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Periodic solutions for feedback control

coupled systems on networks

Shang Gaoa, Ying Guob∗†, Zhaoqin Cao,b and Chunrui Zhanga

In this paper, we consider the existence of periodic solutions for feedback control coupled systems on networks (FCCSNs)

by a novel approach, which is made up of the continuation theorem of coincidence degree theory, Kirchhoff’s matrix tree

theorem in graph theory, Lyapunov method, and some analysis skills. As an application of our approach, the existence

and global asymptotic stability of periodic solutions for feedback control coupled oscillators on networks are investigated.

Finally, an example and its numerical simulations are given to illustrate the effectiveness and feasibility of our results.
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1. Introduction

In the real world, complex networks are all around us, most of which could be described by control coupled systems on networks

(CCSNs), such as neural networks, complex ecology, natural science, engineering, etc. [1–6]. Over the past few decades, CCSNs

have been capturing the interest of many researchers and great progress has been made in related research. In particular, the global

dynamics for CCSNs have been playing an important role in its studies, and lots of relevant results have been acquired [7–10].

However, CCSNs are always continuously distributed by unpredictable factors in the real world. Naturally, researchers will consider

whether CCSNs can withstand those unpredictable disturbances which insist on a finite period of time. Therefore, in order to

better solve some practical problems of engineering, physic and complex biology, it is significant that feedback control coupled

systems on networks (FCCSNs) need to be studied. In view of control theory, the disturbance functions are regarded as control

variables, which are seen as constants or time dependent variables in many papers [11–13]. It is well known that, the periodicity

is one of the most important dynamical properties and is widely existent in many systems, such as biological systems, electronic

systems and neural networks [14–18]. Moreover, periodicity widely exists in our daily life, such as the change of seasons, the

turning of tides, and the reproduction of life. As a matter of fact, the existence of periodic solutions for periodic systems and

the equilibrium for autonomous systems play the equally momentous role, which are basic and significant matters in the study

of FCCSNs. Therefore, our investigation about the existence of periodic solutions for FCCSNs is highly necessary.

Scholars have done a lot of work on the existence of periodic solutions for systems by plenty of typical methods, such

as fixed point theorem, the upper and lower solutions method, and coincidence degree theory, then many results have been

reported [19–23]. It is worth noting that coincidence degree theory is a powerful one. However, due to the complexity of FCCSNs,
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the existence of periodic solutions for FCCSNs relies on not only each vertex control system but also network structure, which

makes it extremely hard to estimate the priori bounds of unknown solutions of operator equation Lx = λNx by only using

coincidence degree theory. Fortunately, based on graph theory, Li and Shuai offered a novel method that permits one to

construct a global Lyapunov function for coupled systems on networks [24]. And then this method was applied by many scholars

to investigate the stability for many coupled systems on networks [25–32]. Inspired by the facts above, in this paper, we attempt

to employ both graph theory and Lyapunov method to solve the mentioned previous difficulties.

Motivated by the above discussions, by using Kirchhoff’s matrix tree theorem in graph theory and Lyapunov method, we

shall estimate the priori bounds of unknown solutions of operator equation Lx = λNx , where the appropriate λ is independently

chosen. Then, based on the continuation theorem of coincidence degree theory, the existence of periodic solutions for FCCSNs

can be researched. Moreover, by this approach, we can also attempt to derive some sufficient criteria to determine the existence

and global asymptotic stability of periodic solutions for feedback control coupled oscillators on networks. Our main contributions

and novelties are as follows.

1. Combining with the continuation theorem of coincidence degree theory, Kirchhoff’s matrix tree theorem in graph theory,

Lyapunov method, and some new analysis skills, we investigate the existence of periodic solutions for FCCSNs.

2. A novel approach is given to estimate the priori bounds of unknown solutions for the equation Lx = λNx by employing

Kirchhoff’s matrix tree theorem in graph theory, Lyapunov method and some analysis skills.

3. An application to the existence and global asymptotic stability of periodic solutions for feedback control coupled oscillators

on networks and its numerical simulations are proposed.

The organization of this paper is as follows. In Section 2, we recall some preliminaries and model formulation. In Section 3,

the existence of periodic solutions for FCCSNs is investigated. In Section 4, our approach is applied to obtain some sufficient

criteria of the existence and global asymptotic stability of periodic solutions for feedback control coupled oscillators on networks.

In addition, an example and its numerical simulations are given to illustrate the effectiveness and feasibility of our results in

Section 5. Finally, some conclusions are outlined in Section 6.

2. Preliminaries and model formulation

For the sake of simplicity, we firstly give some necessary notations in Section 2.1. And then some useful definitions and lemmas

of graph theory are provided in Section 2.2. Moreover, the preliminaries from coincidence degree theory are offered in Section

2.3. In the end of this section, the model of FCCSNs is presented.

2.1. Notations

Throughout this paper, unless otherwise noted, we will use the notations below. Let R and Rn be the set of real numbers and

n-dimensional Euclidean space, respectively. Define R+ = [0,+∞), L = {1, 2, · · · , l}. The transpose of vectors and matrices
are denoted by superscript “T” and ω is a positive constant. For vector x = (x1, x2, · · · , xn)T ∈ Rn, |x | denotes the Euclidean
norm |x | = (

∑n
i=1 x

2
i )
1/2. Set C1(Rn;R+) be the family of all nonnegative functions V (x) on Rn that are continuously once

differentiable in x . Let K denote the family of all continuous nondecreasing functions µ : R+ → R+ such that µ(0) = 0 and
µ(r ) > 0 if r > 0. If µ is also unbounded, then it is of class K∞. Let K∨ present the family of all convex functions ϕ ∈ K∞.
Other notations will be explained where they first appear.

