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Abstract

Assuming non-Fourier thermal effects, Tzou’s dual-phase-lag model has been applied to introduce the

governing heat conduction equation in the presented mathematical model. Moreover, in order to design

a well-posed stable dual-phase-lag model, the governing time fractional dual-phase-lag heat equation has

been established by introducing conductive temperature and thermodynamical temperature, satisfying the

two-temperature theory. Due to the application of phase-lags τΩ, τΘ satisfying τΩ > τΘ, the heat conducti-

on equation became hyperbolic, as and when applied fractional order β → 1. The corresponding governing

equations of motion and stresses have been considered in two-dimensional bounded spherical domain. The

spherical boundaries are assumed to be traction free. The Laplace and the Legendre integral transforms

have been applied to obtain the analytical solutions of conductive and thermodynamical temperatures,

displacement components and thermal stresses. The Gaver-Stehfest algorithm has been employed to achie-

ve the time domain inversions of Laplace transforms numerically, satisfying the Kuznetsov convergence

criteria. Classical, fractional and generalized thermoelasticity theories has been recovered theoretically and

numerically as well for various fractional orders and phase-lags values.

Keywords: Fractional thermoelasticity, Two-temperature generalized theory, Dual-Phase-Lag, Finite

speed of thermal wave, Integral Transforms.

1. Introduction

According to the classical theory of thermoelasticity, it was presumed that the change in temperature

of a solid due to external or internal thermal loading is independent of the mechanical forces applied

to the solid body. Biot [1] has introduced coupled thermoelasticity theory, and claimed that thermal

and mechanical forces applied to a solid are not independent rather these forces are dependent on each

other. Assuming very small variations from the reference temperature, Chen and Gurtin [2] have designed

two-temperature theory, using thermodynamical and conductive temperatures. Moreover,the coupled and

two-temperature theories as well were not successfully able to achieve the finite speed of thermal wave

propagation. Cattaneo [3] has introduced the relaxation time τ and generalized the classical Fourier law of

heat conduction. Following Cattaneo, Lord and Shulman [4] have derived the generalized coupled thermo-

elasticity by applying the relaxation time τ , to the heat conduction equation and hence achieved the finite

speed of thermal waves. To support the generalized theory of thermoelasticity Sherief et al. [5 − 6] have

proved the uniqueness theorem and provided the corresponding fundamental solutions. Youssef [7] has

generalized the two-temperature theory of thermoelasticity introduced by Chen and Gurtin [2], where due

to the hyperbolic nature of the newly obtained heat conduction equation the finite speed of thermal wave

propagation was achieved. Youssef has also recovered the classical and coupled theories as a special case
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by using the generalized two-temperature theory. Tzou [8] has shown that Cattaneo-Vernotte constitutive

relation has only taken account of the fast transient effects, but not the microstructural interactions. To

investigate the lagging behaviour of the heat conduction, delay time translations τΩ and τΘ, to the heat

flux vector
−→
Ω and temperature gradient OT respectively and proposed the dual-phase-lag law of heat

conduction. Quintanilla [9] has claimed that whenever a DPL is coupled with an energy equation, then the

resulting heat conduction model could be unstable. Moreover, as per Quintanilla, under certain conditions,

the dual-phase-lag heat conduction law could be made stable if coupled with the energy equation in the

context of linearized two-temperature theory of thermoelasticity.

As per the various physical conditions, the upcoming states of every dynamical system does not depend

on its present state; rather it is important to consider all of its previous states. Due to the non-local pro-

perties of fractional derivatives over classical integer order derivatives, scientists preferably uses arbitrary

ordered derivatives to express various heat transfer problems, modelling of heat exchangers, categorization

of various conducting materials to fabricate semiconductors, study the heating effects of thermoviscoela-

stic materials, magneto thermoelastic problems of heat conduction related problems from last so many

years. This must be the reason why fractional calculus is becoming more popular in scientific research

and modelling. Povstenko [10] has derived fractional heat conduction equation by replacement of ordinary

derivative with respect to time variable by Caputo [11] time fractional derivative in classical Fourier law of

heat conduction and initiated the fractional theory of thermoelasticity. Sherief et al. [12] have derived the

fractional order theory of thermoelasticity in context with one relaxation time. Moreover, a brief discussion

has been made for several limiting cases, followed by a uniqueness, reciprocity theorems and corresponding

variational principle.

Sherief and Hamza [13] have formulated a two-dimensional thermoelastic problem under axisymmetric

temperature distributions using generalized thermoelasticity with one relaxation time. The general soluti-

ons of temperature, thermal displacement components and thermal stresses were obtained in the Laplace

domain by the direct method in the absence of the use of regular potential functions. The results were

used to solve two problems of a stress-free solid sphere and a spherical cavity of infinite space subjected to

axisymmetric thermal distribution. Recently, Mittal and Kulkarni [14] have derived a fractionally ordered

dual-phase-lag heat conduction equation in the context of the two-temperature theory of thermoelasticity.

The formulation has been implemented to a one dimensional hollow sphere whose boundary surfaces were

free of mechanical loading and subjected to external heat flux. The analytical results were obtained in the

Laplace domain, where corresponding inversions were computed for various phase-lags, fractional orders.

The classical, generalized cases were recaptured.

Following Mittal and Kulkarni [14] the piece of work presented has been reconstructed as a two dimen-

sional model in the bounded spherical domain. The boundary surfaces of the hollow sphere are traction

free and subjected to sinusoidal heat flux. The governing heat conduction equation has been derived using

Tzou dual-phase-lag intuitive law of heat conduction where two different translations τΩ, τΘ are called

phase-lags, that has been applied to heat flux vector and temperature gradient respectively. The governing

equations of motion, thermal stresses have been given in the two-dimensional bounded spherical domain.

The analytical solutions of non-dimensional governing equations subject to boundary conditions have been

obtained using the Laplace and the Legendre integral transforms. The numerical inversion of the Laplace

transform has been obtained using the Gaver-Stehfest algorithm [15, 16]. The Legendre inversions involved

in results has been computed in terms of the Legendre polynomials for a specified Legendre parameter.

