References

Azizi, Z. & Montazeri, Z. (2018). Effects of microtopography on the spatial pattern of woody species in West Iran. Arabian Journal of Geosdences, 11, 244.https://doi.org/10.1007/s12517-018-3588-1 
Baddeley, A., Chang, Y. M., Song, Y., & Turner, R. (2012). Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Statistics and Its Interface, 5, 221-236.https://doi.org/10.4310/sii.2012.v5.n2.a7 
Barral, M. P., Benayas, J. M. R., Meli, P., & Maceira, N. O. (2015). Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agriculture, Ecosystems and Environment, 202, 223-231.https://doi.org/10.1016/j.agee.2015.01.009 
Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325(5944), 1121-1124.https://doi.org/10.1126/science.1172460 
Calsamiglia, A., Fortesa, J., Comendador, J. G., Borja, M. E. L., Cases, A. C., & Estrany, J. (2018). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degrad Dev, 29, 1198-1210.https://doi.org/10.1002/ldr.2840 
Cassidy, R., Thomas, I. A., Higgins, A., Bailey, J. S., & Jordan, P. (2019). A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales. Science of the Total Environment, 687, 277-286.https://doi.org/10.1016/j.scitotenv.2019.05.453 
ChaZdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460.https://doi.org/10.1126/science.1155365 
Cheng, S., Qiong, L., Lu, F., Yonezawa, T., Yin, G., & Song, Z. P., et al. (2017). Phylogeography of Sophora moorcroftiana supports Wu’s hypothesis on the origin of Tibetan alpine flora. Journal of Heredity, 108(4), 405-411.https://doi.org/10.1093/jhered/esx028 
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., Lindenmayer, D. B., Sansevero, J. B. B., & Monteiro, L., et al. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345.https://doi.org/10.1126/sciadv.1701345 
Davis, F. W., Synes, N. W., Fricker, G. A., McCullough, I. M., Diaz, J. M. S., & Franklin, J. (2019). LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agricultural and Forest Meteorology, 269-270, 192-202.https://doi.org/10.1016/j.agrformet.2019.02.015 
Deng, L., Yan, W. M., Zhang, Y. W., & Shangguan, Z. P. (2016). Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. Forest Ecology and Management, 366, 1-10.https://doi.org/10.1016/j.foreco.2016.01.026 
Diamond, J. S., McLaughlin, D. L., Slesak, R. A., & Stovall, A. (2019). Pattern and structure of microtopography implies autogenic origins in forested wetlands. Hydrol. Earth Syst. Sci., 23, 5069-5088.https://doi.org/10.5194/hess-23-5069-2019 
Gelviz-Gelvez, S. M., Pavon, N. P., Illoldi-Rangel, P., & Ballesteros-Barrera, C. (2015). Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecological Engineering, 74, 302-309.https://doi.org/10.1016/j.ecoleng.2014.09.082 
Guo, Q., Zhang, W., & Li, H. (2014). Comparison of photosynthesis and antioxidative protection in Sophora moorcroftiana and Caragana maximovicziana under water stress. Journal of Arid Land, 6(5), 637-645.https://doi.org/10.1007/s40333-013-0212-9 
Huang, C. B., Zhou, Z. X., Peng, C. H., Teng, M. J., & Wang, P. C. (2019). How is biodiversity changing in response to ecological restoration in terrestrial ecosystems? A meta-analysis in China. Science of the Total Environment, 650, 1-9.https://doi.org/10.1016/j.scitotenv.2018.08.320 
Jin, Z., Dong, Y. S., Wang, Y. Q., Wei, X. R., Wang, Y. F., Cui, B. L., & Zhou, W. J. (2014). Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China. Science of the Total Environment, 485-486, 615-623.https://doi.org/10.1016/j.scitotenv.2014.03.105 
Kooijman, A. M., Weiler, H. A., Cusell, C., Anders, N., Meng, X., & Seijmonsbergen, A. C., et al. (2019). Litter quality and microtopography as key drivers to topsoil properties and understory plant diversity in ancient broadleaved forests on decalcified marl. Science of the Total Environment, 684, 113-125.https://doi.org/10.1016/j.scitotenv.2019.05.285 
Li, H. D., Gao, J. X., Hu, Q. W., Li, Y. K., Tian, J. R., & Liao, C. R., et al. (2019). Assessing revegetation effectiveness on an extremely degraded grassland, southern Qinghai-Tibetan Plateau, using terrestrial LiDAR and field data. Agriculture, Ecosystems and Environment, 282, 13-22.https://doi.org/10.1016/j.agee.2019.05.013 
Li, H. D., Li, Y. K., Gao, Y. Y., Zou, C. X., Yan, S. G., & Gao, J. X. (2016). Human impact on vegetation dynamics around Lhasa, southern Tibetan Plateau, China. Sustainability, 8, 1146.https://doi.org/10.3390/su8111146 