2.2. Graph theory

We introduce some basic concepts on graph theory [33, 34]. A directed graph or digraph G = (H,E) contains a set H =
{1, 2, · · · , l} of vertices and a set E of arcs (i , j) leading from initial vertex i to terminal vertex j . A subgraph H of G is said to
be spanning if H and G have the same vertex set. A digraph G is weighted if each arc (j, i) is assigned a positive weight ai j . In
our convention, ai j > 0 if and only if there exists an arc from vertex j to vertex i in G. The weight W (H) of a subgraph H is
the product of the weights on all its arcs. A directed path P in G is a subgraph with distinct vertices {i1, i2, · · · , im} such that
its set of arcs is

{

(ik , ik+1) : k = 1, 2, · · · , m − 1
}

. If im = i1, we call P a directed cycle. A connected subgraph T is a tree if it
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contains no cycles, directed or undirected. A tree T is rooted at vertex i , called the root, if i is not a terminal vertex of any arcs,
and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph Q is unicyclic if it is a disjoint union of
rooted trees whose roots form a directed cycle. Given a weighted digraph G with l vertices, define the weight matrix A = (ai j)l×l
whose entry ai j equals the weight of arc (j, i) if it exists, and 0 otherwise. Denote the directed graph with weight matrix A as

(G, A). A digraph G is strongly connected if for any pair of distinct vertices, there exists a directed path from one to the other.
A weighted digraph (G, A) is said to be balanced if W (C) = W (−C) for all directed cycles C. Here, −C denotes the reverse of C
and is constructed by reversing the direction of all arcs in C. For a unicyclic graph Q with cycle CQ, let Q̃ be the unicyclic graph
obtained by replacing CQ with −CQ. Suppose that (G, A) is balanced, then W (Q) = W (Q̃). The Laplacian matrix of (G, A) is
defined as

L =















∑

k 6=1 a1k −a12 · · · −a1l
−a21

∑

k 6=2 a2k · · · −a2l
...

...
. . .

...

−al1 −al2 · · ·
∑

k 6=l alk















.

The following results is standard in graph theory, and customarily called Kirchhoff’s matrix tree theorem.

Lemma 1. [35] (Kirchhoff’s matrix tree theorem)Assume that l ≥ 2. Then

ci =
∑

T ∈Ti

W (T ), i = 1, 2, · · · , l ,

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and W (T ) is the weight of T . In particular, if
(G, A) is strongly connected, then ci > 0 for 1 ≤ i ≤ l .

Lemma 2. [24] Assume that l ≥ 2. Let ci denote the cofactor of the i-th diagonal element of L. Then the following identity
holds:

l
∑

i ,j=1

ciai jFi j(xi , xj) =
∑

Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs(xr , xs).

Here Fi j(xi , xj ) : R
ni × Rnj → R, 1 ≤ i , j ≤ l are arbitrary functions, Q is the set of all spanning unicyclic graphs of (G, A), W (Q)

is the weight of Q, and CQ denotes the directed cycle of Q. In particular, if (G, A) is strongly connected, then ci > 0 for i ∈ L.

2.3. Coincidence degree theory

Now we shall summarize below some concepts and a lemma from [36] that will be basic for this paper. Let X,Z be normed

vector spaces, L : DomL ⊂ X → Z be a linear mapping, and N : X → Z be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dim KerL = codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index
zero, and there exist continuous projectors P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ = Im(I −Q). It
follows that L|DomL ∩ KerP : (I − P )X → ImL is invertible. We denote the inverse of that map by Kp. If Ω is an open bounded
subset of X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and Kp(I −Q)N : Ω̄→ X is compact. Since
ImQ is isomorphic to KerL, there exists isomorphism J : ImQ→ KerL.

Lemma 3. [36] (Continuation theorem) Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄. Suppose

that the following conditions hold.

(P1) For each λ ∈ (0, 1), very solution x of Lx = λNx is such that x /∈ ∂Ω;
(P2) For each x ∈ KerL ∩ ∂Ω, QNx 6= 0, and

deg{JQN,Ω ∩ kerL, 0} 6= 0,

where deg is the Brouwer degree.

Then the equation Lx = Nx has at least one solution in DomL ∩ Ω̄.
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2.4. Model formulation

We describe FCCSNs based on a weighted digraph (G, A) with l (l ≥ 2) vertices. The directed arc of digraph (G, A) represents
the interaction between two dynamic vertices of the networks. In the i-th vertex (i ∈ L), we assign a feedback control system,
whose dynamics are described by (see Figure 1):







ẋi (t) =fi
(

t, xi(t), ui(t)
)

,

u̇i(t) =− ηi(t)ui(t) + bi(t)xi (t), i ∈ L,

where xi ∈ R, ui ∈ R are the system state and indirect control variable, respectively, fi : R+ × R× R→ R is continuous and
fi(t, ·, ·) = fi(t + ω, ·, ·). In addition, ηi(t), bi(t) are continuous ω-periodic functions.
Assume that Ci j(xj − xi) represents the linear coupling influence from vertex j to vertex i and Ci j = 0 if and only if there exists

no arc from j to i in (G, A). Hence, we get the following FCCSNs (see Figure 2):















ẋi(t) =fi
(

t, xi (t), ui(t)
)

+

l
∑

j=1

Ci j
(

xj(t)− xi(t)
)

,

u̇i(t) =− ηi(t)ui(t) + bi(t)xi (t), i ∈ L.

(2.1)

We denote the solution of system (1) by x̃(t) = (x1(t), u1(t) · · · , xl(t), ul(t))T ∈ R2l . Consider the following initial value for
system (1):

x̃(0) = x̃0 ∈ R2l .

For simplicity, we always write x̃(t) = x̃(t, x0).

3. The existence of periodic solutions for FCCSNs.

The objective of this section is to use the continuation theorem of coincidence degree theory, Kirchhoff’s matrix tree theorem

in graph theory, Lyapunov method, and some novel analysis skills to investigate the existence of ω-periodic solutions for system

(1). And, we state the significant results of this paper in the following, which are sufficient criteria of the existence of periodic

solutions for system (1).

Theorem 1. Suppose that the following assumptions are satisfied for any i ∈ L.
Q1. There exist positive constants γi , functions ϕi , µi ∈ K∞, Vi

(

xi
)

∈ C1(R;R+), Fi j(xi , xj), and a matrix A = (ai j)l×l , ai j ≥ 0
such that

µi (|xi |) ≤ Vi (xi) (3.1)

and
dVi
(

xi(t)
)

dt
≤ −ϕi

(

Vi(xi(t))
)

+

l
∑

j=1

ai jFi j
(

xi(t), xj(t)
)

+ γi . (3.2)

Q2. The digraph (G, A) is strongly connected and along each directed cycle C of weighted digraph (G, A), there is

∑

(j,i)∈E(CQ)

Fi j(xi , xj ) ≤ 0. (3.3)

Q3. Suppose that
1

ω

∫ ω

0

fi(t, xi , ui)dt = xihi(xi , ui),

where hi(xi , ui) < 0.

Then system (1) has at least one ω-periodic solution.

