019407. Reviewers, we will add our CPS, 

AMIP, PAMIP, and transient simulation data to Zenodo once we go through the review 
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process. You can only submit data there once as submitting your data coincides with 

receiving a unique doi, which is meant to go in the acknowledgements. 
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Figure 1. Figure 1: DJ zonal mean zonal wind anomalies. Thin contours show 

anomalies between +/- 8.5 m/s with intervals of +/- 1m/s. Thick contours correspond to 

+10, 15, 20 … m/s. Gray shading denotes statistical significance, p-values < 0.05 via a 

student’s t-test, when comparing QBOE50 anomalies to all other anomalies. To the right 

of model titles is the number of DJ periods averaged together to make each composite 

and the 10 hPa latitudinal width of the QBO. Widths are calculated by applying the “half-

maximum” method of Richter et al. (2020) and Bushell et al. (2020) to the anomalous 10

hPa response from each plot. Warm (cool) temperature anomalies are shown on FIg. 1q

with +/- 1 K contours.

Figure 2: ERA5 DJ 850 Kelvin PV anomalies. Anomalies are deviations from the 

seasonal cycle for QBOE50 indices. Hatching denotes statistical significance, p-values < 

0.05 via a student’ t-test, when comparing QBOE50 anomalies to all other anomalies. The

contour interval in line and shading for all panels is +/- 10 PVU. Fifteen DJ seasons are 

used to make the composite (a). Panel (b) shows the standard deviation of the field with

contour intervals 10, 20, 30… PVU.

Figure 3: Anomalies after imposing a QBOE50 profile in the transient runs. (a-c): Zonal 

mean meridional PV gradient for successive 30-day periods after branching: dashed-

negative (solid-positive) contours begin at negative (positive) 1x10-7 K⋅m⋅kg-1⋅s-1 and 

decrease (increase) by negative (positive) 5x10-7 K⋅m⋅kg-1⋅s-1 intervals. The responses 

at each isentrope are multiplied by (/350)-9/2 to account for logarithmic change in PV with
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height. (d-f): Latitude-time Hövmollers of 850 Kelvin PV (+/- 10 PVU) averaged over 

0°E-120°E (d), 120°E-240°E (e), and (f) 240°E-360°E. Gray shading denotes statistical 

significance in (a-f), p-values < 0.05 via a student’s t-test, when comparing QBOE50 and 

control responses. (g-h) Maps of 850 K PV (+/- 10 PVU) anomalies with hatching 

denoting statistical significance.

Figure 4: DJ 850 K PV anomalies for the 18 datasets. Contour intervals are +/- 10 m/s. 

Hatching denotes statistical significance, p-values < 0.05 via a student’s t-test, when 

comparing QBOE50 anomalies to all other anomalies. Black and blue rectangles denote 

where the anomalous P is highly correlated with polar cap warming (Table S1).

Figure 5: Left: The anomalous meridional PV gradient (P) over Asia is compared to the 

anomalous 10 hPa polar cap (60°N+) temperature. P  is not divided by the radius of 

Earth when calculating it. Right: The anomalous 10 hPa QBO, longitudinally averaged 

and cosine weighted latitudinally averaged zonal winds between 5°S-5°N, of Figure 1 

are compared to P  over Asia. 
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