References
  1. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–7.
  2. Xu J, Zhao S, Teng T, et al. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020 Feb 22;12(2).
  3. Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol. 2020;92(4):455–459. doi:10.1002/jmv.25688
  4. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7) (Released by National Health Commission & State Administration of Traditional Chinese Medicine on March 3, 2020). Available at:http://www.kankyokansen.org/uploads/uploads/files/jsipc/protocol_V7.pdf
  5. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor [published online ahead of print, 2020 Mar 4]. Cell. 2020;S0092-8674(20)30229-4. doi:10.1016/j.cell.2020.02.052.
  6. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi:10.1007/978-1-4939-2438-7_1
  7. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi:10.1056/NEJMoa2001316
  8. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020 Mar 13;7(1):11.
  9. Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res. 2020 Jan 31;9:72.
  10. Soliman EZ, Lundgren JD, Roediger MP, et al.; INSIGHT SMART Study Group. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations. AIDS. 2011 Jan 28;25(3):367-77.
  11. Dayer M R, Taleb-Gassabi S, Dayer M S. Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study, Arch Clin Infect Dis. 2017;12(4):e13823.
  12. Arabi YM, Alothman A, Balkhy HH, et al.; The MIRACLE trial group. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials. 2018 Jan 30;19(1):81.
  13. Arabi YM, Alothman A, Balkhy HH, et al.; The Saudi Critical Care Trials group. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020 Jan 3;21(1):8.
  14. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19 [published online ahead of print, 2020 Mar 18]. N Engl J Med. 2020;10.1056/NEJMoa2001282. doi:10.1056/NEJMoa2001282
  15. Comparison of Lopinavir/Ritonavir or Hydroxychloroquine in Patients With Mild Coronavirus Disease (COVID-19). Available at:https://clinicaltrials.gov/ct2/show/NCT04307693
  16. https://www.aifa.gov.it/-/aggiornamento-sui-farmaci-resi-disponibili-per-covid-19-al-di-fuori-delle-indicazioni-terapeutiche
  17. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222.
  18. De Wit E, Feldmann F, Cronin J, et al. Prophylactic and Therapeutic Remdesivir (GS-5734) Treatment in the Rhesus Macaque Model of MERS-CoV Infection. PNAS Latest Articles 2020.
  19. Agostini ML, Andres EL, Sims AC, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9(2):e00221-18. Published 2018 Mar 6. doi:10.1128/mBio.00221-18
  20. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi:10.1038/s41422-020-0282-0
  21. Severe 2019-nCoV Remdesivir RCT. Available at:https://clinicaltrials.gov/ct2/show/NCT04257656?cond=NCT04257656&draw=1&rank=1
  22. Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Moderate Coronavirus Disease (COVID-19) Compared to Standard of Care Treatment. Available at:https://clinicaltrials.gov/ct2/show/NCT04292730?cond=NCT04292730&draw=2&rank=1
  23. https://www.lanazione.it/cronaca/coronavirus-disputa-farmaco-sperimentale-1.5053379
  24. https://www.adnkronos.com/fatti/cronaca/2020/03/24/coronavirus-antivirale-remdesivir-sperimentato-centri-italiani_Bg7OlRzi11VIFVY1gSsD1K.html
  25. Holshue ML, De Bolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. March 5, 2020. N Engl J Med 2020; 382:929-936.
  26. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-463. doi: 10.2183/pjab.93.027.
  27. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential counter measure against neglected and emerging RNA viruses. Antiviral Res. 2018 May;153:85-94. doi: 10.1016/j.antiviral.2018.03.003.
  28. https://asia.nikkei.com/Spotlight/Coronavirus/China-says-Japan-developed-drug-Avigan-works-against-coronavirus
  29. https://www.medrxiv.org/content/10.1101/2020.03.17.20037432v1
  30. Favipiravir Combined With Tocilizumab in the Treatment of Corona Virus Disease 2019. Available at:https://clinicaltrials.gov/ct2/show/NCT04310228
  31. https://www.aifa.gov.it/-/favipiravir-aggiornamento-della-valutazione-della-cts
  32. Deeks ED. Darunavir/Cobicistat/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs. 2018 Jul;78(10):1013-1024.
  33. Lin S, Shen R, He J, Li X, Guo X. Molecular Modeling Evaluation of the Binding Effect of Ritonavir, Lopinavir and Darunavir to Severe Acute Respiratory Syndrome Coronavirus 2 Proteases. bioRxiv 2020.01.31.929695.