The numerical solutions have been plotted in radial direction considering the various phase-lags case and
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different fractional orders. The results obtained have been compared with classical and generalized ther-

moelasticity theories.

The materials like glass, ceramics, polymers, steel become brittle due to application of stress occuring

either due to thermal loading or pressure etc. applied to the surface. Galanov et al. [17] have presented

a model describing the elastic deformations of spherical cavity developed in the brittle materials using

the concept of mechanics of compressive porous and powder materials. Marin et al. [18] have investigated

the theory of micropolar thermoelastic bodies whose micro-particles possess microtemperature. The mixed

initial boundary value problem has been converted into a temporally evolutionary equation on a Hilbert

space. The solution obtained has been examined for its existence and uniqueness.

The presented dual-phase-lag heat conduction model has been constructed using the two-temperature

theory to investigate the thermal effects of microstructural interactions occurring inside the hollow sphere

whose boundaries are subjected to sinusoidal heat flux. This model could be employed to classify the va-

rious conducting materials as per their conductive capacity by using either phase-lags or fractional order

variations. To the best of authors knowledge so far no one has designed a two dimensional fractional dual-

phase-lag heat conduction model in the context of two-temperature theory within the bounded spherical

domain. This is the newest and novel contribution to the field of material science.

Nomenclature

β : Fractional order;

αt : Coefficient of linear

thermal expansion;

ξ : Temperature discrepancy;

η : Reciprocal of thermal

diffusivity;

ε : Dimensionless coupling

constant;

k : Thermal conductivity;

λ, µ : Lamé constants ;

γ = αt(3λ+ 2µ) : Material constant;

ϕ : Thermodynamical

temperature;

ϑ : Non-dimensional

thermodynamical

temperature;

ρd : Material density;

σij : Thermal stresses;

Θ : Non-dimensional

conductive temperature;

P : The position vector;

H : Internal heat generation;

T : Conductive temperature;

T0 : Reference temperature;

c : Constant of two

temperature theory;

τ : Relaxation time;

τΘ, τΩ : Phase-Lags;

ce : Speed of iso-thermal

elastic wave;

cs : Specific heat capacity;

e : Cubical dilatation;
−→
Ω : Heat flux vector;

ur, uθ : Displacement Components;

t : Time;

(r, θ, φ) : Spherical coordinate system;

∇ : Gradient operator;

∇2 : Laplacian operator.

2. The heat conduction equation

Since the governing heat equation of classical thermoelasticity, results an infinite speed of thermal wave

propagation, this must be the reason why, Lord and Shulman [4] has applied Maxwell-Cattaneo law with
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one relaxation time and derived the generalized coupled heat conduction equation given by(
1 + τ

∂

∂t

){
∂

∂t
(ρdcsT + γT0e)−H

}
= k∇2T, (1)

Following Caputo time fractional derivative [11] of order β ∈ (0, 1], Sherief et al. [12] have updated the

generalized theory of thermoelasticity as(
1 + τ

∂β

∂tβ

){
∂

∂t
(ρdcsT + γT0e)−H

}
= k∇2T, (2)

To investigate the consequences of small scale inner particle communications aroused within the solid heat

conductor at a microscopic level, Tzou [8] has considered the non-Fourier effects of heating and proposed

the dual-phase-lag law given below

−→
Ω (P, t+ τΩ) = −k∇T (P, t+ τΘ), (3)

where, τΩ and τΘ are the intrinsic properties of the medium. Expanding both sides of equation (3) using

Taylor’s series with respect to the time fractional derivatives till 2β and taking divergence, one obtains[
1 +

τβΩ
Γ(β + 1)

∂β

∂tβ
+

τ2β
Ω

Γ(2β + 1)

∂2β

∂t2β

]{
∂

∂t
(ρdcsT + γT0e)−H

}
=[

1 +
τβΘ

Γ(β + 1)

∂β

∂tβ
+

τ2β
Θ

Γ(2β + 1)

∂2β

∂t2β

]
k∇2T, β ∈ (0, 1].

(4)

Moreover, Quintanilla [9] has claimed that, if equation (4) couples with the energy equation given by

−∇
−→
Ω (P, t) = d

.
T (P, t), (5)

then consequently, Tzou’s [8] DPL model would be ill-posed and not stable. Moreover, under certain

physical restrictions, a DPL could also be made stable and well-posed if derived in the context of two-

temperature theory where two different temperatures are known as thermodynamical temperature ϕ and

conductive temperature T , satisfies

ϕ = (1− c∇2)T. (6)

Coupling the equation (4) and (6) and neglecting the differential operators of order more than ∇2, one

will have the following time fractional dual-phase-lag heat conduction equation in the context of two-

temperature theory given by[
1 +

τβΩ
Γ(β + 1)

∂β

∂tβ
+

τ2β
Ω

Γ(2β + 1)

∂2β

∂t2β

]{
∂

∂t
(ρdcsϕ+ γT0e)−H

}
=[

1 +
τβΘ

Γ(β + 1)

∂β

∂tβ
+

τ2β
Θ

Γ(2β + 1)

∂2β

∂t2β

]
k∇2T, β ∈ (0, 1].

(7)

2.1 Specific cases

a. For [τΘ = τΩ = 0, T = ϕ, H = 0], equation (7) represents the heat conduction equation of Biot’s

theory shown below

k∇2T = ρdcs
·
T + γT0

·
e. (8)
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b. For [β → 1.0, τΘ = 0, τΩ = τ > 0, τ2
Ω → 0, T = ϕ, H = 0], equation (7) expresses the heat conduction

equation of Lord-Shulman thermoelasticity as follows

k∇2T = ρdcs(
·
T + τ

··
T ) + γT0(

·
e+ τ

··
e). (9)

c. For [β ∈ (0, 1), T = ϕ, H = 0], equation (7) is identified as the fractional generalization of Cattaneo

approach.

d. For [β → 0.0, τΘ, τΩ ∈ R, T 6= ϕ], equation (7) stands for governing equation of the generalized

two-temperature theory of thermoelasticity derived by Youssef [7] as

k∇2T = ρdcs
·
ϕ+ γT0

·
e. (10)

e. For [β ∈ (0, 1], τΘ = 0, τΩ ≡ τ, τ2
Ω → 0, T 6= ϕ], equation (7) converts as

k∇2T = ρdcs(
·
ϕ+ τ

··
ϕ) + γT0(

·
e+ τ

··
e), (11)

equation (11) represents two-temperature thermoelastic models proposed by Ezzat and Karamany [19, 20].

