References
Azizi, Z. & Montazeri, Z. (2018). Effects of microtopography on the
spatial pattern of woody species in West Iran. Arabian Journal of
Geosdences, 11, 244.https://doi.org/10.1007/s12517-018-3588-1
Baddeley, A., Chang, Y. M., Song, Y., & Turner, R. (2012).
Nonparametric estimation of the dependence of a spatial point process on
spatial covariates. Statistics and Its Interface, 5, 221-236.https://doi.org/10.4310/sii.2012.v5.n2.a7
Barral, M. P., Benayas, J. M. R., Meli, P., & Maceira, N. O. (2015).
Quantifying the impacts of ecological restoration on biodiversity and
ecosystem services in agroecosystems: A global meta-analysis.
Agriculture, Ecosystems and Environment, 202, 223-231.https://doi.org/10.1016/j.agee.2015.01.009
Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009).
Enhancement of biodiversity and ecosystem services by ecological
restoration: a meta-analysis. Science, 325(5944), 1121-1124.https://doi.org/10.1126/science.1172460
Calsamiglia, A., Fortesa, J., Comendador, J. G., Borja, M. E. L., Cases,
A. C., & Estrany, J. (2018). Spatial patterns of sediment connectivity
in terraced lands: Anthropogenic controls of catchment sensitivity. Land
Degrad Dev, 29, 1198-1210.https://doi.org/10.1002/ldr.2840
Cassidy, R., Thomas, I. A., Higgins, A., Bailey, J. S., & Jordan, P.
(2019). A carrying capacity framework for soil phosphorus and
hydrological sensitivity from farm to catchment scales. Science of the
Total Environment, 687, 277-286.https://doi.org/10.1016/j.scitotenv.2019.05.453
ChaZdon, R. L. (2008). Beyond deforestation: Restoring forests and
ecosystem services on degraded lands. Science, 320(5882), 1458-1460.https://doi.org/10.1126/science.1155365
Cheng, S., Qiong, L., Lu, F., Yonezawa, T., Yin, G., & Song, Z. P., et
al. (2017). Phylogeography of Sophora moorcroftiana supports Wu’s
hypothesis on the origin of Tibetan alpine flora. Journal of Heredity,
108(4), 405-411.https://doi.org/10.1093/jhered/esx028
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., Lindenmayer, D. B.,
Sansevero, J. B. B., & Monteiro, L., et al. (2017). Ecological
restoration success is higher for natural regeneration than for active
restoration in tropical forests. Science Advances, 3(11), e1701345.https://doi.org/10.1126/sciadv.1701345
Davis, F. W., Synes, N. W., Fricker, G. A., McCullough, I. M., Diaz, J.
M. S., & Franklin, J. (2019). LiDAR-derived topography and forest
structure predict fine-scale variation in daily surface temperatures in
oak savanna and conifer forest landscapes. Agricultural and Forest
Meteorology, 269-270, 192-202.https://doi.org/10.1016/j.agrformet.2019.02.015
Deng, L., Yan, W. M., Zhang, Y. W., & Shangguan, Z. P. (2016). Severe
depletion of soil moisture following land-use changes for ecological
restoration: Evidence from northern China. Forest Ecology and
Management, 366, 1-10.https://doi.org/10.1016/j.foreco.2016.01.026
Diamond, J. S., McLaughlin, D. L., Slesak, R. A., & Stovall, A. (2019).
Pattern and structure of microtopography implies autogenic origins in
forested wetlands. Hydrol. Earth Syst. Sci., 23, 5069-5088.https://doi.org/10.5194/hess-23-5069-2019
Gelviz-Gelvez, S. M., Pavon, N. P., Illoldi-Rangel, P., &
Ballesteros-Barrera, C. (2015). Ecological niche modeling under climate
change to select shrubs for ecological restoration in Central Mexico.