  34. Omotuyi OI, Nash O, Ajiboye BO, et al. Darunavir Disrupts Critical Nodes in Metastable 2019-nCoV-RBD/ACE-2 Complex. Preprints 2020.2020030125
  35. Treatment of COVID-19 Cases and Chemoprophylaxis of Contacts as Prevention (HCQ4COV19). Available at:https://clinicaltrials.gov/ct2/show/NCT04304053
  36. Efficacy and Safety of Darunavir and Cobicistat for Treatment of Pneumonia Caused by 2019-nCoV (DACO-nCoV). Available at:https://clinicaltrials.gov/ct2/show/NCT04252274
  37. COVID-19 Registered Trials – and analysis. Available at: https://www.cebm.net/covid-19/registered-trials-and-analysis/
  38. Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study [published online ahead of print, 2020 Mar 25]. Life Sci. 2020;117592. doi:10.1016/j.lfs.2020.117592
  39. Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020; (published online Feb 7.) DOI:10.1001/jama.2020.1585
  40. Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76–84. doi:10.1016/j.antiviral.2015.01.011
  41. https://clinicaltrials.gov/ct2/show/NCT04321096?term=camostat&
  42. https://www.eurekalert.org/pub_releases/2020-03/tiom-nie032420.php
  43. Ota S, Hara Y, Kanoh S, et al. Acute eosinophilic pneumonia caused by camostat mesilate: The first case report. Respir Med Case Rep. 2016;19:21–23. Published 2016 Jun 16. doi:10.1016/j.rmcr.2016.06.005
  44. Bian HJ, Zheng ZH, Wei D, Zhang Z, Kang WK et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial . MedRxiv, March 24, 2020.
  45. Clinical Study of Anti-CD147 Humanized Meplazumab for Injection to Treat With 2019-nCoV Pneumonia. ClinicalTrials.gov Identifier: NCT04275245. Available at: https://clinicaltrials.gov/ct2/show/NCT04275245?term=MEPLAZUMAB&draw=2&rank=1
  46. https://www.sciencedirect.com/science/article/pii/S0166354220302011
  47. Scott LJ. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs. 2017 Nov;77(17):1865-1879.
  48. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 16.
  49. Wen Zhang, Yan Zhao, Fengchun Zhang, Qian Wang, Taisheng Li, Zhengyin Liu, Jinglan Wang, Yan Qin, Xuan Zhang, Xiaowei Yan, Xiaofeng Zeng, Shuyang Zhang, The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China, Clinical Immunology, Volume 214, 2020, 08393, ISSN 1521-6616.
  50. Xu X, Han M, Li T, Sun W, et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. ChinaXiv:20200300026.
  51. https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001386-37/IT#A
  52. https://clinicaltrials.gov/ct2/show/NCT04320615
  53. Multicenter study on the efficacy and tolerability of tocilizumab in the treatment of patients with COVID-19 pneumonia (TOCIVID-19). Available on-line from https://clinicaltrials.gov/ct2/show/NCT04317092
  54. https://clinicaltrials.gov/ct2/show/NCT04324073?id=NCT04315298+OR+NCT04321993+OR+NCT04324073&draw=2&rank=1&load=cart
  55. https://clinicaltrials.gov/ct2/show/NCT04321993?id=NCT04315298+OR+NCT04321993+OR+NCT04324073&draw=2&rank=2&load=cart
  56. https://clinicaltrials.gov/ct2/show/NCT04315298?id=NCT04315298+OR+NCT04321993+OR+NCT04324073&draw=2&rank=3&load=cart
  57. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60.
  58. M. Frisk-Holmberg, Y. Bergqvist, U. Englund Chloroquine intoxication [letter] Br. J. Clin. Pharmacol., 15 (1983), pp. 502-503, 10.1111/j.1365-2125.1983.tb01540.x
  59. E. Keyaerts, L. Vijgen, P. Maes, J. Neyts, M.V. Ranst In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine Biochem. Biophys. Res. Commun., 323 (2004), pp. 264-268, 10.1016/j.bbrc.2004.08.085
  60. E. Keyaerts, S. Li, L. Vijgen, E. Rysman, J. Verbeeck, M. Van Ranst, P. Maes Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice Antimicrob. Agents Chemother., 53 (2009), pp. 3416-3421, 10.1128/AAC.01509-08
  61. Y. Yan, Z. Zou, Y. Sun, X. Li, K.-F. Xu, Y. Wei, N. Jin, C. Jiang Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model Cell Res., 23 (2013), pp. 300-302, 10.1038/cr.2012.165
  62. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73.
  63. Inglot AD. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol. 1969;4(2):203–214.
  64. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.
