References
1. Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors.
The lancet oncology. 2003;4(9):548-56.
2. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nature
Reviews Cancer. 2010;10(11):785.
3. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al.
Pilot trial of genetically modified, attenuated Salmonella expressing
the E. coli cytosine deaminase gene in refractory cancer patients.
Cancer gene therapy. 2003;10(10):737.
4. Jean ATS, Swofford CA, Panteli JT, Brentzel ZJ, Forbes NS. Bacterial
delivery of Staphylococcus aureus α-hemolysin causes regression and
necrosis in murine tumors. Molecular Therapy. 2014;22(7):1266-74.
5. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on
clinical outcome. Cancer and Metastasis Reviews. 2007;26(2):225-39.
6. Nasr R, Eidgahi MRA. Construction of a synthetically engineered nirB
promoter for expression of recombinant protein in Escherichia coli.
Jundishapur journal of microbiology. 2014;7(7).
7. Nguyen JP, Frost CD, Lane ML, Skelton IV WP, Skelton M, Vesely DL.
Novel dual inhibitors of vascular endothelial growth factor and VEGFR2
receptor. European journal of clinical investigation.
2012;42(10):1061-7.
8. Vesely D, Clark L, Garces A, McAfee Q, Soto J, Gower Jr W. Novel
therapeutic approach for cancer using four cardiovascular hormones.
European journal of clinical investigation. 2004;34(10):674-82.
9. Vesely DL. Which of the cardiac natriuretic peptides is most
effective for the treatment of congestive heart failure, renal failure
and cancer? Clinical and experimental pharmacology and physiology.
2006;33(3):169-76.
10. Farahmand L, Majidzadeh-A K, Sepehrizadeh Z, Mofid MR, Esmaeili R,
Yazdi MT. Ligation independent cloning of polycistronic, genetically
modified, HuMAb4D5-8 F (ab’) 2, in bacterial plasmid. Avicenna journal
of medical biotechnology. 2012;4(1):15.
11. Noori S, Hassan ZM. Dihydroartemisinin shift the immune response
towards Th1, inhibit the tumor growth in vitro and in vivo. Cellular
immunology. 2011;271(1):67-72.
12. Langroudi L, Hassan ZM, Ebtekar M, Mahdavi M, Pakravan N, Noori S. A
comparison of low-dose cyclophosphamide treatment with artemisinin
treatment in reducing the number of regulatory T cells in murine breast
cancer model. International immunopharmacology. 2010;10(9):1055-61.
13. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay
AA. Tumor-specific colonization, tissue distribution, and gene induction
by probiotic Escherichia coli Nissle 1917 in live mice. International
journal of medical microbiology. 2007;297(3):151-62.
14. Kim J-E, Phan TX, Nguyen VH, Dinh-Vu H-V, Zheng JH, Yun M, et al.
Salmonella typhimurium suppresses tumor growth via the pro-inflammatory
cytokine interleukin-1β. Theranostics. 2015;5(12):1328.
15. Vesely DL. Cardiac hormones for the treatment of cancer. Endocr
Relat Cancer. 2013;20:R113-R25.
16. Sun Y, Eichelbaum EJ, Lenz A, Wang H, Vesely DL. Epidermal growth
factor’s activation of Ras is inhibited by four cardiac hormones.
European journal of clinical investigation. 2010;40(5):408-13.
17. Sun Y, Eichelbaum EJ, Wang H, Vesely DL. Atrial natriuretic peptide
and long acting natriuretic peptide inhibit ERK 1/2 in prostate cancer
cells. Anticancer research. 2006;26(6B):4143-8.
18. Sun Y, Eichelbaum EJ, Wang H, Vesely DL. Atrial natriuretic peptide
and long acting natriuretic peptide inhibit MEK 1/2 activation in human
prostate cancer cells. Anticancer research. 2007;27(6B):3813-8.
19. Vesely B, Alli A, Song S, Gower Jr W, Sanchez‐Ramos J, Vesely D.
Four peptide hormones’ specific decrease (up to 97%) of human prostate
carcinoma cells. European journal of clinical investigation.
2005;35(11):700-10.
20. Kovacs E. Investigation of interleukin-6 (IL-6), soluble IL-6
receptor (sIL-6R) and soluble gp130 (sgp130) in sera of cancer patients.
Biomedicine & pharmacotherapy. 2001;55(7):391-6.