2.2 Mathematical model

Assume a spherically symmetrical, isotropic, homogeneous and ideally thermoelastic medium, where a

hollow sphere has been placed with traction free boundary surfaces. The object under study is supposed

to occupy the space S ⊂ R3 in the bounded spherical domain as shown below

S = {(r, θ, φ) ⊂ R3|a ≤ r ≤ b,−π ≤ θ ≤ π, 0 ≤ φ ≤ π} (12)

where a and b are the positive real number represents the radius of inner and outer spherical boundaries.

For the sake of mathematical simplicity it has been assumed that, there is neither external body force has

been applied to the solid nor the per unit volume heat has been generated inside the solid. For (H = 0),

the heat conduction equation (7) reduces to[
∂

∂t
+

τβΩ
Γ(β + 1)

∂β+1

∂tβ+1
+

τ2β
Ω

Γ(2β + 1)

∂2β+1

∂t2β+1

]
{ρdcsϕ+ γT0e} =[

1 +
τβΘ

Γ(β + 1)

∂β

∂tβ
+

τ2β
Θ

Γ(2β + 1)

∂2β

∂t2β

]
k∇2T, β ∈ (0, 1],

(13)

where ∇2 is two dimensional Laplacian operator in spherical domain has the form

∇2 ≡ ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
. (14)

Following Eslami et al. [21], for the displacement
−→
U = (ur, uθ, 0), the strain components are given as

err =
∂ur
∂r

, (15)

eθθ =
1

r

∂uθ
∂θ

+
ur
r
, (16)

eφφ =
cot θ

r
uθ +

ur
r
, (17)

5



erθ =
1

2

[
uθ
r

+
1

r

(
∂ur
∂θ
− uθ

)]
, (18)

erφ = eφθ = 0. (19)

Thus the cubical dilatation e takes the form

e = err + eφφ + eθθ, (20)

e =
∂ur
∂r

+
2ur
r

+
1

r sin θ

∂

∂θ
(uθ sin θ). (21)

Considering no external forces applied to the body then the equation of motion are reduces to

(λ+ 2µ)
∂e

∂r
− 2µ

r sin θ

∂

∂θ

[
1

2r

(
r
∂uθ
∂r

+ uθ −
∂ur
∂θ

)
sin θ

]
− γ ∂

∂r
(T − T0) = ρd

∂2ur
∂t2

, (22)

(λ+ 2µ)
1

r

∂e

∂θ
+

2µ

r

∂

∂r

[
1

2

(
r
∂uθ
∂r

+ uθ −
∂ur
∂θ

)
sin θ

]
− γ

r

∂

∂θ
(T − T0) = ρd

∂2uθ
∂t2

. (23)

The normal and shear stress functions are expressed by following equations

σrr = 2µ
∂ur
∂r

+ λe− γ(T − T0), (24)

σθθ = 2µ

(
ur
r

+
1

r

∂uθ
∂θ

)
+ λe− γ(T − T0), (25)

σφφ = 2µ
(ur
r

+ cot θ
uθ
r

)
+ λe− γ(T − T0), (26)

σrθ = µ

[
uθ
r

+
1

r

(
∂ur
∂θ
− uθ

)]
, (27)

σrφ = σθφ = 0. (28)

Equations (12) − (28) describes the governing equations of heat conduction model for hollow spherical

region.

2.3 Non-dimensional governing equations

To convert the dimensionless system of governing equations the following non-dimensional quantities are

introduced as

(r
′
u

′
v
′
) = (ceη)(r, u, v)(t

′
, τ

′
Θ, τ

′
Ω) = (c2

eη)(t, τΘ, τΩ), σ
′
ij =

σij
µ
, Θ =

γ(T − T0)

(λ+ 2µ)
, ϑ =

γϕ

(λ+ 2µ)
,

ε =
γ2T0

ρdcs(λ+ 2µ)
, ξ = cc2

eη
2, α2 =

(λ+ 2µ)

µ
, ℘ =

γT0

µ
, ce =

√
λ+ 2µ

µ
, η =

ρdcs
k
.

(29)
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The dimensionless form of the governing equations of the model are given below (dropping asterisk sign

for simplicity) [
∂

∂t
+

τβΩ
Γ(β + 1)

∂β+1

∂tβ+1
+

τ2β
Ω

Γ(2β + 1)

∂2β+1

∂t2β+1

]
{ϑ+ εe} =[

1 +
τβΘ

Γ(β + 1)

∂β

∂tβ
+

τ2β
Θ

Γ(2β + 1)

∂2β

∂t2β

]
∇2Θ, β ∈ (0, 1],

(30)

Θ− ϑ = ξ∇2Θ, (31)

e =
∂ur
∂r

+ 2
ur
r

+ cot θ
uθ
r

+
1

r

∂uθ
∂θ

, (32)

∂

∂r

[
α2e− ℘Θ

]
+∇2ur −

1

r2

∂

∂r

[
r2∂ur
∂r

]
− 1

r2 sin θ

∂2

∂r∂θ
[r sin θuθ] = α2∂

2ur
∂t2

, (33)

1

r

∂

∂θ

[
α2e− ℘Θ− ∂ur

∂r

]
+

1

r2

∂

∂r

[
r2∂uθ
∂r

]
= α2∂

2uθ
∂t2

, (34)

σrr = 2
∂ur
∂r

+
(
α2 − 2

)
e− α2Θ, (35)

σθθ = 2

(
∂ur
∂r

+
1

r

∂uθ
∂θ

)
+
(
α2 − 2

)
e− α2Θ, (36)

σφφ = 2
(ur
r

+ cot θ
uθ
r

)
+
(
α2 − 2

)
e− α2Θ, (37)

σrθ =
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

. (38)

Equations (29)− (38) represents the dimensionless form of the governing equations.