  65. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020 Mar 4;105932.
  66. https://www.aifa.gov.it/-/comunicazione-aifa-sull-utilizzo-di-clorochina-e-idrossiclorochina-nella-terapia-dei-pazienti-affetti-da-covid-19-informazioni-di-sicurezza
  67. Andreu JM, Timasheff SN.. Tubulin bound to colchicine forms polymers different from microtubules. Proc Natl Acad Sci USA 1982;79:6753–6.
  68. Dalbeth N, Lauterio TJ, Wolfe HR.. Mechanism of action of colchicine in the treatment of gout. Clin Ther 2014;36:1465–79.
  69. Chia EW, Grainger R, Harper JL.. Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicine. Br J Pharmacol 2009;153:1288–95.
  70. Li Z, Davis GS, Mohr C, Nain M, Gemsa D.. Inhibition of LPS-induced tumor necrosis factor-alpha production by colchicine and other microtubule disrupting drugs. Immunobiology 1996;195:624–39.
  71. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J.. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006;440:237–41
  72. Colchicine Coronavirus SARS-CoV2 Trial (COLCORONA) (COVID-19). Available at:https://clinicaltrials.gov/ct2/show/NCT04322682
  73. Mayence A, Vanden Eynde JJ. Baricitinib: A 2018 Novel FDA-Approved Small Molecule Inhibiting Janus Kinases. Pharmaceuticals (Basel). 2019;12(1):37. Published 2019 Mar 12. doi:10.3390/ph12010037
  74. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31
  75. https://clinicaltrials.gov/ct2/show/NCT04321993?cond=Coronavirus+Infection&intr=Baricitinib&draw=2&rank=1
  76. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. pii: S1473-3099(20)30132-8.
  77. Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 2020 Mar 20:102523.
  78. Bekerman E, Neveu G, Shulla A, et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J Clin Invest 2017; 127: 1338–52.
  79. Leuchte, H. H., Baezner, C., Baumgartner, R. A., Bevec, D., Bacher, G., Neurohr, C., & Behr, J. (2008). Inhalation of vasoactive intestinal peptide in pulmonary hypertension. The European respiratory journal, 32(5), 1289–94
  80. Petkov, V., Mosgoeller, W., Ziesche, R., Raderer, M., Stiebellehner, L., Vonbank, K., et al. (2003). Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. The Journal of clinical investigation, 111(9), 1339–46.
  81. Said, S. I. (2012). Vasoactive intestinal peptide in pulmonary arterial hypertension. American journal of respiratory and critical care medicine, 185(7), 786; author reply 786.
  82. ClinicalTrials.gov – Identifier: NCT04311697 (clinicaltrials.gov/ct2/show/NCT04311697)
  83. Ip WK, Chan KH, Law HK, Tso GH, Kong EK, Wong WH, To YF, Yung RW, Chow EY, Au KL, Chan EY, Lim W, Jensenius JC, Turner MW, Peiris JS, Lau YL J Infect Dis. 2005 May 15; 191(10):1697-704.
  84. Yuan FF, Tanner J, Chan PK, Biffin S, Dyer WB, Geczy AF, Tang JW, Hui DS, Sung JJ, Sullivan JS Tissue Antigens. 2005 Oct; 66(4):291-6.
  85. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT, Baric RS. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018 Oct 9;9(5).
  86. ClinicalTrials.gov – Identifier: NCT04288713 (https://clinicaltrials.gov/ct2/show/NCT04288713)
  87. Efficacy and Safety of Emapalumab and Anakinra in Reducing Hyperinflammation and Respiratory Distress in Patients With COVID-19 Infection. Available at:https://clinicaltrials.gov/ct2/show/NCT04324021
  88. http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=4344
  89. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. Epub 2006/09/14. doi: 10.1371/journal.pmed.0030343. PubMed PMID: 16968120; PMCID: PMC1564166.
  90. Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, Lim WS. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2016;3:CD010406. Epub 2016/03/08. doi: 10.1002/14651858.CD010406.pub2. PubMed PMID: 26950335.
  91. Delaney JW, Pinto R, Long J, Lamontagne F, Adhikari NK, Kumar A et al. The influence of corticosteroid treatment on the outcome of influenza A(H1N1pdm09)-related critical illness. Crit Care. 2016;20:75. Epub 2016/04/03. doi: 10.1186/s13054-016-1230-8. PubMed PMID: 27036638; PMCID: PMC4818504
  92. https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf
  93. Ling Y, Xu SB, Lin YX, Tian D, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J(Engl).2020 Feb 28.
  94. Sung JJ, Wu A, Joynt GM, Yuen KY, Lee N, Chan PK, et al. Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. Thorax 2004; 59: 414-420. doi: 10.1136/thx.2003.014076.
