References:
Alarcon,
P., Brouwer, A., Venkatesh, D., Duncan, D., Dovas, C. I., Georgiades,
G.,… Brown, I. H. (2018). Comparison of 2016–17 and Previous
Epizootics of Highly Pathogenic Avian Influenza H5 Guangdong Lineage in
Europe. Emerging Infectious Diseases, 24(12),2270-2283.doi:10.3201/eid2412.171860
Arai,
Y., Ibrahim, M. S., Elgendy, E. M., Daidoji, T., Ono, T., Suzuki, Y.,…
Watanabe, Y. (2019). Genetic Compatibility of Reassortants between Avian
H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals.Journal of Virology, 93(4).doi:10.1128/JVI.01969-18
Beato,
M. S., Mancin, M., Yang, J., Buratin, A., Ruffa, M., Maniero, S.,…
Capua, I. (2013). Antigenic characterization of recent H5N1 highly
pathogenic avian influenza viruses circulating in Egyptian poultry.Virology, 435(2),350-356.doi:10.1016/j.virol.2012.09.016
Bi,
Y., Chen, J., Zhang, Z., Li, M., Cai, T., Sharshov, K.,… Gao, G. F.
(2016). Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in
migratory birds, 2014-2015. Virologica Sinica, 31(4),300-305.doi:10.1007/s12250-016-3750-4
Bi,
Y., Chen, J., Zhang, Z., Li, M., Cai, T., Sharshov, K.,… Gao, G. F.
(2016). Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in
migratory birds, 2014–2015. Virologica Sinica, 31(4),300-305.doi:10.1007/s12250-016-3750-4
Bi,
Y., Chen, Q., Wang, Q., Chen, J., Jin, T., Wong, G.,… Gao, G. F.
(2016). Genesis, Evolution and Prevalence of H5N6 Avian Influenza
Viruses in China. Cell Host & Microbe, 20(6),810-821.doi:10.1016/j.chom.2016.10.022
Dong
Zhang, F. G. I. J., & Wang, W. X. L. G. (2019). PhyloSuite: An
integrated and scalable desktop platform for streamlined molecular
sequence data management and evolutionary phylogenetics
studies.doi:10.1111/1755
Duan,
L., Bahl, J., Smith, G. J. D., Wang, J., Vijaykrishna, D., Zhang, L.
J.,… Guan, Y. (2008). The development and genetic diversity of H5N1
influenza virus in China, 1996–2006. Virology, 380(2),243-254.doi:10.1016/j.virol.2008.07.038
Fouchier,
R. A. M., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S.,
Smith, D.,… Infektionssjukdomar. (2005). Characterization of a novel
influenza A virus hemagglutinin subtype (H16) obtained from black-headed
gulls. Journal of Virology, 79(5),2814.doi:10.1128/JVI.79.5.2814
Gao,
G. F. (2014). Influenza and the Live Poultry Trade. Science,344(6181), 235.doi:10.1126/science.1254664
Group,
W. O. F. H. (2012). Continued evolution of highly pathogenic avian
influenza A (H5N1): updated nomenclature. Influenza and Other
Respiratory Viruses, 6(1),1-5.doi:10.1111/j.1750-2659.2011.00298.x
Jin,
X., Zha, Y., Hu, J., Li, X., Chen, J., Xie, S.,… Jia, W. (2020). New
molecular evolutionary characteristics of H9N2 avian influenza virus in
Guangdong Province, China. Infection, Genetics and Evolution,77, 104064.doi:10.1016/j.meegid.2019.104064
Jombart,
T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of
principal components: a new method for the analysis of genetically
structured populations. Bmc Genetics, 11,94.doi:10.1186/1471-2156-11-94
Kalyaanamoorthy,
S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S.
(2017). ModelFinder: fast model selection for accurate phylogenetic
estimates. Nature Methods, 14(6),587-589.doi:10.1038/nmeth.4285
Karo-karo,
D., Bodewes, R., Wibawa, H., Artika, M., Pribadi, E. S., Diyantoro,
D.,… Koch, G. (2019). Reassortments among Avian Influenza A(H5N1)
Viruses Circulating in Indonesia, 2015–2016. Emerging Infectious
Diseases, 25(3), 465-472.doi:10.3201/eid2503.180167
Katoh,
K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier transform.Nucleic Acids Research, 30(14),3059-3066.doi:10.1093/nar/gkf436
Kim,
Y., Biswas, P. K., Giasuddin, M., Hasan, M., Mahmud, R., Chang, Y.
M.,… Fournie, G. (2018). Prevalence of Avian Influenza A(H5) and A(H9)
Viruses in Live Bird Markets, Bangladesh. Emerging Infectious
Diseases, 24(12), 2309-2316.doi:10.3201/eid2412.180879
Lee,
D. H., Bertran, K., Kwon, J. H., & Swayne, D. E. (2017). Evolution,
global spread, and pathogenicity of highly pathogenic avian influenza
H5Nx clade 2.3.4.4. Journal of Veterinary Science,18(S1), 269-280.doi:10.4142/jvs.2017.18.S1.269
Li,
X., Chen, J., Jin, X., Hu, J., Xie, S., Dai, Y.,… Jia, W. (2019).