2.4 Physical restrictions

The spherical boundary surfaces of hollow sphere are subjected to sinusoidal heat flux Θ(r, θ, t) given

below:

Θ(r, θ, t) =

0, r = a,

Θ0 sin θH(t) r = b,
(39)

where −π ≤ θ ≤ π, and constant Θ0 stands for the strength of the heat flux applied.

Mathematically, the stress free boundary conditions are defined as follows

σrr = σθθ = σrθ = 0|r=a, (40)

σrr = σθθ = σrθ = 0|r=b. (41)
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Assuming quiescent state, the initial conditions are given as

Θ(r, θ, 0) = Θ̇(r, θ, 0) = 0, (42)

σrr(r, 0) = σ̇rr(r, 0) = 0, (43)

u(r, 0) = u̇(r, 0) = 0. (44)

Equations (39)− (44) describe the physical restrictions imposed on the mathematical model of the hollow

sphere in the bounded spherical domain.

3. Mathematical treatment

3.1 Transformation in the Laplace domain

Theorem : Following Liang et al. [22], if β > 0, m = [β] + 1, and functions ω(P, t) and its partial

derivatives up to the order (m − 1) with respect to the variable t exists and continuous in R+ are of

exponential order, where CDβ
0ω(t) of fractional order β is piecewise continuous in R+ , then the Laplace

transform of CDβ
0ω(t) is given by

L
(
CDβ

0ω(t)
)

= pβL(ω(t))−
m−1∑
j=0

pβ−j−1ω(j)(0), (45)

For the Liang theorem described above, considering zero initial conditions one must have the following

equation

ω(P, 0) =
·
ω(P, 0) =

··
ω(P, 0) = ... = 0. (46)

Using equations (45) − (46), applying the Laplace transforms to the dimensionless governing equations

(30)− (38) the transformed equations are given as[
p+ pβ+1 τβΩ

Γ(β + 1)
+ p2β+1 τ2β

Ω

Γ(2β + 1)

]
{ϑ̄+ εē} =

[
1 + pβ

τβΘ
Γ(β + 1)

+ p2β τ2β
Θ

Γ(2β + 1)

]
∇2Θ̄, β ∈ (0, 1],

(47)

Θ̄− ϑ̄ = ξ∇2Θ̄, (48)

ē =
dur
dr

+ 2
ūr
r

+ cot θ
ūθ
r

+
1

r

dūθ
dθ

, (49)

d

dr

[
α2ē− ℘Θ̄

]
+∇2ūr −

1

r2

d

dr

[
r2dūr
dr

]
− 1

r2 sin θ

d2

drdθ
[r sin θūθ] = α2p2ūr, (50)

1

r

d

dθ

[
α2ē− ℘Θ̄− dūr

dr

]
+

1

r2

d

dr

[
r2dūθ
dr

]
= α2p2ūθ, (51)
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σ̄rr = 2
dūr
dr

+
(
α2 − 2

)
ē− α2Θ̄, (52)

σ̄θθ = 2

(
dūr
dr

+
1

r

dūθ
dθ

)
+
(
α2 − 2

)
ē− α2Θ̄, (53)

σ̄φφ = 2
( ūr
r

+ cot θ
ūθ
r

)
+
(
α2 − 2

)
ē− α2Θ̄, (54)

σ̄rθ =
1

r

dūr
dθ
− ūθ

r
+
dūθ
dr

, (55)

Combining the equations (50) and (51) one will have

(∇2 − p2)ē = ς∇2Θ̄, (56)

where ς =
℘

α2
.

Consider the following term replacements

Ω1 =

[
p+ pβ+1 τβΩ

Γ(β + 1)
+ p2β+1 τ2β

Ω

Γ(2β + 1)

]
, (57)

Ω2 =

[
1 + pβ

τβΘ
Γ(β + 1)

+ p2β τ2β
Θ

Γ(2β + 1)

]
. (58)

Using the above replacements equation (47) reduces to

Ω2∇2Θ̄ = Ω1

(
ϑ̄+ εē

)
, (59)

Eliminating ϑ and Θ between the equations (59) − (60) in context of equation (48), one obtains the

following differential equation for ē given below:(
∇4(Ω1ξ + Ω2)−∇2(p2Ω1ζ + Ω2p

2 + ςΩ1ε+ Ω1) + Ω1p
2
)
ē = 0. (60)

Equation (60) can be factored as

(∇2 − q2
1)(∇2 − q2

2)ē = 0, (61)

where q2
1, q

2
2 are the positive real roots of the following characteristic equation

q4 − Lq2 +M = 0, (62)

where

L =
p2Ω1ξ + Ω2p

2 + ςΩ1ε+ Ω1

Ω1ξ + Ω2
, (63)

M =
Ω1p

2

Ω1ξ + Ω2
. (64)

Equations (47)− (64) represents the dimensionless governing equations in the Laplace domain.
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3.2 Analytical results in the Laplace domain

The analytical solutions of conductive temperature, thermodynamical temperature, displacement com-

ponents and thermal stresses has been achieved through the application of Legnedre transform to the

equations (47)-(64) in the variables p, r and ζ = cos θ.

Solving equation (61), the dilatation function ē(r, p, ζ) is given as

ē(r, p, ζ) = ē1(r, p, ζ) + ē2(r, p, ζ), (65)

ē1(r, p, ζ) =
ς√
r

∞∑
m=0

2∑
i=1

Pm(ζ)q2
iAmiIm+1/2(qir), (66)

ē2(r, p, ζ) =
ς√
r

∞∑
m=0

2∑
i=1

Pm(ζ)q2
iBmiKm+1/2(qir), (67)

The functions ē1(r, p, ζ), ē2(r, p, ζ) are components of dilatation function bounded at origin and infinity

respectively.