Ecological Engineering, 74, 302-309.https://doi.org/10.1016/j.ecoleng.2014.09.082
Guo, Q., Zhang, W., & Li, H. (2014). Comparison of photosynthesis and
antioxidative protection in Sophora moorcroftiana and Caragana
maximovicziana under water stress. Journal of Arid Land, 6(5), 637-645.https://doi.org/10.1007/s40333-013-0212-9
Huang, C. B., Zhou, Z. X., Peng, C. H., Teng, M. J., & Wang, P. C.
(2019). How is biodiversity changing in response to ecological
restoration in terrestrial ecosystems? A meta-analysis in China. Science
of the Total Environment, 650, 1-9.https://doi.org/10.1016/j.scitotenv.2018.08.320
Jin, Z., Dong, Y. S., Wang, Y. Q., Wei, X. R., Wang, Y. F., Cui, B. L.,
& Zhou, W. J. (2014). Natural vegetation restoration is more beneficial
to soil surface organic and inorganic carbon sequestration than tree
plantation on the Loess Plateau of China. Science of the Total
Environment, 485-486, 615-623.https://doi.org/10.1016/j.scitotenv.2014.03.105
Kooijman, A. M., Weiler, H. A., Cusell, C., Anders, N., Meng, X., &
Seijmonsbergen, A. C., et al. (2019). Litter quality and microtopography
as key drivers to topsoil properties and understory plant diversity in
ancient broadleaved forests on decalcified marl. Science of the Total
Environment, 684, 113-125.https://doi.org/10.1016/j.scitotenv.2019.05.285
Li, H. D., Gao, J. X., Hu, Q. W., Li, Y. K., Tian, J. R., & Liao, C.
R., et al. (2019). Assessing revegetation effectiveness on an extremely
degraded grassland, southern Qinghai-Tibetan Plateau, using terrestrial
LiDAR and field data. Agriculture, Ecosystems and Environment, 282,
13-22.https://doi.org/10.1016/j.agee.2019.05.013
Li, H. D., Li, Y. K., Gao, Y. Y., Zou, C. X., Yan, S. G., & Gao, J. X.
(2016). Human impact on vegetation dynamics around Lhasa, southern
Tibetan Plateau, China. Sustainability, 8, 1146.https://doi.org/10.3390/su8111146
Li, H. D., Li, Y. K., Shen, W. S., Li, Y. N., Lin, J., & Lu, X. Y., et
al. (2015). Elevation-dependent vegetation greening of the Yarlung
Zangbo River Basin in the Southern Tibetan Plateau, 1999-2013. Remote
sensing, 7, 16672-16687.https://doi.org/10.3390/rs71215844
Li, H., Zhang, Y. F., Guo, Q. Q., & Yao, W. J. (2017). Molecular
characterization of a DREB gene from Sophora moorcroftiana, an endemic
species of plateau. Protoplasma, 254, 1735-1741.https://doi.org/10.1007/s00709-016-1065-9
Liao, C. R., Li, H. D., Lv, G. P. Tian, J. R., & Xu, Y. N. (2020a).
Effects of ecological restoration on soil properties of the aeolian
sandy land around Lhasa, southern Tibetan Plateau. Ecosphere, 11(1),
e03009.https://doi.org/10.1002/ecs2.3009
Liao, C. R., Li, H. D., Lv, G. P., Tian, J. R., Liu, B., & Tian, M. R.,
et al. (2020b).Can ecological restoration improve soil properties and
plant growth in valley-slope sand dunes on southern Tibetan Plateau?.
Physical Geography, 41(2), 1-17.https://doi.org/10.1080/02723646.2020.1735859
Liao, C. R., Liu, B. C., Xu, Y. N., & Li, H. D. (2019). Effect of
topography and protecting barriers on revegetation of sandy land,
Southern Tibetan Plateau. Scientific Reports, 9, 6501.https://doi.org/10.1038/s41598-019-43034-8
Liu, J. K. & Zhang, K. B. (2018). Spatial pattern and population
structure of Artemisia ordosica shrub in a desert grassland under
enclosure, northwest China. International Journal of Environmental
Research and Public Health, 15, 946.https://doi.org/10.3390/ijerph15050946
Liu, Z. M., Zhao, A. M., Kang, X. Y., Zhou, S. L., & Pujol, J. L.
