Literature Cited
1. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E.
Equation of State Calculations by Fast Computing Machines. J Chem
Phys . 1953;21(6):1087-1092. doi:10.1063/1.1699114
2. Alder BJ, Wainwright TE. Phase transition for a hard sphere system.J Chem Phys . 1957;27(5):1208-1209. doi:10.1063/1.1743957
3. Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General
Method. J Chem Phys . 1959;31(2):459-466. doi:10.1063/1.1730376
4. Wood WW, Parker FR. Monte Carlo Equation of State of Molecules
Interacting with the Lennard‐Jones Potential. I. A Supercritical
Isotherm at about Twice the Critical Temperature. J Chem Phys .
1957;27(3):720-733. doi:10.1063/1.1743822
5. Rahman A. Correlations in the Motion of Atoms in Liquid Argon.Phys Rev . 1964;136(2A):A405-A411. doi:10.1103/PhysRev.136.A405
6. Nicolas JJ, Gubbins KE, Streett WB, Tildesley DJ. Equation of state
for the lennard-jones fluid. Mol Phys . 1979;37(5):1429-1454.
doi:10.1080/00268977900101051
7. Allen MP, Tildesley DJ. Computer Simulation of Liquids . Vol 1.
Second. Oxford University Press; 2017.
doi:10.1093/oso/9780198803195.001.0001
8. Westmoreland PR, Kollman PA, Chaka AM, et al. Applying
Molecular and Materials Modeling . Dordrecht: Springer Netherlands;
2002. doi:10.1007/978-94-017-0765-7
9. Reed TMK, Gubbins KE. Applied Statistical Mechanics:
Thermodynamic and Transport Properties of Fluids . McGraw-Hill; 1973.
https://books.google.com/books?id=w_tQAAAAMAAJ.
10. Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: I:
Fundamentals . OUP Oxford; 1984.
https://books.google.com/books?id=3mz2RcnnMGwC.
11. Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids:
Volume 2: Applications . OUP Oxford; 2011.
https://books.google.com/books?id=4xr8jwEACAAJ.
12. Panagiotopoulos AZ. Direct determination of phase coexistence
properties of fluids by monte carlo simulation in a new ensemble.Mol Phys . 1987;61(4):813-826. doi:10.1080/00268978700101491
13. Paricaud P, Předota M, Chialvo AA, Cummings PT. From dimer to
condensed phases at extreme conditions: Accurate predictions of the
properties of water by a Gaussian charge polarizable model. J Chem
Phys . 2005;122(24):244511. doi:10.1063/1.1940033
14. Anderson JA, Lorenz CD, Travesset A. General purpose molecular
dynamics simulations fully implemented on graphics processing units.J Comput Phys . 2008;227(10):5342-5359.
doi:10.1016/j.jcp.2008.01.047
15. Glaser J, Nguyen TD, Anderson JA, et al. Strong scaling of
general-purpose molecular dynamics simulations on GPUs. Comput
Phys Commun . 2015;192:97-107. doi:10.1016/j.cpc.2015.02.028
16. Shah JK, Marin-Rimoldi E, Mullen RG, et al. Cassandra: An open
source Monte Carlo package for molecular simulation. J Comput
Chem . 2017;38(19):1727-1739. doi:10.1002/jcc.24807
17. Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular
simulation software for adsorption and diffusion in flexible nanoporous
materials. Mol Simul . 2016;42(2):81-101.
doi:10.1080/08927022.2015.1010082
18. Nejahi Y, Soroush Barhaghi M, Mick J, et al. GOMC: GPU Optimized
Monte Carlo for the simulation of phase equilibria and physical
properties of complex fluids. SoftwareX . 2019;9:20-27.
doi:10.1016/j.softx.2018.11.005
19. Schultz AJ, Kofke DA. Etomica : An object-oriented framework for
molecular simulation. J Comput Chem . 2015;36(8):573-583.
doi:10.1002/jcc.23823
20. Ramasubramani V, Dice BD, Harper ES, Spellings MP, Anderson JA,
Glotzer SC. freud: A software suite for high throughput analysis of
particle simulation data. Comput Phys Commun . 2020;254:107275.
doi:10.1016/j.cpc.2020.107275
21. Adorf CS, Dodd PM, Ramasubramani V, Glotzer SC. Simple data and
workflow management with the signac framework. Comput Mater Sci .
2018;146:220-229. doi:10.1016/j.commatsci.2018.01.035
22. Klein C, Summers AZ, Thompson MW, et al. Formalizing atom-typing and
the dissemination of force fields with foyer. Comput Mater Sci .
2019;167(May):215-227. doi:10.1016/j.commatsci.2019.05.026
23. Summers AZ, Gilmer JB, Iacovella CR, Cummings PT, McCabe C. MoSDeF,
a Python Framework Enabling Large-Scale Computational Screening of Soft
Matter: Application to Chemistry-Property Relationships in Lubricating
Monolayer Films. J Chem Theory Comput . 2020;16(3):1779-1793.
doi:10.1021/acs.jctc.9b01183
24. Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular
simulations that are transparent, reproducible, usable by others, and
extensible (TRUE)*. Mol Phys . 2020;0(0):e1742938.
doi:10.1080/00268976.2020.1742938
25. Lin ST, Sandler SI. A priori phase equilibrium prediction from a
segment contribution solvation model. Ind Eng Chem Res .
2002;41(5):899-913. doi:10.1021/ie001047w
26. Bell IH, Mickoleit E, Hsieh CM, et al. A Benchmark Open-Source
Implementation of COSMO-SAC. J Chem Theory Comput .