Proof. The proof is rather technical and we shall divide the whole proof into several steps for the reader’s convenience.
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Step 1. Considering the large dimension of the system (1), in this step, we try to give a new equivalent system, which can

reduce the dimension of the original system (1) and facilitate the research.

Since each ω-periodic of the equation

u̇i(t) = −ηi(t)ui(t) + bi(t)xi (t)

is equivalent to that of the equation

ui(t) =

∫ t+ω

t

Gi(t, s)bi(s)xi (s)ds , (Φxi )(t)

and vice versa, where

Gi(t, s) =
exp{

∫ s

t ηi(r )dr}
exp{

∫ ω

0 ηi(r )dr} − 1
.

It is easy to see that ui(t) = ui(t + ω). In fact,

ui(t + ω) =

∫ t+2ω

t+ω

Gi(t + ω, s)bi(s)xi (s)ds

=

∫ t+ω

t

Gi(t + ω, ξ + ω)bi(ξ + ω)xi (ξ + ω)dξ

=

∫ t+ω

t

Gi(t + ω, ξ + ω)bi(ξ)xi (ξ)dξ.

Here

Gi(t + ω, ξ + ω) =
exp{

∫ ξ+ω

t+ω
ηi(r )dr}

exp{
∫ ω

0
ηi(r )dr} − 1

=
exp{

∫ ξ

t
ηi(ζ + ω)dζ}

exp{
∫ ω

0
ηi(r )dr} − 1

=
exp{

∫ ξ

t
ηi(ζ)dζ}

exp{
∫ ω

0
ηi(r )dr} − 1

= Gi(t, ξ),

and then

ui(t + ω) =

∫ t+ω

t

Gi(t + ω, ξ + ω)bi(ξ)xi (ξ)dξ

=

∫ t+ω

t

Gi(t, ξ)bi(ξ)xi (ξ)dξ

=ui(t).

Therefore, the existence problem of ω-periodic solution x̃(t) ∈ R2l for system (1) is equivalent to that of ω-periodic solution
x(t) = (x1(t), · · · , xl(t))T ∈ Rl of the following system (5)

ẋi(t) = fi
(

t, xi (t), (Φxi )(t)
)

+

l
∑

j=1

Ci j
(

xj(t)− xi(t)
)

, i ∈ L. (3.4)

This means that we only need to research the existence of ω-periodic solution for system (5).

Step2. In order to apply Lemma 3 to system (5), first of all, some useful function spaces and their norms are stated. Define

X = Z =
{

x(t) ∈ C(R,Rl) : x(t + ω) = x(t)
}

and

‖x‖ =
(

l
∑

i=1

(

max
t∈[0,ω]

∣

∣xi(t)
∣

∣

)2

)

1
2
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for any x ∈ X(or Z). Then X and Z are Banach spaces with the norm ‖ · ‖. Let

Nx =























f1
(

t, x1(t), (Φx1)(t)
)

+

l
∑

j=1

C1j
(

xj(t)− x1(t)
)

...

fl
(

t, xl(t), (Φxl )(t)
)

+

l
∑

j=1

Cl j
(

xj (t)− xl(t)
)























,

Qz =
1

ω

∫ ω

0

z(t)dt, Lx = ẋ =
dx(t)

dt
, Px =

1

ω

∫ ω

0

x(t)dt, x ∈ X, z ∈ Z.

Obviously,

KerL =
{

x ∈ X : x = c ∈ Rl
}

,

ImL =

{

z ∈ Z :
∫ ω

0

z(t)dt = 0

}

,

dim KerL = l = codim ImL.

Since ImL is closed in Z, L is a Fredholm mapping of index zero. It is easily show that P and Q are both continuous projectors

such that

ImP = KerL, ImL = KerQ = Im(I −Q).

Furthermore, the generalized inverse of L

Kp : ImL→ KerP ∩ DomL

exists and is given by

Kp(z) =

∫ t

0

z(s)ds − 1
ω

∫ ω

0

∫ t

0

z(s)dsdt.

Thus,

QNx =























1

ω

∫ ω

0

[

f1
(

t, x1(t), (Φx1)(t)
)

+

l
∑

j=1

C1j
(

xj (t)− x1(t)
)

]

dt

...

1

ω

∫ ω

0

[

fl
(

t, xl(t), (Φxl )(t)
)

+

l
∑

j=1

Cl j
(

xj(t)− xl(t)
)

]

dt























and

Kp(I −Q)Nx =























∫ t

0

[

f1
(

s, x1(s), (Φx1)(s)
)

+

l
∑

j=1

C1j
(

xj(s)− x1(s)
)

]

ds

...

∫ t

0

[

fl
(

s, xl(s), (Φxl )(s)
)

+

l
∑

j=1

Cl j
(

xj (s)− xl(s)
)

]

ds























−























1

ω

∫ ω

0

∫ t

0

[

f1
(

s, x1(s), (Φx1)(s)
)

+

l
∑

j=1

C1j
(

xj (s)− x1(s)
)

]

dsdt

...

1

ω

∫ ω

0

∫ t

0

[

fl
(

s, xl(s), (Φxl)(s)
)

+

l
∑

j=1

Cl j
(

xj (s)− xl(s)
)

]

dsdt






















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−























(

t

ω
− 1
2

)∫ ω

0

[

f1
(

t, x1(t), (Φx1)(t)
)

+

l
∑

j=1

C1j
(

xj (t)− x1(t)
)

]

dt

...

(

t

ω
− 1
2

)∫ ω

0

[

fl
(

t, xl(t), (Φxl )(t)
)

+

l
∑

j=1

Cl j
(

xj(t)− xl (t)
)

]

dt























.

Clearly, QN and Kp(I −Q)N are continuous. Using the Arzela-Ascoli theorem, it is easy to show that Kp(I −Q)N(Ω̄) is compact
for any open bounded set Ω ⊂ X. Moreover, QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄ for any open bounded set Ω ⊂ X.
The isomorphism J of ImQ onto KerL can be the identity mapping since ImQ = KerL.

