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Abstract: The one dimensional time-dependant heat transfer equation in a vertical direction is introduced in terms of general formula of density and thermal conductivity. One-parameter Lie symmetry group transformation is used to determine the suitable forms of density and thermal conductivity of the water based on experimental measurements. The general equation is investigated again using Lie group analysis after substitution by the two possible cases of water density and thermal conductivity from the first part. The obtained partial differential equation is solved numerically using explicit 4th and 5th Runge-Kutta formula or analytically if it is possible by assuming the physical parameters of Lake Tahoe in the Sierra Nevada of the United States. The temperature distribution across the lake depth from each case is illustrated graphically to indicate the thermal stratification phenomenon of lakes.       
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1. Introduction

     Although lakes can be dangerous for drinking, it is considered as an important source of water required in industrial sector. Lake water is used extensively for cooling purposes especially for power generation. Both fossil-fuelled and nuclear power stations are major users of cooling water, also heavy industries like steel mills and chemical plants require large quantities. Therefore, a lot of researchers are interested in the thermal structure of lakes to reach the optimum utilization and control its side effect such as pollution, evaporative losses, chemical and biological poisoning and so on.

     Naturally, the water surface of lakes absorbs the solar radiation at rabid rates during early spring and this cause a change in the temperature at different depths in the lake. Winds currents begin to transport the increasing heat down to the bottom layers. The temperature reduces gradually in the direction to the bottom until reaching the saturation level at 
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  (the temperature of the maximum density for water) [1]. This phenomenon called “thermal stratification” which can be defined as the process of dividing the water in the lakes into layers due to the change in water's density with temperature. Lakes water can be divided into three main layers [2]: 

(1) Warm on the top of the lake (epilimnion), 

(2) A rapid temperature changing region changes its depth through the day according to the degree of heating and the characteristics of lake water called metalimnion or thermocline, 
(3) Cold below in the bottom (hypolimnion). 

     Boehrer and Schultze [3] reported an interesting review about stratification features and how this phenomenon occurs. Hondzo and Stefan [4], Abd-el-Malek [5], Bonnet et al. [6], Momii and Ito [7] and Belolipetsky, et al. [8] were interesting in the analytical studies of the time dependant vertical direction of temperature in lakes water in different conditions. 
     The one-dimensional heat transfer equation of a fluid is modelled by a non-linear partial differential equation which has physical symmetries properties. At the 19th century, Sophus Lie introduced a standard method, Lie symmetry transformation, to find out solutions of ordinary and partial differential equations. The mathematical technique of Lie symmetry transformation reduces the order of an ordinary differential equation by one or dimension of a partial differential equation(s) if it is invariant under one-parameter Lie group transform condition by applying simple assumptions and steps as it discussed in [9-16]. 

     Generally, Lie group method is widely used in the study of the symmetries of partial differential equations which is a central issue in many nonlinear mathematical physics applications. Boutros et al. [17] studied the governing equations of the incompressible viscous fluid flow on a heated stretching sheet placed in porous medium using Lie group method. Abd-el-Malek and Amin used Lie group analysis to obtain a closed form solution for the non-linear inviscid flows with the existence of a free surface under gravity [18] and to solve the generalized Burgers’, Burgers’–KdV and KdV Equations [19]. Reddy [20] and Sivasankaran et al. [21] used Lie group analysis for investigation the heat and mass transfer on an inclined surface. Recently, the nanofluids studies extremely increase due to their greatly enhanced thermal properties. Rosmila et al. [22] and Hamad and Ferdows [23], Hamad et al. [24] and Rashidi et al. [25] have Applied Lie group method in their researches about the free-convective flow of the nanofluids. Abd-el-Malek and Hassan [26] investigated the problem of nuclear fuel fission product with Lie group method.     