Substituting results from equations (66) − (67) to equation (56) the conductive temperature function

Θ̄(r, p, ζ) in the Laplace domain is given as

Θ̄(r, p, ζ) = Θ̄1(r, p, ζ) + Θ̄2(r, p, ζ), (68)

where

Θ̄1(r, p, ζ) =
1√
r

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)AmiIm+1/2(qir), (69)

Θ̄2(r, p, ζ) =
1√
r

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)BmiKm+1/2(qir), (70)

The functions Θ̄1(r, p, ζ), Θ̄2(r, p, ζ) are components of conductive temperature function Θ̄ bounded at

origin and infinity respectively.

Substituting components of conductive temperature Θ̄1(r, p, ζ), Θ̄2(r, p, ζ) from equations (69) − (70)

in two-temperature theory relation given by equation (48), one gets the thermodynamical temperature

ϑ̄(r, p, ζ) as given below:

ϑ̄(r, p, ζ) = ϑ̄1(r, p, ζ) + ϑ̄2(r, p, ζ), (71)

where

ϑ̄1(r, p, ζ) =
1√
r

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)(1− ξq2

i )AmiIm+1/2(qir), (72)

ϑ̄2(r, p, ζ) =
1√
r

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)(1− ξq2

i )BmiKm+1/2(qir). (73)
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The functions ϑ̄1(r, p, ζ), ϑ̄2(r, p, ζ) are components of conductive temperature function ϑ̄(r, p, ζ) boun-

ded at origin and infinity respectively.

The radial displacement ūr(r, p, ζ) is given by

ūr(r, p, ζ) = ūr1(r, p, ζ) + ūr2(r, p, ζ), (74)

where

ūr1(r, p, ζ) =
ς

r3/2

∞∑
m=0

{
2∑
i=1

Pm(ζ)Ami[qirIm+3/2(qir) +mIm+1/2(qir)] + Im+1/2(αpr)

}
, (75)

ūr2(r, p, ζ) =
ς

r3/2

∞∑
m=0

{
2∑
i=1

Pm(ζ)Ami[−qirKm+3/2(qir) +mKm+1/2(qir)] +Km+1/2(αpr)

}
. (76)

Similarly following mathematical equation (32), displacement component uθ(r, p, ζ) has been obtained

d(ūθi sin θ)

dζ
=

ς

r3/2

∞∑
m=0

Pm(ζ){ψ̄1(r) + ψ̄2(r)}, (77)

where

ψ̄1(r) = Amim(m+ 1)Im+1/2(qir) + Cm
[
(m+ 1)Im+1/2(αpr) + αprIm+3/2(αpr)

]
, (78)

ψ̄2(r) = Bmim(m+ 1)Km+1/2(qir) +Dm

[
(m+ 1)Km+1/2(αpr)− αprKm+3/2(αpr)

]
. (79)

On integrating equation (77), using
∫
Pm(ζ)dζ =

ζPm(ζ)− Pm−1(ζ)

(m+ 1)
, one gets

ūθ1(r, p, ζ) =
ς

r3/2

∞∑
m=1

[
ζPm(ζ)− Pm−1(ζ)

sin θ

] [
mAmiIm+1/2(qir) + Cm

[
Im+1/2(αpr) +

αpr

m+ 1
Im+3/2(αpr)

]]
,

(80)

ūθ2(r, p, ζ) =
ς

r3/2

∞∑
m=1

[
ζPm(ζ)− Pm−1(ζ)

sin θ

] [
mBmiKm+1/2(qir) +Dm

[
Km+1/2(αpr)− αpr

m+ 1
Km+3/2(αpr)

]]
,

(81)

where the displacement component uθ is given as

ūθ(r, p, ζ) = ūθ1(r, p, ζ) + ūθ2(r, p, ζ). (82)

The stress functions are obtained by substituting the above results of dilatation, temperature and displa-

cement functions to the equations (35)− (38), one will have the following results for radial stresses given

below:

σ̄rr(r, p, ζ) = σ̄rr1(r, p, ζ) + σ̄rr2(r, p, ζ), (83)

where

σ̄rr1(r, p, ζ) =
ς

r5/2

∞∑
m=0

Pm(ζ)
2∑
i=1

Ami
[
(−4qir)Im+3/2(qir) + (2m(m− 1)α2p2r2)Im+1/2(qir)

]
+

2ς

r5/2

∞∑
m=0

Pm(ζ)Cm
{

(αpr)Im+3/2(αpr) + (m− 1)Im+1/2(αpr)
}
,

(84)
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σ̄rr2(r, p, ζ) =
ς

r5/2

∞∑
m=0

Pm(ζ)

2∑
i=1

Ami
[
(4qir)Km+3/2(qir) + (2m(m− 1)α2p2r2)Km+1/2(qir)

]
+

2ς

r5/2

∞∑
m=0

Pm(ζ)Cm
{
−(αpr)Km+3/2(αpr) + (m− 1)Km+1/2(αpr)

}
.

(85)

Similarly the shear stress σ̄rθ(r, p, ζ) is given by

σ̄rθ1(r, p, ζ) = σ̄rθ1(r, p, ζ) + σ̄rθ2(r, p, ζ), (86)

where

σ̄rθ1(r, p, ζ) =
2ς

r5/2 sin θ

∞∑
m=1

m(ζPm − Pm−1)

2∑
i=1

Ami[(m− 1)Im+1/2(qir) + qirIm+3/2(qir)]

+
ς

r5/2 sin θ

∞∑
m=1

Cm
ζPm − Pm−1

m+ 1

{
(α2r2p2 + 2m2 − 2)Im+1/2(αpr)− 2αprIm+3/2(αpr)

}
,

(87)

σ̄rθ2(r, p, ζ) =
2ς

r5/2 sin θ

∞∑
m=1

m(ζPm − Pm−1)

2∑
i=1

Ami[(m− 1)Km+1/2(qir)− qirKm+3/2(qir)]

+
ς

r5/2 sin θ

∞∑
m=1

Cm
ζPm − Pm−1

m+ 1

{
(α2r2p2 + 2m2 − 2)Km+1/2(αpr) + 2αprKm+3/2(αpr)

}
.