2020;16(4):2635-2646. doi:10.1021/acs.jctc.9b01016
27. Fortunato ME, Colina CM. pysimm : A python package for simulation
of molecular systems. SoftwareX . 2017;6:7-12.
doi:10.1016/j.softx.2016.12.002
28. Martin TB, Gartner TE, Jones RL, Snyder CR, Jayaraman A. pyPRISM: A
Computational Tool for Liquid-State Theory Calculations of
Macromolecular Materials. Macromolecules . 2018;51(8):2906-2922.
doi:10.1021/acs.macromol.8b00011
29. Schweizer KS, Curro JG. Integral-equation theory of the structure of
polymer melts. Phys Rev Lett . 1987;58(3):246-249.
doi:10.1103/PhysRevLett.58.246
30. Cummings PT, Gilmer JB. Open-source molecular modeling software in
chemical engineering. Curr Opin Chem Eng . 2019;23:99-105.
doi:10.1016/j.coche.2019.03.008
31. The TOP500 project. https://top500.org.
32. Molecular Simulation Design Framework (MoSDeF) Homepage.
https://mosdef.org.
33. Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular
simulations that are transparent, reproducible, usable by others, and
extensible (TRUE). Mol Phys . 2020;0(0):e1742938.
doi:10.1080/00268976.2020.1742938
34. NSF Award # CBET-1028374 Collaborative Research: CDI-Type II:
Cyber-Enabled Design of Functional Nanomaterials.
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1028374.
35. NSF Award # ACI-1047828 - SI2-SSI: Development of an Integrated
Molecular Design Environment for Lubrication Systems (iMoDELS) (PI:
Cummings). https://www.nsf.gov/awardsearch/showAward?AWD_ID=1047828.
36. NSF Award # ACI-1535150 - SI2-SSE: Development of a Software
Framework for Formalizing Forcefield Atom-Typing for Molecular
Simulation (PI: Iacovella).
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1535150.
37. Institute for Software Integrated Systems.
https://www.isis.vanderbilt.edu/. Accessed November 24, 2019.
38. Sztipanovits J, Karsai G. Model-integrated computing. Computer
(Long Beach Calif) . 1997;30(4):110-111.
39. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. J Comput Phys . 1995;117(1):1-19.
doi:10.1006/jcph.1995.1039
40. Abraham MJ, Murtola T, Schulz R, et al. Gromacs: High performance
molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX . 2015;1-2:19-25.
doi:10.1016/j.softx.2015.06.001
41. Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: A Python package for
high-performance molecular dynamics and hard particle Monte Carlo
simulations. Comput Mater Sci . 2020;173:109363.
doi:10.1016/j.commatsci.2019.109363
42. Klein C, Sallai J, Jones TJ, Iacovella CR, McCabe C, Cummings PT. A
Hierarchical, Component Based Approach to Screening Properties of Soft
Matter. In: Snurr RQ, Adjiman CS, Kofke DA, eds. Foundations of
Molecular Modeling and Simulation. Molecular Modeling and Simulation
(Applications and Perspectives) . Springer, Singapore; 2016:79-92.
doi:10.1007/978-981-10-1128-3_5
43. mBuild Github repository. https://github.com/mosdef-hub/mbuild.
Accessed August 17, 2018.
44. Foyer Github repository. https://github.com/mosdef-hub/foyer.
Accessed August 10, 2020.
45. Iacovella CR, Sallai J, Klein C, Ma T. Idea Paper : Development of
a Software Framework for Formalizing Forcefield Atom-Typing for
Molecular Simulation. In: 4th Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE4) . ; 2016.
46. Daylight Theory: SMARTS - A Language for Describing Molecular
Patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
Published August 16, 2017. Accessed April 18, 2018.
47. ParmEd — ParmEd documentation.
http://parmed.github.io/ParmEd/html/index.html. Published February 18,
2018. Accessed April 18, 2018.
48. Eastman P, Pande VS. OpenMM: A Hardware Independent Framework for
Molecular Simulations. Comput Sci Eng . 2015;12(4):34-39.
doi:10.1109/MCSE.2010.27
49. SimTK: OpenMM: Project Home. https://simtk.org/projects/openmm.
Published February 18, 2018. Accessed April 18, 2018.
50. Thompson MW, Matsumoto R, Sacci RL, Sanders NC, Cummings PT.
Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic
Liquids and Organic Solvents. J Phys Chem B .
2019;123(6):1340-1347. doi:10.1021/acs.jpcb.8b11527
51. Osti NC, Matsumoto RA, Thompson MW, Cummings PT, Tyagi M, Mamontov
E. Microscopic Dynamics in an Ionic Liquid Augmented with Organic
Solvents. J Phys Chem C . 2019;123(32):19354-19361.
doi:10.1021/acs.jpcc.9b05119
52. Cui J, Kobayashi T, Sacci RL, Matsumoto RA, Cummings PT, Pruski M.
Diffusivity and Structure of Room Temperature Ionic Liquid in Various
Organic Solvents. J Phys Chem B . 2020:submitted for publication.
53. NSF Award # OAC-1835874 Collaborative Research: NSCI Framework:
Software for Building a Community-Based Molecular Modeling Capability
Around the Molecular Simulation Design Framework (MoSDeF).
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835874.
54. Striolo A, Chialvo AA, Cummings PT, Gubbins KE. Water adsorption in
carbon-slit nanopores. Langmuir . 2003;19(20):8583-8591.
doi:10.1021/la0347354