Characterization of three H3N2 and one new reassortant H3N8 avian
influenza virus in South China. Infection, Genetics and
Evolution, 75, 104016.doi:10.1016/j.meegid.2019.104016
Nguyen,
L., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A
Fast and Effective Stochastic Algorithm for Estimating
Maximum-Likelihood Phylogenies. Molecular Biology and Evolution,32(1), 268-274.doi:10.1093/molbev/msu300
Qi,
W., Jia, W., Liu, D., Li, J., Bi, Y., Xie, S.,… Liao, M. (2018).
Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza
Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic
Ancestor. Journal of Virology, 92(2
).doi:10.1128/JVI.00921-17
Rambaut,
A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018).
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.Systematic Biology, 67(5),901-904.doi:10.1093/sysbio/syy032
Shi,
J., Deng, G., Ma, S., Zeng, X., Yin, X., Li, M.,… Chen, H. (2018).
Rapid Evolution of H7N9 Highly Pathogenic Viruses that Emerged in China
in 2017. Cell Host & Microbe, 24(4),558-568.doi:10.1016/j.chom.2018.08.006
Shi,
J., Deng, G., Ma, S., Zeng, X., Yin, X., Li, M.,… Chen, H. (2018).
Rapid Evolution of H7N9 Highly Pathogenic Viruses that Emerged in China
in 2017. Cell Host & Microbe, 24(4),558-568.doi:10.1016/j.chom.2018.08.006
Shortridge,
K. F., Zhou, N. N., Guan, Y., Gao, P., Ito, T., Kawaoka, Y.,… Webster,
R. G. (1998). Characterization of Avian H5N1 Influenza Viruses from
Poultry in Hong Kong. Virology, 252(2),331-342.doi:https://doi.org/10.1006/viro.1998.9488
Suchard,
M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut,
A. (2018). Bayesian phylogenetic and phylodynamic data integration using
BEAST 1.10. Virus Evol, 4(1), y16.doi:10.1093/ve/vey016
Sun,
H., Pu, J., Hu, J., Liu, L., Xu, G., Gao, G. F.,… Liu, J. (2016).
Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza
viruses in ducks and chickens. Veterinary Microbiology,182, 116-122.doi:10.1016/j.vetmic.2015.11.001
Tong,
S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D. A. A., Chen, L.
M.,… Donis, R. O. (2012). A distinct lineage of influenza A virus from
bats. Proceedings of the National Academy of Sciences,109(11), 4269-4274.doi:10.1073/pnas.1116200109
Velkov,
T., Ong, C., Baker, M. A., Kim, H., Li, J., Nation, R. L.,… Rockman,
S. (2013). The antigenic architecture of the hemagglutinin of influenza
H5N1 viruses. Molecular Immunology, 56(4),705-719.doi:10.1016/j.molimm.2013.07.010
Webster,
R. G., & Govorkova, E. A. (2014). Continuing challenges in influenza.Annals of the New York Academy of Sciences, 1323(1),115-139.doi:10.1111/nyas.12462
Wille,
M., & Holmes, E. C. (2019). The Ecology and Evolution of Influenza
Viruses. Cold Spring Harbor Perspectives in Medicine ,a38489.doi:10.1101/cshperspect.a038489
Xu,
X., Subbarao, Cox, N. J., & Guo, Y. (1999). Genetic characterization of
the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity
of its hemagglutinin gene to those of H5N1 viruses from the 1997
outbreaks in Hong Kong. Virology, 261(1),15-19.doi:10.1006/viro.1999.9820
Figure 1. Phylogenetic analysis of H5N6 Influenza Viruses.
- Phylogenetic tree of hemagglutinin
genes of H5N6 viruses sequenced in this study; the clade origins of
each gene segment are indicated by different colored bars.
- Phylogenetic tree of neuraminidase genes of H5N6 viruses sequenced in
this study.
Figure 2. Reassortment of the H5N6 AIV.
The eight gene segments are PB2, PB1, PA, HA, NP, NA, M, and NS
(horizontal bars starting from top to bottom of the virion). Different
colors represent different virus lineages.
Figure 3. Scatterplots resulting from the DAPC.
Individual isolates from the same AVIs season are depicted as unique
color shapes and surrounded by 95% inertia ellipses. The PCA and DA
eigenvalues inset panels show the overall variability among individuals
and the relative capture of variance for each discriminant function,
respectively. The y- and x-axes indicate the first and second
discriminant principal components, respectively, which best summarize
the differences between clusters while neglecting within-cluster
variation. (A) and (B) represent HA
and NA genes, respectively.
Figure 4. SeqLogo analysis of amino acid substitutions in H5N6 viruses.
, (B) HA and NA (H5 numbering) are shown.(A) The first three sites (9,
12, 16) in HA signal peptide,The last site (169) in HA2,others in HA1.
Figure 5. Replication and virulence of the H5N6 viruses in mice.
Weight changes in mice after challenge, (B) Survival rate of mice
after challenge. (C) The virus content in different organs in the mice
on the third day of the challenge. (D) The virus content in various
organs in mice on the fifth day of the challenge.
Figure 6. Genotype of H5N6 viruses in different hosts.
Schematic for the genetic Source of human H5N6 isolates. (B) Genotypes
of H5N6 viruses isolated in humans, domestic ducks, domestic chickens,
domestic geese, environment, and wild birds. The eight gene segments are
PB2, PB1, PA, HA, NP, NA, M, and NS (horizontal bars starting from top
to bottom of the virion). Different colors represent different virus
lineages.