Step3. Now, we shall prove that there exists a constant H > 0, such that the solutions x of the operator equation Lx = λNx

satisfy ‖x‖ < H, for any λ ∈ (0, 1).
Corresponding to the operator equation Lx = λNx , λ ∈ (0, 1), we have

ẋi(t) = λ

[

fi
(

t, xi(t), (Φxi)(t)
)

+

l
∑

j=1

Ci j
(

xj (t)− xi(t)
)

]

, i ∈ L. (3.5)

Assume that x(t) ∈ X is a solution of equation (6) for a certain λ ∈ (0, 1). Let V (x) =
∑l
i=1 ciVi(xi), where ci denotes the

cofactor of the i-th diagonal element of Laplacian matrix of (G, (ai j)l×l). From the property of strong connectedness of digraph
(G, (ai j)l×l) in condition Q2, we can get that ci > 0 for any i ∈ L. Denote β =

∑l
i=1 ci . Because µi(·), ϕi(·) ∈ K∞, we can easily

finding a function α̃(·) ∈ K∨, such that α̃(ξ) ≤ min
i∈L
{µi (ξ), ϕi(ξ)}. Then, by inequality (2), one can derive that

V (x) =

l
∑

i=1

ciVi(xi) ≥
l
∑

i=1

ciµi(|xi |) ≥
l
∑

i=1

ci α̃(|xi |) ≥ βα̃
(

l
∑

i=1

ci
β
|xi |
)

≥ βα̃





min
i∈L
{ci}
β

|x |



 . (3.6)

By using inequalities (3) and (7), we can have

V̇ (x) ,
dV (x(t))

dt

=

l
∑

i=1

ci
dVi
(

xi(t)
)

dt

≤λ
l
∑

i=1

ci

[

−ϕi
(

Vi(xi(t))
)

+

l
∑

j=1

ai jFi j(xi , xj ) + γi

]

=− λβ
l
∑

i=1

ci
β
α̃
(

Vi(xi(t))
)

+ λ

l
∑

i ,j=1

ciai jFi j(xi , xj ) + λ

l
∑

i=1

ciγi

≤− λβα̃
(

l
∑

i=1

ci
β
Vi(xi (t))

)

+ λ

l
∑

i ,j=1

ciai jFi j(xi , xj) + λ

l
∑

i=1

ciγi

=− λβα̃
(

1

β
V (x(t))

)

+ λ

l
∑

i ,j=1

ciai jFi j(xi , xj ) + λ

l
∑

i=1

ciγi . (3.7)

From Lemma 2, condition Q2 and the fact W (Q) ≥ 0, it follows that

l
∑

i ,j=1

ciai jFi j
(

xi(t), xj (t)
)

=
∑

Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs
(

xr (t), xs(t)
)

≤ 0.
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Substituting this into inequality (8) yields that

V̇ (x) ≤ −λβα̃
(

1

β
V (x(t))

)

+ λ

l
∑

i=1

ciγi . (3.8)

Combining inequality (7) with inequality (9), we see that

V̇ (x) ≤ −λβα̃



α̃





min
i∈L
{ci}
β

|x |







+ λ

l
∑

i=1

ciγi .

Therefore, it is easy to observe that for |x | sufficiently large, we have V̇ (x) < 0. Recalling the fact that x(t) is a ω-periodic
solution of equation (6), and then V

(

x(t)
)

is also a ω-periodic function. So there exists H > 0, which is independent of the

choice of λ, such that ‖x‖ < H. Now, we denote Ω = {x ∈ X : ‖x‖ < H} by a open bounded subset of X. Obviously, condition
P1 in Lemma 3 is satisfied.

Step4. In this step, we shall verify the condition P2 in Lemma 3. By condition Q3, we have that

QNx =























1

ω

∫ ω

0

f1
(

t, x1,Φx1
)

dt +

l
∑

j=1

C1j
(

xj − x1
)

...

1

ω

∫ ω

0

fl
(

t, xl ,Φxl
)

dt +

l
∑

j=1

Cl j
(

xj − xl
)























=























(

h1
(

x1,Φx1
)

−
∑

j 6=1

C1j

)

x1 +
∑

j 6=1

C1jxj

...
(

hl
(

xl ,Φxl
)

−
∑

j 6=l

Cl j

)

xl +
∑

j 6=l

Cl jxj























= 0,

which has a unique solution x∗ = (0, · · · , 0)T for x ∈ KerL ∩ ∂Ω. Because













h1(x̄1,Φx̄1)−
∑

j 6=1

C1,j C1,2 · · · C1,l

...
...

. . .
...

Cl ,1 Cl ,2 · · · hl(x̄l ,Φx̄l)−
∑

j 6=l

Cl ,j













is a strictly diagonally dominant matrix, and then

QNx =























1

ω

∫ ω

0

[

f1
(

t, x1,Φx1
)

+

l
∑

j=1

C1j
(

xj − x1
)

]

dt

...

1

ω

∫ ω

0

[

fl
(

t, xl ,Φxl
)

+

l
∑

j=1

Cl j
(

xj − xl
)

]

dt























6= 0, x ∈ KerL ∩ ∂Ω.

Furthermore, direct calculation produces

deg{JQN,Ω ∩ KerL, 0} = sgn(det(G)),

where

G =





















h1(0, 0)−
∑

j 6=1

C1,j C1,2 · · · C1,l

C21 h2(0, 0)−
∑

j 6=2

C2,j · · · C2l

...
...

. . .
...

Cl ,1 Cl ,2 · · · hl(0, 0)−
∑

j 6=l

Cl ,j





















.
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It is easy to show by condition Q3 that matrix G is a strictly diagonally dominant matrix. Thus, deg{JQN,Ω ∩ KerL, 0} 6= 0.
By now, we have proved that all the conditions in Lemma 3 are satisfied. Hence, by Lemma 3, system (5) has at least one

ω-periodic solution in DomL ∩ Ω̄. The proof in Step 1 shows that the existence of ω-periodic solutions for systems (1) and (5)
are equivalent. So, system (1) has at least one ω-periodic solution. The proof is complete.

To close this section, let us make some important remarks.

Remark 1. At present, many scholars have applied coincidence degree theory to discover the existence of periodic solutions for

many systems [33,34]. However, it is very difficult to investigate the existence of periodic solutions for FCCSNs by applying

coincidence degree theory directly, because of its structural complexity and the large dimension of systems. In this paper, we

describe FCCSNs in a digraph. Obviously, the topological property of the digraph can reflect the architectural features of FCCSNs.

In Theorem 1, we give a novel analysis skill which can lower the dimension of the original system and facilitate the research. And

a systematic approach is provided to estimate the unknown solutions of equation Lx = λNx by combining Kirchhoff’s matrix

tree theorem in graph theory and Lyapunov method. Furthermore, our approach can also be used to investigate the existence

of periodic solutions for many large-scale feedback control systems.