(2006). Genetic diversity, population structure and conservation of
Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan
Plateau. Plant Biol, 8, 81-92.https://doi.org/10.1055/s-2005-872889
Liu, J. J., Tan, Y. H., & Ferry Slik, J. W. (2014). Topography related
habitat associations of tree species traits, composition and diversity
in a Chinese tropical forest. Forest Ecology and Management, 330, 75-81.https://doi.org/10.1016/j.foreco.2014.06.045
Luo, S., Wang, C., Pan, F., Xi, X., Li, G., Nie, S., & Xia, S. (2015).
Estimation of wetland vegetation height and leaf area index using
airborne laser scanning data. Ecological Indicators, 48, 550-559.https://doi.org/10.1016/j.ecolind.2014.09.024
McDonald, T., Gann, G., Jonson, J., & Dixon, K. (2016). International
standards for the practice of ecological restoration – including
principles and key concepts. (Society for Ecological Restoration:
Washington, DC, USA). Soil-Tec, Inc., ©Marcel Huijser, Bethanie Walder.
Mijangos, J. L., Pacioni, C., Spencer, P. B. S., & Craig, M. D. (2015).
Contribution of genetics to ecological restoration. Molecular Ecology,
24(1). pp. 22-37.https://doi.org/10.1111/mec.12995
Oddi, L., Celi, L., Cremonese, E., Filippa, G., Galvagno, M., &
Palestini, G. (2019). Decomposition processes interacting with
microtopography maintain ecosystem heterogeneity in a subalpine
grassland. Plant Soil, 434, 379-395.https://doi.org/10.1007/s11104-018-3842-z
Piao, S., Tan, T., Nan, H., Ciais, P., Fang, J., Wang, T., Vuichard, N.,
& Zhu, B. (2012). Impacts of climate and CO2 changes on the vegetation
growth and carbon balance of Qinghai-Tibetan grasslands over the past
five decades. Glob. Planet. Change 98–99, 73–80.https://doi.org/10.1016/j.gloplacha.2012.08.009
R Core Team. 2014. R: a language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing. Available at
https://www.R-project.org/.
Shen, W. S., Li, H. D., Sun, M., & Jiang, J. (2012). Dynamics of
aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China
from 1975 to 2008. Global and Planetary Change, 86-87, 37-44.https://doi.org/10.1016/j.gloplacha.2012.01.012
Stovall, A. E. L., Diamond, J. S., Slesak, R. A., McLaughlin, D. L., &
Shugart, H. (2019). Quantifying wetland microtopography with terrestrial
laser scanning. Remote Sensing of Environment, 232, 111271.https://doi.org/10.1016/j.rse.2019.111271
Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., &
Baker, M., et al. (2015). Committing to ecological restoration. Science,
348(6235), 638-640.https://doi.org/10.1126/science.aaa4216
Wang, Y. C., Chu, L., Daryanto, S., Lu, L., Ala, M., & Wang, L. (2019).
Sand dune stabilization changes the vegetation characteristics and soil
seed bank and their correlations with environmental factors. Science of
the Total Environment, 648, 500-507.https://doi.org/10.1016/j.scitotenv.2018.08.093
Yan, Y. L., Ganjurjav, H., Hu, G. Z., Liang, Y., Li, Y., & He, S. C.,
et al. (2018). Nitrogen deposition induced significant increase of N2O
emissions in an dry alpine meadow on the central Qinghai-Tibetan
Plateau. Agriculture, Ecosystems and Environment, 265, 45-53.https://doi.org/10.1016/j.agee.2018.05.031
Yang, Z. P., Shen, W. S., Sun, M., Sun, J., & Li, H. D. (2011).
Structural characteristics of Sophora moorcroftiana community on
wind-sandy land in middle reaches of Yaluzangbu River. Chinese Journal
of Applied Ecology, 22(5), 1121-1126.