(88)

Likewise, one gets σ̄θθ(r, p, ζ) as given below:

σ̄θθ(r, p, ζ) = σ̄θθ1(r, p, ζ) + σ̄θθ2(r, p, ζ), (89)

where

σ̄θθ1(r, p, ζ) =
ς

r5/2

∞∑
m=1

[Pm(ζ)cosecθ[mcosecθζ − cot θ]− Pm−1(ζ)cosecθ[cot θ − (2m− 1)cosecθζ]

− (m− 1)cosec2θPm−2(ζ)]

[
mAmiIm+1/2(qir) + Cm

[
Im+1/2(αpr) +

αpr

m+ 1
Im+3/2(αpr)

]]
+ (α2 − 2)

ς

r5/2

∞∑
m=0

Pm(ζ)
2∑
i=1

Amiq
2
i r

2Im+1/2(qir)−
ςα2

r5/2

∞∑
m=0

Pm(ζ)
2∑
i=1

Ami(q
2
i − p2)r2Im+1/2(qir),

(90)

σ̄θθ2(r, p, ζ) =
ς

r5/2

∞∑
m=1

[Pm(ζ)cosecθ[mcosecθζ − cot θ]− Pm−1(ζ)cosecθ[cot θ − (2m− 1)cosecθζ]

− (m− 1)cosec2θPm−2(ζ)]

[
mAmiKm+1/2(qir) + Cm

[
Km+1/2(αpr)− αpr

m+ 1
Km+3/2(αpr)

]]
+ (α2 − 2)

ς

r5/2

∞∑
m=0

Pm(ζ)

2∑
i=1

Amiq
2
i r

2Im+1/2(qir)−
ςα2

r5/2

∞∑
m=0

Pm(ζ)

2∑
i=1

Ami(q
2
i − p2)r2Im+1/2(qir).

(91)

Finally the hoop stress σ̄φφ(r, p, ζ) is obtained as under,

σ̄φφ(r, p, ζ) = σ̄φφ1(r, p, ζ) + σ̄φφ2(r, p, ζ), (92)
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where,

σ̄φφ1(r, p, ζ) =
2c

r5/2

∞∑
m=0

Pm(ζ)

2∑
i=1

Ami(qir)Im+3/2(qir)+

c

r5/2

∞∑
m=1

(
ζPm(ζ)− Pm−1(ζ)

sin θ

) 2∑
i=1

2mAmi cot θIm+1/2(qir)+

ς

r5/2

∞∑
m=0

Pm(ζ)

{
2∑
i=1

Ami
[
2m+ α2p2 − 2q2

i r
2
]}

Im+1/2(qir)+

ς

r5/2

∞∑
m=1

2Cm cot θ

[
ζPm(ζ)− Pm−1(ζ)

sin θ

] [
Im+1/2(αpr) +

αpr

m+ 1
Im+3/2(αpr)

]
+

2ς

r5/2

∞∑
m=0

Pm(ζ)CmIm+1/2(αpr),

(93)

σ̄φφ2(r, p, ζ) =
2ς

r5/2

∞∑
m=0

Pm(ζ)
2∑
i=1

Ami(−qir)Km+3/2(qir)+

ς

r5/2

∞∑
m=1

(
ζPm(ζ)− Pm−1(ζ)

sin θ

) 2∑
i=1

2mAmi cot θKm+1/2(qir)+

ς

r5/2

∞∑
m=0

Pm(ζ)

{
2∑
i=1

Ami
[
2m+ α2p2 − 2q2

i r
2
]}

Km+1/2(qir)+

ς

r5/2

∞∑
m=1

2Cm cot θ

[
ζPm(ζ)− Pm−1(ζ)

sin θ

] [
Km+1/2(αpr)− αpr

m+ 1
Km+3/2(αpr)

]
+

2ς

r5/2

∞∑
m=0

Pm(ζ)CmKm+1/2(αpr).

(94)

To fix the constants Ami(p), Bmi(p), Cm(p), Dm(p) depending upon the Laplace parameter p, one will make

use of boundary conditions to obtain the simultaneous equations given below:

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)[AmiIm+1/2(qia) +BmiKm+1/2(qia)] = 0, (95)

∞∑
m=0

2∑
i=1

Pm(ζ)(q2
i − p2)[AmiIm+1/2(qib) +BmiKm+1/2(qib)] =

Θ0

√
b(1− ζ2)

p
, (96)

∞∑
m=0

2∑
i=1

Pm(ζ)Ami
[
(−4qia)Im+3/2(qia) + (2m(m− 1)α2p2a2)Im+1/2(qia)

]
+ 2

∞∑
m=0

Pm(ζ)Cm
{

(αpa)Im+3/2(αpa) + (m− 1)Im+1/2(αpa)
}

+
∞∑
m=0

2∑
i=1

Pm(ζ)Ami
[
(4qia)Km+3/2(qia) + (2m(m− 1)α2p2a2)Km+1/2(qia)

]
+ 2

∞∑
m=0

Pm(ζ)Cm
{
−(αpa)Km+3/2(αpa) + (m− 1)Km+1/2(αpa)

}
= 0,

(97)
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∞∑
m=0

2∑
i=1

Pm(ζ)Ami
[
(−4qib)Im+3/2(qib) + (2m(m− 1)α2p2b2)Im+1/2(qib)

]
+ 2

∞∑
m=0

Pm(ζ)Cm
{

(αpb)Im+3/2(αpb) + (m− 1)Im+1/2(αpb)
}

+

∞∑
m=0

2∑
i=1

Pm(ζ)Ami
[
(4qib)Km+3/2(qib) + (2m(m− 1)α2p2b2)Km+1/2(qib)

]
+ 2

∞∑
m=0

Pm(ζ)Cm
{
−(αpb)Km+3/2(αpb) + (m− 1)Km+1/2(αpb)

}
= 0.