Remark 2. In the proof of Theorem 1, we construct the global Lyapunov function V (x) for FCCSNs as V (x) =
∑l
i=1 Vi(xi ), which

is closely associated with the weight of digraph (G, A). In fact, FCCSNs are very complex. To make an improvement, FCCSNs
are coupled together in regular ways by many simple and nearly identical feedback control systems. In many application areas,

the Lyapunov functions for these feedback control coupled systems are known and can be chosen as the Lyapunov functions

Vi(xi) of vertex in Theorem 1. On the other hand, we desire the strong connectedness of the network which is a condition based

on topological property of the network anatomy. Recently, some researchers have payed attention to study the global dynamics

of the coupled systems on network where the network is not strongly connected [35]. It is worth discussing the existence of

periodic solutions for FCCSNs when the network is not strongly connected in the future.

Through Kirchhoff’s matrix tree theorem in graph theory, the quantity of the directed cycles are as the same as that of the

rooted spanning trees of weighted graph (G, A). The quantity of the rooted spanning trees of the weighted digraph (G, A) is
very large. Hence, some simply and easy verifiable conditions are discussed in the following.

In fact, if we can find some appropriate functions Fi j , such that there exist functions Ti and Tj for every i , j ∈ L satisfying

Fi j(xi , xj) ≤ Ti(xi)− Tj (xj ). (3.9)

Then it is easy to see that
∑

(j,i)∈E(CQ)

Fi j(xi , xj ) ≤
∑

(j,i)∈E(CQ)

(

Ti(xi )− Tj(xj )
)

= 0.

Clearly, condition Q2 is satisfied. Thus, it is important to construct the form of Fi j in applications. Moreover, if the digraph

(G, A) is balanced, then
l
∑

i ,j=1

ciai jFi j(xi , xj) =
1

2

∑

Q∈Q

W (Q)
∑

(j,i)∈E(CQ)

(

Fi j(xi , xj ) + Fj i(xj , xi)
)

.

Hence, inequality (4) could be replaced by

∑

(j,i)∈E(CQ)

(

Fi j(xi , xj) + Fj i(xj , xi)
)

≤ 0. (3.10)

Motivated by the above discussions, we obtain the following two corollaries immediately.

Corollary 1. Suppose that the digraph (G, A) is balanced. Then the conclusion of Theorem 1 holds if inequality (4) is replaced
by inequality (11).

Corollary 2. The conclusion of Theorem 1 holds if inequality (4) is replaced by inequality (10).
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4. The existence and global asymptotic stability of periodic solutions for feedback control

coupled oscillators on networks

To explain the effectiveness and applicability of our approach, we consider the following feedback control coupled oscillators on

networks.















ÿi(t) =pi(t)− αi (t)ẏi(t)− yi(t)− βi(t)ui(t) +
l
∑

j=1

ai j
(

xj(t)− xi(t)
)

,

u̇i(t) =− ηi(t)ui(t) + bi(t)yi(t), i ∈ L.
(4.1)

Here pi(t) is the external force, αi(t) represents the damping coefficient, βi(t) is the coefficient of indirect control variable ui ,

pi(t), αi (t), ηi(t) and bi(t) are all continuous ω-periodic functions. Matrix A = (ai j)l×l ≥ 0 is coupling strength and xj − xi is
linear coupling form.

Describe system (12) in a digraph (G, A) with l(l ≥ 2) vertices as follows: each vertex i(i ∈ L) appoints a feedback control
oscillation equation







ÿi(t) =pi(t)− αi(t)ẏi (t)− yi(t)− βi(t)ui(t),

u̇i(t) =− ηi(t)ui(t) + bi(t)yi (t).

Suppose that ai j(xj − xi) represents the influence of vertex j to vertex i [36]. Here weight constants ai j ≥ 0, and ai j = 0
if and only if there exists no arc from vertex j to vertex i in digraph (G, A). Let xi(t) = ẏi(t) + γyi (t), γ > 0. By making a
transformation, we transform system (12) into the following.



























ẋi(t) =pi(t) +
(

γ − αi(t)
)

xi(t) +
(

γαi (t)− 1− γ2
)

yi(t)− βi(t)ui(t) +
l
∑

j=1

ai j
(

xj (t)− xi(t)
)

,

ẏi(t) =xi (t)− γyi (t),

u̇i(t) =− ηi(t)ui(t) + bi(t)yi(t), i ∈ L.

(4.2)

Obviously, system (12) is equivalent to system (13), which means that we only need to research the existence of ω-periodic

solution for system (13).

Theorem 2. System (13) has at least one ω-periodic solution, if the following assumptions hold.

S1. Digraph (G, A) is strongly connected.
S2. There exist constants mk and Mk (k = 1, 2, 3, 4) such that for any i ∈ L,

0 < m1 < αi(t) < M1, 0 < m2 < βi(t) < M2, 0 < m3 < ηi(t) < M3, 0 < m4 < bi(t) < M4, (4.3)

and
2M22
m3

<
3M24
m3

< γ <
m1

3
, (M1 − γ)2 < 2. (4.4)

Proof. Let

x (i) = (xi , yi , ui), x =
(

x (1), x (2), · · · , x (l)
)T
, X = Z =

{

x(t) ∈ C(R,R3l) : x(t + ω) = x(t)
}

,

‖x‖ =
(

l
∑

i=1

(

max
t∈[0,ω]

(

|xi (t)|2 + |yi (t)|2 + |ui(t)|2
)

)

)1/2

.
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Then
(

X, ‖ · ‖
)

is a Banach space. And let

vi(t) =















pi(t) +
(

γ − αi(t)
)

xi(t) +
(

γαi (t)− 1− γ2
)

yi(t)− βi(t)ui(t) +
l
∑

j=1

ai j
(

xj(t)− xi(t)
)

xi(t)− γyi (t)

−ηi(t)ui(t) + bi(t)yi (t)















T

,

Nx =
(

v1, v2, · · · , vl
)T
, Qz =

1

ω

∫ ω

0

z(t)dt, Lx = ẋ =
dx(t)

dt
, Px =

1

ω

∫ ω

0

x(t)dt, x ∈ X, z ∈ Z.