     In the present work we applied one-parameter Lie group transformation to the general form of heat transfer equation to find a suitable formulas of the unknown parameters, density and thermal conductivity, in the view of the initial and boundary conditions related to the physical parameters of Lake Tahoe in the Sierra Nevada of the United States. Then, the equation will be re-analysed using Lie group transformation after substitution by the obtained forms of density and thermal conductivity. The generated equations are solved analytically or numerically by explicit Runge-Kutta formula using measured parameters for Lake Tahoe. The obtained results which represent the temperature distribution in terms of time and vertical depth are illustrated graphically.

2. Mathematical Analysis of the general heat transfer equation

        For deep lakes, the temperature distribution of the lake water is generally simulated by one-dimensional temperature model in vertical direction. From Fourier’s law and conservation of energy, the generalized mathematical model of the one-dimensional (vertical-dimension) heat transfer equation for a deep lake is written as
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where 
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 is the time-dependant temperature, the terms
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represent the density and the thermal conductivity, respectively, and the rate of generating the thermal energy is represented by the rate of absorbing the solar radiation 
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       Density and thermal conductivity take the form
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  Initially,
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According to Girgis and Smith [28], the temperature is decreasing with the depth until reaching saturation level at 4
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Write, 

       
[image: image12.wmf]0

)

,

(

)

,

(

T

t

z

T

t

z

w

-

=

                                                                               (2.5)        
Then equation (2.1) takes the form
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The initial and boundary conditions (2.3) and (2.4) take the form
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The aim of this section is to find out the possible forms for the unknown functions 
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in order to get the mathematical representation of the thermal conductivity and density of the lake’s water. The one-parameter 
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 Lie group infinitesimal transformation leaving equation (2.6) invariant is defined by 
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This has the following infinitesimal generator defined as follows:

[image: image18.wmf]  

R

h

q

g

w

t

z

X

R

h

q

g

w

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

º

h

h

h

h

u

h

h

t

z

u

                  (2.9)

Since the highest derivative in equation (2.6) is second order derivative, the infinitesimal generator is prolonged to the second order. Then, applying the invariance condition 
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Solving the system of determining equations (2.10) gives,
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The form of 
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 can be determined from the auxiliary equations according to the symmetry operator X
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Then, each one of 
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  takes one of the following forms: const, natural exponential function or powers function.
Physically, temperature falls while density increases with increasing depth. In order to match mathematical results from Lie group analysis and this physical fact, density-temperature-depth relation takes the form
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Thermal conductivity records a significant change during wide range of heat changing
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) can be neglected. Also, the slight change of thermal conductivity with depth is illustrated by Davis et al. [27] leads to two assumptions for the thermal conductivity,
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In the following analysis, we will discuss these two cases of the proved forms of density and thermal conductivity as follows:

Case (1): 
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3. Lie analysis for density and thermal conductivity cases
3.1. Case (1): 
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The differential equation (2.1) in this case, takes the form 
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Consider the one-parameter Lie infinitesimal transformation applied to 
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Equation (3.1) has symmetries properties generated by the infinitesimal vector field 
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Due to the existence of the second order derivative as the highest derivative in equation (3.1), the infinitesimal vector field is prolonged to the second order. 

Assume that
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Then, the vector field
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Applying this invariance condition, we get the following determining equations:


[image: image49.wmf]ï

ï

ï

þ

ï

ï

ï

ý

ü

+

=

+

+

-

=

=

=

=

=

=

=

R

R

w

m

w

z

t

R

w

t

R

w

z

 

 

 

 

2

 

)

(

0

0

z

l

h

j

z

h

z

l

m

t

z

z

z

t

t

t

                                                                                    (3.5)

Solving the system of determining equations (3.5) yields,
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The auxiliary equation according to the symmetry generator X can be expressed as
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According to the initial and boundary conditions (2.7), there are two cases

Case (a): 
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Hence,             
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After reduction, equation (3.1) will be
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The sun is considered as the natural heating source whose radiation is absorbed within the water surface of the lake. Then, the rate at which solar radiation is absorbed by the water relates directly to the water temperature distribution, 
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Case (b): 
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Hence,      
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Substitution with (3.13) into (3.1) with replacing
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        The previous nonlinear equation has been solved numerically by 4th and 5th Runge-Kutta method assuming the physical parameters of Lake Tahoe in the Sierra Nevada of the United States. The submarine photometric measurements in Lake Tahoe (1965) determined the initial temperature is 
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 and the effective approximation depth of the lake is 400 m. According to the absorption characteristics of Lake Tahoe introduced by Dake and Harlemen [29], the unknown terms takes the following values:
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      Corresponding to figure 1 which represents the temperature distribution at 
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 the temperature changes with depth is almost neglected. This contradicts the phenomenon of thermal stratification and then we consider m = 1 in our case of study.