(98)

Equations (65) − (98) represents analytical solutions obtained for conductive temperature Θ(r, p, ζ),

thermodynamical temperature ϑ((r, p, ζ), displacement components ur(r, p, ζ), uθ(r, p, ζ) and stresses

σ̄rr(r, p, ζ), σ̄θθ(r, p, ζ), σ̄φφ(r, p, ζ), σ̄rθ(r, p, ζ) in the Laplace domain. Here Im(·),Km(·) denotes mo-

dified Bessel functions of first and second kind respectively and Pm(ζ) denotes the Legendre polynomial

of order m of argument ζ = cos θ lying between [−1, 1] and p is the Laplace domain parameter.

3.3 The Gaver-Stehfest algorithm

Finally in order to find the results for conductive temperature, thermodynamical temperature, radial and

angular displacement components of thermal stresses in the time domain, the inversion of the Laplace

transform of analytical results obtained in the equations (65)− (98) has been carried out numerically by

the Gaver-Stehfest algorithm.

Following the Gaver Stehfest [15, 16], the numerical inversion of the analytical results in the Laplace

domain has been approximated to the time domain solutions as

f(t) ≈ fK(t) =
loge(2)

t

2K∑
k=1

(−1)K+k


l=min(k,K)∑
l=

⌊
k + 1

2

⌋
lK+1 · KCl · 2lCl · lCk−l

K!


· F
(
k loge(2)

t

)
 , (99)

and byc is the flooring function and 2K is an even integer whose value depends on the word length of the

computer used.

The Gaver-Stehfest algorithm discussed above has been implemented using Matlab 6.1. The trial value

of K depending upon the word length of the computer system has been fixed as K = 12. Assuming the

constant physical properties of the medium described in section 4.2, the starting iteration value for the

Laplace parameter p has been obtained for K = 0, for the small input of fixed time value t = 0.2s. An

initial solution of resulting thermal parameters of the Laplace domain shown by the equations (65)− (98)

have been computed for starting numerical value of the Laplace parameter p for K = 0. This iteration

process has been repeated to cumulate the values of the required Laplace inversions given in terms of the

infinite series of modified Bessel functions for all values of K ranging from 0 to 12. Finally the infinite

series representing the thermal results have been approximated to achieve the finite numerical values of

the inverse Laplace transform, where only the real values of the Laplace inversions have been considered

for concerned thermal parameters.
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The convergence of the numerical inversion described by the Gaver-Stehfest algorithm has been discussed

by Kuznetsov [23].

The Kuznetsov convergence criterion : If f : (0, ∞) −→ R is a locally integrable function such that

its Laplace transform F (p) exists for all p > 0 and the sequence fK(t) is defined by equation (99), then

the convergence of sequence fK(t) depends on the values of the function f(t) in the neighbourhood of

t. If the function f(t) is of bounded variation in the neighbourhood of t then the sequence fK(t) −→
f(t+ 0) + f(t− 0)

2
as K −→∞.

Referring above Kuznetsov convergence criterion, it has been observed that as K increases, the resulting

numerical values of the Laplace inversions are found to be stable and convergent to the finite real number.

Accordingly K = 12 has been chosen in the Matlab programming.

4. Numerical scheme

Mathematically, one can say that the distribution of temperature and thermal stresses inside the hollow

spherical region subjected to fixed external heat flux is always influenced by variations of phase-lags.

Additionally, as per fractional order theory proposed by Sherief et al. [12], the importance of fractional

order applied to time variable to the governing dual-phase-lag heat conduction equation could not be

ignored.

Therefore the numerical calculations have been carried out for conductive temperature Θ, thermodynamical

temperature ϑ, displacement components ur, uθ and stresses σrr, σθθ, σφφ, σrθ by considering classical,

fractional and generalized theory of thermoelasticity. Following Ignaczak and Ostoja-Starzewski [24], the

results have been computed for various phase-lags by fixing (β = 0.45, 0.90) and referring fractional theory

of thermoelasticity by Povstenko [25] for different fractional orders (τΩ = 0.4ps, τΘ = 0.2ps) and shown

pairwise respectively by figures 1− 8, for each thermal parameter under consideration at time t = 0.2s.

4.1 The dimensions

The inner radius of hollow sphere a = 0.02m.

The outer radius of hollow sphere b = 0.07m.

4.2 Material characteristics

Following Luecke et al. [26] and Childs et al. [27], the numerical scheme has been applied to find the non-

dimensional thermal variations for pure steel material with physical characteristics in (SI-units) given

as

αt = 1.374× 10−5K−1, α2 = 3.8904, ξ = 0.075, ε = 0.0308, k = 72.7 Wm−1K−1, λ = 7.33× 1011Nm−2,

µ = 5.35× 1011Nm−2, ρd = 7897 kgm−3, cs = 452 JKg−1K−1, T0 = 293K,Θ0 = 500K, ζ = 0.5.
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4.3 Results and discussion
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Fig: 1(a). Distribution of conductive Fig: 1(b). Distribution of conductive

temperature Θ(r, θ, t) inside the hollow temperature Θ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 2(a). Distribution of thermodynamical Fig: 2(b). Distribution of thermodynamical

temperature ϑ(r, θ, t) inside the hollow temperature ϑ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 3(a). Distribution of radial displacement Fig: 3(b). Distribution of radial displacement

component ur(r, θ, t) inside the hollow component ur(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90
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Fig: 4(a). Distribution of angular displacement Fig: 4(b). Distribution of angular displacement

component vθ(r, θ, t) inside the hollow component vθ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 5(a). Distribution of radial stress Fig: 5(b). Distribution of radial stress

component σrr(r, θ, t) inside the hollow component σrr(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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sphere for phase-lag variations sphere for time-fractional derivative order β
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component σφφ(r, θ, t) inside the hollow component σφφ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 8(a). Distribution of hoop stress Fig: 8(b). Distribution of hoop stress
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Figure 1(a) & 1(b), describes the variations of conductive temperature inside the hollow spherical region.