Li, H. D., Li, Y. K., Shen, W. S., Li, Y. N., Lin, J., & Lu, X. Y., et al. (2015). Elevation-dependent vegetation greening of the Yarlung Zangbo River Basin in the Southern Tibetan Plateau, 1999-2013. Remote sensing, 7, 16672-16687.https://doi.org/10.3390/rs71215844 
Li, H., Zhang, Y. F., Guo, Q. Q., & Yao, W. J. (2017). Molecular characterization of a DREB gene from Sophora moorcroftiana, an endemic species of plateau. Protoplasma, 254, 1735-1741.https://doi.org/10.1007/s00709-016-1065-9 
Liao, C. R., Li, H. D., Lv, G. P. Tian, J. R., & Xu, Y. N. (2020a). Effects of ecological restoration on soil properties of the aeolian sandy land around Lhasa, southern Tibetan Plateau. Ecosphere, 11(1), e03009.https://doi.org/10.1002/ecs2.3009 
Liao, C. R., Li, H. D., Lv, G. P., Tian, J. R., Liu, B., & Tian, M. R., et al. (2020b).Can ecological restoration improve soil properties and plant growth in valley-slope sand dunes on southern Tibetan Plateau?. Physical Geography, 41(2), 1-17.https://doi.org/10.1080/02723646.2020.1735859 
Liao, C. R., Liu, B. C., Xu, Y. N., & Li, H. D. (2019). Effect of topography and protecting barriers on revegetation of sandy land, Southern Tibetan Plateau. Scientific Reports, 9, 6501.https://doi.org/10.1038/s41598-019-43034-8 
Liu, J. K. & Zhang, K. B. (2018). Spatial pattern and population structure of Artemisia ordosica shrub in a desert grassland under enclosure, northwest China. International Journal of Environmental Research and Public Health, 15, 946.https://doi.org/10.3390/ijerph15050946 
Liu, Z. M., Zhao, A. M., Kang, X. Y., Zhou, S. L., & Pujol, J. L. (2006). Genetic diversity, population structure and conservation of Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan Plateau. Plant Biol, 8, 81-92.https://doi.org/10.1055/s-2005-872889 
Liu, J. J., Tan, Y. H., & Ferry Slik, J. W. (2014). Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecology and Management, 330, 75-81.https://doi.org/10.1016/j.foreco.2014.06.045 
Luo, S., Wang, C., Pan, F., Xi, X., Li, G., Nie, S., & Xia, S. (2015). Estimation of wetland vegetation height and leaf area index using airborne laser scanning data. Ecological Indicators, 48, 550-559.https://doi.org/10.1016/j.ecolind.2014.09.024 
McDonald, T., Gann, G., Jonson, J., & Dixon, K. (2016). International standards for the practice of ecological restoration – including principles and key concepts. (Society for Ecological Restoration: Washington, DC, USA). Soil-Tec, Inc., ©Marcel Huijser, Bethanie Walder.
Mijangos, J. L., Pacioni, C., Spencer, P. B. S., & Craig, M. D. (2015). Contribution of genetics to ecological restoration. Molecular Ecology, 24(1). pp. 22-37.https://doi.org/10.1111/mec.12995 
Oddi, L., Celi, L., Cremonese, E., Filippa, G., Galvagno, M., & Palestini, G. (2019). Decomposition processes interacting with microtopography maintain ecosystem heterogeneity in a subalpine grassland. Plant Soil, 434, 379-395.https://doi.org/10.1007/s11104-018-3842-z 
Piao, S., Tan, T., Nan, H., Ciais, P., Fang, J., Wang, T., Vuichard, N., & Zhu, B. (2012). Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob. Planet. Change 98–99, 73–80.https://doi.org/10.1016/j.gloplacha.2012.08.009 
R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at https://www.R-project.org/.
Shen, W. S., Li, H. D., Sun, M., & Jiang, J. (2012). Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global and Planetary Change, 86-87, 37-44.https://doi.org/10.1016/j.gloplacha.2012.01.012 
Stovall, A. E. L., Diamond, J. S., Slesak, R. A., McLaughlin, D. L., & Shugart, H. (2019). Quantifying wetland microtopography with terrestrial laser scanning. Remote Sensing of Environment, 232, 111271.https://doi.org/10.1016/j.rse.2019.111271 
Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., & Baker, M., et al. (2015). Committing to ecological restoration. Science, 348(6235), 638-640.https://doi.org/10.1126/science.aaa4216 
Wang, Y. C., Chu, L., Daryanto, S., Lu, L., Ala, M., & Wang, L. (2019). Sand dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Science of the Total Environment, 648, 500-507.https://doi.org/10.1016/j.scitotenv.2018.08.093 
Yan, Y. L., Ganjurjav, H., Hu, G. Z., Liang, Y., Li, Y., & He, S. C., et al. (2018). Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 265, 45-53.https://doi.org/10.1016/j.agee.2018.05.031 
Yang, Z. P., Shen, W. S., Sun, M., Sun, J., & Li, H. D. (2011). Structural characteristics of Sophora moorcroftiana community on wind-sandy land in middle reaches of Yaluzangbu River. Chinese Journal of Applied Ecology, 22(5), 1121-1126.