As 
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, the differential equations (3.11) and (3.14) take the form
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         Due to the huge similarity between the temperatures distributions obtained from equation (3.15) and (3.16) as it explained in figure 2 it is enough to show the result obtained from (3.16).

       Figure 3 indicates the temperature decreasing against the vertical depth for different values of the constant 
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 at a certain time (40 days). 
Figure 4 represents the temperature distribution for different times assuming that
[image: image78.wmf]14095
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 and it shows that after a period of 150 days the rate of heat absorption from the sun almost equals the radiation mentioned in Girgis and Smith [28], then the temperature distribution considered at a saturation decaying level. 

      However, the seasonal lake thermal stratification at spring is obviously illustrated in our analysis of heat transfer equation. Generally, the lake temperature profile introduced in figure 3 and 4 separates into three zones: 

(1) The upper lake region (epilimnion) which is characterized by a small temperature gradient per meter to depth.

(2) The transitional layer (metalimnion or thermocline) with a noticeable rapid temperature changing rate.

(3) The bottom lake region (hypolimnion) where the water temperature decreases slowly until reaching 
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 and at this point the water has uniform temperature all the way down to the deep. 

3.2. Case (2): 
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The differential equation (2.1) in this case will be in the form of 
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       Due to the similarity with equation (3.1), applying the same one-parameter Lie infinitesimal transformation (3.2) to equation (4.1) considering the infinitesimal vector field (3.3), the invariance condition leads to the following determining equations:
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Solving the system of determining equations (4.2) yields,
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The auxiliary equation according to the symmetry generator X can be expressed as
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Hence,  
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According to initial condition (2.3), 
[image: image87.wmf]0

)

(

=

q

f

  at 
[image: image88.wmf]0

=

t

, then 
[image: image89.wmf]0

3

=

c

 and equation (4.1) takes the form 
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where 
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due to the direct relation between the rate of solar absorption and the temperature distribution of the water. In order to keep the effect of the constant m on all terms of equation (4.6), assuming 
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       The effect of changing the value of constant m in the temperature distribution in this case is plotted in figure 5. The rate of temperature decays slowly for 
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 but, generally, the temperature profiles follow the same behaviour as
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For 
[image: image97.wmf]1

=

m

, the differential equation (4.7) will be
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Hence,                              
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where 
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 for Lake Tahoe. 
        Figure 6 indicates the temperature decreasing with depth increasing for different values of the constant 
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 after 40 days. 
       Figure 7 gives the temperature profile at different times assuming that
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 in order to show that decaying rate of temperature distribution after 150 days is almost stable. 

4. Conclusions
     Lie group transformation is applied to the vertical heat transfer equation of a deep lake with a general expression of water density and conductivity. It is proved that density and thermal conductivity can only take a specific form: const, exponential function or powers function. Lie group method is also used to analyse the most suitable two cases of density and conductivity. In order to illustrate the temperature distribution in both cases, ordinary differential equations are solved numerically or analytically if it possible. The physical parameters used in this analysis belong to Lake Tahoe in the United States as an example of stagnant lake. For case 1, It is proved that density has more specific formulation (m=1 only) in order to agree with the physical concept of lakes thermal stratification. The results are illustrated graphically to describe the change of lake temperature distribution with time and specific water constant 
[image: image103.wmf]a

 during early spring. It is proved that solar absorption rate equals the average daily radiation after a period of 150 days which is reflected as saturation behaviour of temperature distribution. The plotted temperature profiles in all figures indicate the three main layers which forms the thermal stratification phenomenon.
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