It can be noticed from figure-1(a) that, whenever both phase-lags τΩ, τΘ are equal then FDPL model ex-

hibits results corresponding to the classical coupled theory of thermoelasticity (CTE). For a higher value

of phase-lag corresponding to heat flux τΩ as compared to temperature gradient τΘ, it has been obser-

ved that the heat transfer takes place in a waveform with finite speed

√
Γ(β+1)

ητβΩ
. Wavefronts plotted in

figure-1(b) shows that the conductive temperature corresponding to generalized theory is dominating over

classical and fractional theory of thermoelasticity. Mathematically, it has been found that the conductive

temperature is directly proportional to fractional order β.

Figure 2(a) & 2(b), illustrates the effect of variation of phase-lags τΩ, τΘ and fractional order β on thermo-

dynamical temperature ϑ(r, θ, t) within the bounded spherical region. Results obtained are similar to those

of classical coupled theory when the phase-lags are identically the same. If the phase-lag corresponding

to heat flux vector precedes the phase-lag of temperature gradient (τΩ > τΘ), then the wave fronts for

fractional (β = 0.45, β = 0.90) and generalized theories (β = 1.0) are seems to be closer to each other.

One may notice from the results shown by figure-2(b) that the thermodynamical temperature inside the

solid is directly proportional to the fractional order β under consideration.

Figure 3(a) & 3(b), contains the wave fronts representing the non-dimensional radial displacement compo-

nent ur(r, θ, t) for different values of phase-lags τΩ, τΘ and fractional order β. In both figures it has been

shown that the radial displacement is merely increasing and becomes zero at the outer boundary. The re-

sults shown also explore the fact that the wave fronts corresponding to generalized theory (β = 1, τΩ > τΘ)

are fluctuating faster than the classical thermoelasticity theory (β = 0, τΩ = τΘ). From figure-3(b), col-

lectively it has been found that the radial displacement component variations are directly proportional to

the fractional order β.

Figure 4(a) & 4(b), represents the angular displacement component uθ(r, θ, t) within the hollow sphere.

The displacement variation is increasing along radial distance and finally approaches to some non-zero

value. Comparing the variations it could be seen that wave fronts corresponding to τΩ = τΘ are lagging to

the wave fronts subjected to case τΩ > τΘ. The wave fronts obtained for fractional theory corresponding

to τΩ > τΘ shows similar results. Moreover, the thermal investigations corresponding to various fractional

orders by fixing phase-lags, it could be reasonably inferred that the displacement components are directly

proportional to the fractional order β.

Figure 5(a) & 5(b), shows radial thermal stress variations for classical, fractional and generalized thermo-

elasticity theory considering various phase-lags and fractional orders are found to be compressive. It has

been noticed in the results that stress variations are more inside the spherical region as compared to outer

boundaries. Moreover, figures reveal that results obtained for fractional order β = 0.95 are dominating

as compared to classical and generalized theory. The traction free boundary condition is satisfied in both

investigations.

Figure 6(a) & 6(b), exhibits hoop thermal stress σθθ(r, θ, t) variation for classical, fractional and gene-

ralized thermoelasticity theory considering various phase-lags and fractional orders. It has been found

that the wave front expresses the tensile stress variations corresponding to τΩ = τΘ that shows negligible

fluctuations however the significant fluctuations have been found for the wave fronts corresponding to

τΩ > τΘ. Hoop stress component σθθ is compressive for 0 < r < 0.4 and tensile for the rest of the region.
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Figure 7(a) & 7(b), shows that the spherical boundaries are free of hoop stress σφφ(r, θ, t) . Hoop stresses

are found to be compressive for 0 < r < 0.3, however the wave fronts are quite close for classical τΩ = τΘ

fractional and hyperbolic τΩ > τΘ theories except for one of the FDPL corresponding to β = 0.90. Obser-

ving figure 7(b), it can be observed that the hoop stress variations are found to be inversely proportional

to fractional order applied to the model.

Figure 8(a) & 8(b), describes the shear thermal stress σrθ(r, θ, t) present inside the hollow sphere for classi-

cal, fractional and generalized thermoelasticity cases on varying the lags and fractional orders respectively.

Graphically the results are similar and satisfying the traction free boundary conditions.

5. Conclusions

A well-posed fractionally ordered dual-phase-lag heat conduction model within the framework of two-

temperature thermoelasticity theory has been derived in the presented manuscript. The generalized heat

conduction equation (7) has been re-examined for several variations in phase-lags and fractional orders

applied, depending upon the numerical values of phase-lags τΩ, τΘ and fractional order β, the classical

coupled and generalized theory of thermoelasticity has been recovered.

Implementation of the delay time translations of heat flux vector (
−→
Ω ) denoted by τΩ and temperature

gradient (∇T ) represented by τΘ where τ = τΩ − τΘ > 0, converts the governing heat equation in the

hyperbolic form, that leads to attain the definite speed of thermal wave propagation given by

√
Γ(β + 1)

ητβΩ
.

The formulation shown in the current article, revealed that several cases of early derived classical, coupled

and generalized thermoelastic models have been found to be compatible with the presented model in the

context of two-temperature theory.

Resulting time domain numerical values of several thermal parameters obtained in this fractional order

DPL model derived in reference to the two-temperature theory are found to fulfill all the imposed physical

restrictions prescribed in the given model for different values of fractional order and phase-lag variations.

Subjected to the hyperbolic (τΩ − τΘ > 0) and parabolic (τΩ = τΘ = 0) status of governing equation (13)

remarkably distinguished outcomes have been detected for these two cases, moreover the couple of sets of

results obtained for the phase-lag and fractional order variations are found to be closely similar to each

other.

As per the resulting outcomes found in the given model, it is reasonably good to claim that fractional

order of time derivative β and applied phase-lags τΘ, τΩ could be scientifically applied to classify distinct

materials according to their capacity to conduct the heat.
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