Then KerL = R3l , ImL =
{

z ∈ Z :
∫ ω

0 z(t)dt = 0
}

is closed in Z, and dim KerL is equivalent to codim ImL, which have the

same value 3l . Hence, L is a Fredholm mapping with index zero. One can easily verify that P,Q are continuous projectors such

that ImP = KerL, ImL = KerQ = Im(I −Q), so the generalized inverse of L

Kp : ImL→ KerP ∩DomL

exists and

Kp(z) =

∫ t

0

z(s)ds − 1
ω

∫ ω

0

∫ t

0

z(s)dsdt.

We now compute

QNx =

(

1

ω

∫ ω

0

v1(t)dt,
1

ω

∫ ω

0

v2(t)dt, · · · ,
1

ω

∫ ω

0

vl(t)dt

)T

,

and

Kp(I −Q)Nx =



















∫ t

0

vT1 (s)ds −
1

ω

∫ ω

0

∫ t

0

vT1 (s)dsdt −
(

t

ω
− 1
2

)
∫ ω

0

vT1 (t)dt

...
∫ t

0

vTl (s)ds −
1

ω

∫ ω

0

∫ t

0

vTl (s)dsdt −
(

t

ω
− 1
2

)
∫ ω

0

vTl (t)dt



















.

Obviously, QN and Kp(I −Q)N are continuous. Using the Arezla-Ascoli theorem, it is not difficult to show that Kp(I −Q)N(Ω̄)
is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω̄) is bounded. Hence, N is L-compact on Ω̄.
Corresponding to the operator equation Lx = λNx , λ ∈ (0, 1), there is



























ẋi(t) =λ

[

pi(t) +
(

γ − αi(t)
)

xi(t) +
(

γαi (t)− 1− γ2
)

yi(t)− βi(t)ui(t) +
l
∑

j=1

ai j
(

xj(t)− xi(t)
)

]

,

ẏi(t) =λ[xi(t)− γyi (t)],

u̇i(t) =λ[−ηi(t)ui(t) + bi(t)yi (t)], i ∈ L.

(4.5)

Let x(t) =
(

x (1)(t), x (2)(t), · · · , x (l)(t)
)T
= (x1(t), y1(t), u1(t), · · · , xl(t), yl(t), ul(t))T ∈ X be a solution of system (13) for

some λ ∈ (0, 1) and Vi(x (i)) = 1
2 |x (i)|2. Hence, by inequalities (14), (15) and the basic inequality |2ǫa bǫ | ≤ ǫ2a2 + b2

ǫ2
, we have

dVi(x
(i)(t))

dt
=λ

[

pi(t)xi (t) +
(

γ − αi(t)
)

x2i (t) + γ(αi (t)− γ)xi (t)yi(t)− βi (t)ui(t)xi(t)− γy 2i (t)

− ηi(t)u2i (t) + bi(t)yi(t)ui(t) +
l
∑

j=1

ai j
(

xi(t)xj (t)− x2i (t)
)

]

≤λ
[

1

2

∣

∣

∣

∣

2ǫ1pi(t)
xi(t)

ǫ1

∣

∣

∣

∣

−
(

αi(t)− γ
)

x2i (t) +
1

2
|γ(αi (t)− γ)|

∣

∣

∣

∣

2ǫ2xi(t)
yi(t)

ǫ2

∣

∣

∣

∣

− γy 2i (t)− ηi(t)u2i (t)

+
1

2

∣

∣

∣

∣

2bi(t)ǫ3yi(t)
ui(t)

ǫ3

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

2βi(t)ǫ4xi(t)
ui(t)

ǫ4

∣

∣

∣

∣

+
1

2

l
∑

j=1

ai j
(

x2j (t)− x2i (t)
)

]
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≤λ
[

1

2
ǫ21p

2
i (t) +

1

2ǫ21
x2i (t)−

(

αi(t)− γ
)

x2i (t) +
1

2
|γ(αi (t)− γ)|

(

ǫ22x
2
i (t) +

1

ǫ22
y 2i (t)

)

− γy 2i (t)− ηi(t)

× u2i (t) +
1

2

(

b2i (t)ǫ
2
3y
2
i (t) +

1

ǫ23
u2i (t)

)

+
1

2

(

β2i (t)ǫ
2
4x
2
i (t) +

1

ǫ24
u2i (t)

)

+
1

2

l
∑

j=1

ai j
(

x2j (t)− x2i (t)
)

]

≤λ
[

− γ
4
x2i (t)−

m3

2
u2i (t)−

γ

6
y 2i (t) +

1

γ
p2i (t)

]

+
λ

2

l
∑

j=1

ai jFi j
(

xi(t), xj(t)
)

≤− λσ|x (i)(t)|2 + λ
γ
p2i (t) +

λ

2

l
∑

j=1

ai jFi j
(

xi(t), xj(t)
)

,

where ǫ21 =
2
γ
, ǫ22 = M

2
1 − γ, ǫ23 = ǫ24 = 2

m3
, σ = min{3m3, γ} > 0, and Fi j(xi , xj ) = (x2j − x2i ).

Set V (x) =
∑l
i=1 ciVi(x

(i)), where ci denotes the cofactor of the ith diagonal element of Laplacian matrix of (G, (ai j)l×l).
From condition S1, that is, the property of strong connectedness of digraph (G, (ai j)l×l) which implies ci > 0, for any i ∈ L, one
can easily get that

V̇ (x) ,
dV (x(t))

dt

=

l
∑

i=1

ci
dVi
(

x (i)(t)
)

dt

≤ −λσ
l
∑

i=1

ci |x (i)(t)|2 +
λ

γ

l
∑

i=1

cip
2
i (t) +

λ

2

l
∑

i ,j=1

ciai jFi j
(

xi(t), xj(t)
)

≤ −λσV (x(t)) + λ
γ
max

t∈[0,ω],i∈L
{p2i (t)}

l
∑

i=1

ci +
λ

2

l
∑

i ,j=1

ciai jFi j
(

xi(t), xj(t)
)

. (4.6)

On the other hand, along every directed cycle C of the weighted digraph (G, A), we get

∑

(i ,j)∈E(C)

Fi j
(

xi(t), xj (t)
)

= 0.

Making use of Lemma 2 yields that

l
∑

i ,j=1

ciai jFi j(xi(t), xj(t)) =
∑

Q∈Q

W (Q)
∑

(i ,j)∈E(CQ)

Fi j(xi(t), xj (t)) = 0. (4.7)

Combining inequality (17) with equation (18), it is readily to obtain that

dV (x(t))

dt
≤ −2λσV (x(t)) + λ

γ
max

t∈[0,ω],i∈L
{p2i (t)}

l
∑

i=1

ci .