  95. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136: 95-103. doi: 10.1111/j.1365-2249.2004.02415.x.
  96. Zhu L, Xu X, Ma K, Yang J, Guan H, Chen S, Chen Z, Chen G. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J Transplant. 2020 Mar 17. doi: 10.1111/ajt.15869.
  97. Markham A, Keam SJ. Camrelizumab: First Global Approval. Drugs. 2019 Aug;79(12):1355-1361.
  98. Zhu XD, Sun HC. Emerging agents and regimens for hepatocellular carcinoma. J Hematol Oncol. 2019 Oct 26;12(1):110.
  99. https://clinicaltrials.gov/ct2/show/NCT04268537
  100. U. S. Food and Drug Administration. Center for Drug Evaluation and Research. Final Labeling Text, BL125085 Supplement, 2008.
  101. The European Medicines Agency. European Public Assessment Report. Avastin Product Information. Avastin-H-C-582-II-23, August 2008
  102. Barratt S, Medford AR, Millar AB. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration. 2014;87(4):329-42. doi: 10.1159/000356034.
  103. Bevacizumab in Severe or Critically Severe Patients with COVID-19 Pneumonia-RCT (BEST-RCT) ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/NCT04305106?cond=COVID-19&draw=10
  104. Bevacizumab in Severe or Critical Patients With COVID-19 Pneumonia (BEST-CP). ClinicalTrials.gov:https://clinicaltrials.gov/ct2/show/NCT04275414
  105. Moreira AL, Corral LG, Ye W, Johnson B, Stirling D, Muller GW, Freedman VH, Kaplan G. Thalidomide and thalidomide analogs reduce HIV type 1 replication in human macrophages in vitro. AIDS Res Hum Retroviruses. 1997 Jul 1;13(10):857-63.
  106. Kwon HY, Han YJ, Im JH, Baek JH, Lee JS. Two cases of immune reconstitution inflammatory syndrome in HIV patients treated with thalidomide. Int J STD AIDS. 2019 Oct;30(11):1131-1135
  107. Mazzoccoli L, Cadoso SH, Amarante GW, de Souza MV, Domingues R, Machado MA, de Almeida MV, Teixeira HC. (2012) Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10. Biomed. Pharmacother., 66 (5): 323-9.
  108. https://clinicaltrials.gov/ct2/show/NCT04273529
  109. https://clinicaltrials.gov/ct2/show/record/NCT04273529
  110. https://www.smartpatients.com/trials/NCT04280588
  111. Chinese Clinical Trial Register (ChiCTR)-The World Health Organization International Clinical Trials Registered Organization Registered Platform. Available at: http://www.chictr.org.cn/abouten.aspx .
  112. http://apjai-journal.org/wp-content/uploads/2020/03/5_AP-200220-0773.pdf
  113. Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician. 2020 Mar;23(2):E71-E83. PubMed PMID: 32214286.
  114. Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci. 2020 Mar 25;21(7). pii: E2272. doi: 10.3390/ijms21072272. PubMed PMID: 32218340.
  115. Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18. Published 2020 Mar 6. doi:10.1038/s41541-020-0170-0
  116. https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1
  117. https://www.sciencedaily.com/releases/2020/04/200402144508.htm
  118. https://science.sciencemag.org/content/368/6486/14
  119. The Liverpool Drug Interaction Group, Department of Pharmacology at University of Liverpool. COVID-19 Drug Interactions. Available on-line from: https://www.covid19-druginteractions.org
  120. Chen H, Guo Juanjuan, Wang C et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020.
  121. https://www.ema.europa.eu/en/documents/medicine-outside-eu/aluvia-product-information_en.pdf
  122. https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf
  123. https://www.ema.europa.eu/en/documents/product-information/rezolsta-epar-product-information_en.pdf
  124. https://www.ema.europa.eu/en/documents/product-information/rezolsta-epar-product-information_en.pdf
  125. http://www.shijiebiaopin.net/upload/product/201272318373223.PDF
  126. https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_008055_013967_RCP.pdf&retry=0&sys=m0b1l3
  127. https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_001565_009964_RCP.pdf&retry=0&sys=m0b1l3
  128. https://www.ema.europa.eu/en/documents/product-information/olumiant-epar-product-information_en.pdf
  129. https://www.ema.europa.eu/en/documents/product-information/soliris-epar-product-information_en.pdf