It is easily see that V̇ (x) < 0 for |x | sufficiently large. Recalling the fact that x(t) is a ω-periodic solution of system (16), hence
V
(

x(t)
)

is also a ω-periodic function. So there exists H1 > 0, which is independent of the choice of λ, such that ‖x‖ < H1.
Denote

p̄i =
1

ω

∫ ω

0

pi(t)dt, ᾱi =
1

ω

∫ ω

0

αi(t)dt,

β̄i =
1

ω

∫ ω

0

βi (t)dt, η̄i =
1

ω

∫ ω

0

ηi(t)dt, b̄i =
1

ω

∫ ω

0

bi(t)dt.
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Then for x ∈ KerL ∩ ∂Ω, we have

QNx =

















































p̄1 + (γ − ᾱ1)x1 + (γᾱ1 − 1− γ2)y1 − β̄1u1 +
l
∑

j=1

a1j(xj − x1)

x1 − γy1
−η̄1u1 + b̄1y1

...

p̄l + (γ − ᾱl)xl + (γᾱl − 1− γ2)yl − β̄lul +
l
∑

j=1

a1j(xj − xl)

xl − γyl
−η̄lul + b̄lyl

















































.

If xi = γyi , and η̄iui = b̄iyi , i ∈ L, then

p̄i + (γ − ᾱi)xi + (γᾱi − 1− γ2)yi − β̄iui +
l
∑

j=1

ai j(xj − xi) = −
(

1 +
β̄i b̄i
η̄i

)

yi + p̄i + γ

l
∑

j=1

ai j(yj − yi).

It follows easily that equation

−
(

1 +
β̄i b̄i
η̄i

)

yi + p̄i + γ

l
∑

j=1

ai j(yj − yi) = 0

has a unique solution (y ∗1 , · · · , y ∗l ) ∈ Rl . Then it implies that QNx = 0, x ∈ KerL ∩ ∂Ω has a unique solution

x∗ =

(

γy ∗1 , y
∗
1 ,
b̄1

η̄1
y ∗1 , γy

∗
2 , y

∗
2 ,
b̄2

η̄2
y ∗2 , · · · , γy ∗l , y ∗l ,

b̄l
η̄l
y ∗l

)T

.

Let ‖x∗‖ = M and H = M + H1.
Denote Ω = {x ∈ X : ‖x‖ < H} by a open bounded subset of X. Hence,

QNx 6= 0, x ∈ KerL ∩ ∂Ω.

A straight forward calculation shows that

deg{JQN,Ω ∩ KerL, 0} = sgn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ − ᾱ1 −
∑

j 6=1 a1j γᾱ2 − 1− γ2 −β̄1 · · · 0 0 0

1 −γ 0 · · · 0 0 0

0 b̄1 −η̄1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · γ − ᾱl −
∑

j 6=l al j γᾱl − 1− γ2 −β̄l
0 0 0 · · · 1 −γ 0

0 0 0 · · · 0 b̄l −η̄l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sgn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ − ᾱ1 −
∑

j 6=1 a1j ρ1 −β̄1 · · · 0 0 0

1 0 0 · · · 0 0 0

0 b̄1 −η̄1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · γ − ᾱl −
∑

j 6=l al j ρl −β̄l
0 0 0 · · · 1 0 0

0 0 0 · · · 0 b̄l −η̄l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= (−1)3l2sgn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ1 −β̄1 · · · 0 0

b̄1 −η̄1 · · · 0 0
...

...
. . .

...
...

0 0 · · · ρl −β̄l
0 0 · · · b̄l −η̄l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)3l2sgn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ1 −β̄1 + ρ1 η̄1b̄1 · · · 0 0

b̄1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · ρl −β̄l + ρl η̄lb̄l
0 0 · · · b̄l 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)5l2+l
l
∏

i=1

b̄isgn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−β̄1 + ρ1 η̄1b̄1 0 · · · 0

0 −β̄2 + ρ2 η̄2b̄2 · · · 0

...
...

. . .
...

0 0 · · · −β̄l + ρl η̄lb̄l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

where ρi = −1− γ
∑

j 6=i ai j , i ∈ L. By Lemma 3, system (13) has at least one ω-periodic solution in Ω̄. This completes the proof
of Theorem 2.

Moreover, we can show that periodic solutions of system (13) are globally asymptotically stable. Now, let us introduce the

definition of global asymptotic stability of periodic solutions as follows.

Definition 1. The ω-periodic solution x∗(t) = (x∗1 (t), y
∗
1 (t), u

∗
1(t), · · · , x∗l (t), y ∗l (t), u∗l (t))T of system (13) is said to be globally

asymptotically stable, if the following condition holds

lim
t→∞

l
∑

i=1

(

|xi (t)− x∗i (t)|+ |y(t)− y ∗i (t)|+ |ui(t)− u∗i (t)|
)

= 0

for any x0 ∈ R3l .

Theorem 3. Under the same as conditions in Theorem 2, system (13) has a unique ω-periodic solution, which is globally

asymptotically stable.

Proof. Denote x∗(t) =
(

x∗1 (t), y
∗
1 (t), u

∗
1(t), · · · , x∗l (t), y ∗l (t), u∗l (t)

)T
be a ω-periodic solution of system (13). Obviously, if x∗(t)

is globally asymptotically stable, then it must be unique. Now we claim that x∗(t) is globally asymptotically stable.

Clearly, we can get



























ẋ∗i (t) =pi(t) +
(

γ − αi (t)
)

x∗i (t) +
(

γαi (t)− 1− γ2
)

y ∗i (t)− βi (t)u∗i (t) +
l
∑

j=1

ai j
(

x∗j (t)− x∗i (t)
)

,

ẏ ∗i (t) =x
∗
i (t)− γy ∗i (t),

u̇∗i (t) =− ηi(t)u∗i (t) + bi(t)y ∗i (t), i ∈ L.

Let Xi(t) = xi (t)− x∗i (t), Yi(t) = yi(t)− y ∗i (t), and Ui(t) = ui(t)− u∗i (t). Then it yields that



























Ẋi(t) =
(

γ − αi(t)
)

Xi(t) +
(

γαi (t)− 1− γ2
)

Yi(t)− βi (t)Ui(t) +
l
∑

j=1

ai j
(

Xj(t)− Xi(t)
)

,

Ẏi(t) =Xi(t)− γYi (t),

U̇i(t) =− ηi(t)Ui(t) + bi(t)Yi(t), i ∈ L.

(4.8)
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Obviously, (0, 0, 0, · · · , 0, 0, 0)T is a solution of system (19).
Thus, we only need to show that it is globally asymptotically stable. We let X(i) = (Xi , Yi , Ui)

T and Vi(X
(i)) = 1

2 |X(i)|2.
Combining inequality (14) with inequality (15), there is

dVi(X
(i)(t))

dt
=

[

(

γ − αi(t)
)

X2i (t) + γ(αi (t)− γ)Xi (t)Yi(t)− βi (t)Ui(t)Xi(t)− γY 2i (t)− ηi(t)U2i (t)

+ bi(t)Yi (t)Ui(t) +

l
∑

j=1

ai j
(

Xi(t)Xj (t)− X2i (t)
)

]

≤
[

−
(

m1 − γ
)

X2i (t) +
1

2
|γ(M1 − γ)|

∣

∣

∣

∣

∣

2
√

M21 − γXi(t)
Yi (t)

√

M21 − γ

∣

∣

∣

∣

∣

− γY 2i (t)−m3U2i (t)

+
1

2

∣

∣

∣

∣

∣

2M4

√

2

m3
Yi(t)

√
m3Ui(t)√
2

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

2M2(t)

√

2

m3
Xi(t)

√
m3Ui(t)√
2

∣

∣

∣

∣

∣

+
1

2

l
∑

j=1

ai j
(

X2j (t)− X2i (t)
)

]

≤
[

− γ
4
X2i (t)−

m3

2
U2i (t)−

γ

6
Y 2i (t)

]

+
1

2

l
∑

j=1

ai jFi j
(

Xi(t), Xj(t)
)

≤− σ|X(i)(t)|2 + 1
2

l
∑

j=1

ai jFi j
(

Xi(t), Xj(t)
)

,

where σ = min{3m3, γ} > 0 and Fi j(Xi , Xj) = (X2j − X2i ). Set V (X̄) =
∑l
i=1 ciVi(X

(i)), where ci denotes the cofactor of the

i-th diagonal element of Laplacian matrix of (G, (ai j)l×l). From condition S1 which implies ci > 0, for any i ∈ L, we have

V̇ (X̄) ,
dV (X̄(t))

dt

=

l
∑

i=1

ci
dVi
(

X(i)(t)
)

dt

≤− σ
l
∑

i=1

ci |X(i)(t)|2 +
1

2

l
∑

i ,j=1

ciai jFi j
(

Xi(t), Xj (t)
)

(4.9)

≤1
2

l
∑

i ,j=1

ciai jFi j
(

Xi(t), Xj (t)
)

.

On the other hand, along every directed cycle C of the weighted digraph (G, A), there is

∑

(i ,j)∈E(C)

Fi j
(

Xi(t), Xj(t)
)

≤ 0.

In view of Lemma 2, it yields that

l
∑

i ,j=1

ciai jFi j(Xi(t), Xj(t)) =
∑

Q∈Q

W (Q)
∑

(i ,j)∈E(CQ)

Fi j(Xi(t), Xj(t)) ≤ 0.

Consequently, V̇ (X̄) ≤ 0. From inequality (20), we can easily get V̇ (X̄) = 0 when X̄ = 0, and V̇ (X̄) < 0 when X̄ 6= 0. Hence, by
the LaSalle invariance principle, (0, 0, 0, · · · , 0, 0, 0)T is globally asymptotically stable, which implies that the periodic solution
of system (13) is globally asymptotically stable. This completes the proof of Theorem 3.

5. Numerical simulations

In this section, to verify the effectiveness and feasibility of the theoretical results obtained in this paper, we give the numerical

simulations of system (13).
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Consider system (13) with L = {1, 2, 3, 4} and we choose γ = 0.3, pi(t) = 3 + 2 cos t,

α1(t) =
4.7 + 0.1 cos t

4
, α2(t) =

4.8 + 0.1 cos t

4
, α3(t) =

4.9 + 0.1 cos t

4
, α4(t) =

5 + 0.1 cos t

4
,

β1(t) =
2.1 + 0.5 sin t

10
, β2(t) =

2.2 + 0.5 sin t

10
, β3(t) =

2.3 + 0.5 sin t

10
, β4(t) =

2.4 + 0.5 sin t

10
,

η1(t) =
17.6 + sin t

8
, η2(t) =

17.7 + sin t

8
, η3(t) =

17.8 + sin t

8
, η4(t) =

18 + sin t

8
,

b1(t) =
3 + 0.1 cos t

10
, b2(t) =

3.4 + 0.1 sin t

10
, b3(t) =

3.5 + 0.1 sin t

10
, b4(t) =

3.2 + 0.1 cos t

10
.

The coupling graph of system (13) is assumed to be

(ai j)4×4 =













0 0.5 0.3 0.4

0.1 0 0.45 0.15

0.7 0.2 0 0.3

0.4 0.4 0.3 0













.

It easily see that assumptions S1 and S2 in Theorem 2 are satisfied. We choose

x1(0) = 0.30, y1(0) = 1.50, u1(0) = 0.50, x2(0) = 0.15, y2(0) = 0.20, u2(0) = 0.25,

x3(0) = 2.00, y3(0) = 3.00, u3(0) = 1.00, x4(0) = 0.20, y4(0) = 0.90, u4(0) = 0.60.

as the initial condition of system (13). The solution of system (13) is shown in Figures Figures 3-6, which indicates that system

(13) has a unique globally asymptotically stable ω-periodic solution clearly. The outcomes of numerical simulations demonstrate

the applicability of our theoretical results.

6. Conclusions

In this paper, with the help of the continuation theorem of coincidence degree theory, Kirchhoff’s matrix tree theorem in graph

theory, and Lyapunov method, a systematic approach to explore the existence of periodic solutions for FCCSNs is introduced. The

obtained sufficient criteria are closely related with topological properties of corresponding networks. By applying our approach,

the existence and global asymptotic stability of periodic solutions for feedback control coupled oscillators on networks have

been acquired. Finally, an example and its numerical simulations have been given to illustrate the effectiveness and fesibility of

our results. Moreover, our approach in this paper can also be used to investigate the existence of periodic solutions for many

large-scale feedback control systems with time delay or time-varying delay. Therefore, how to use our approach in this paper to

efficiently solve these problems will be the topic of our future research.
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