21. Mettler L, Salmassi A, Heyer M, Schmutzier A, Schollmeyer T, Jonat
W. Perioperative levels of interleukin-1beta and interleukin-6 in women
with breast cancer. Clinical and experimental obstetrics & gynecology.
2004;31(1):20-2.
22. Kozłowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz M. Concentration
of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10)
in blood serum of breast cancer patients. Roczniki Akademii Medycznej w
Bialymstoku (1995). 2003;48:82-4.
23. Connett JM, Badri L, Giordano TJ, Connett WC, Doherty GM. Interferon
regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue
microarrays. Journal of interferon & cytokine research.
2005;25(10):587-94.
24. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart
A, et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor
suppressor activities in breast cancer associated with caspase
activation and induction of apoptosis. Carcinogenesis.
2005;26(9):1527-35.
25. Sidky YA, Borden EC. Inhibition of angiogenesis by interferons:
effects on tumor-and lymphocyte-induced vascular responses. Cancer
research. 1987;47(19):5155-61.
26. Kiemer AK, Hartung T, Vollmar AM. cGMP-mediated inhibition of TNF-α
production by the atrial natriuretic peptide in murine macrophages. The
Journal of Immunology. 2000;165(1):175-81.
27. Ladetzki-Baehs K, Keller M, Kiemer AK, Koch E, Zahler S, Wendel A,
et al. Atrial natriuretic peptide, a regulator of nuclear factor-κB
activation in vivo. Endocrinology. 2007;148(1):332-6.
28. Leitman DC, Andresen JW, Catalano RM, Waldman SA, Tuan JJ, Murad F.
Atrial natriuretic peptide binding, cross-linking, and stimulation of
cyclic GMP accumulation and particulate guanylate cyclase activity in
cultured cells. Journal of Biological Chemistry. 1988;263(8):3720-8.
29. Moro C, Klimcáková E, Lolmède K, Berlan M, Lafontan M, Stich V, et
al. Atrial natriuretic peptide inhibits the production of adipokines and
cytokines linked to inflammation and insulin resistance in human
subcutaneous adipose tissue. Diabetologia. 2007;50(5):1038-47.
30. Mohapatra SS, Lockey RF, Vesely DL, Gower Jr WR. Natriuretic
peptides and genesis of asthma: an emerging paradigm? Journal of allergy
and clinical immunology. 2004;114(3):520-6.
31. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases.
nature. 2000;407(6801):249.
32. Rodríguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J,
Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth
and inhibits activation of matrix metalloproteinase-9 and mobilization
of vascular endothelial growth factor. Proceedings of the National
Academy of Sciences. 2001;98(22):12485-90.
33. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jiménez-Baranda S,
Gómez-Moutón C, et al. Secreted MMP9 promotes angiogenesis more
efficiently than constitutive active MMP9 bound to the tumor cell
surface. J Cell Sci. 2004;117(9):1847-57.
34. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al.
Matrix metalloproteinase-9 triggers the angiogenic switch during
carcinogenesis. Nature cell biology. 2000;2(10):737.
35. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML.
Processing of VEGF-A by matrix metalloproteinases regulates
bioavailability and vascular patterning in tumors. The Journal of cell
biology. 2005;169(4):681-91.
36. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor
signalling? In control of vascular function. Nature reviews Molecular
cell biology. 2006;7(5):359.
37. Herbert SP, Stainier DY. Molecular control of endothelial cell
behaviour during blood vessel morphogenesis. Nature reviews Molecular
cell biology. 2011;12(9):551.
38. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and
metastasis—correlation in invasive breast carcinoma. New England
Journal of Medicine. 1991;324(1):1-8.
39. Hansen S, Grabau DA, Sørensen FB, Bak M, Vach W, Rose C. The
prognostic value of angiogenesis by Chalkley counting in a confirmatory
study design on 836 breast cancer patients. Clinical cancer research.
2000;6(1):139-46.
40. Jacquemier JD, Penault‐Llorca FM, Bertucci F, Sun ZZ, Houvenaeghel
GF, Geneix JA, et al. Angiogenesis as a prognostic marker in breast
carcinoma with conventional adjuvant chemotherapy: a multiparametric and
immunohistochemical analysis. The Journal of Pathology: A Journal of the
Pathological Society of Great Britain and Ireland. 1998;184(2):130-5.
41. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker
and MMP-9 biosensors: Recent advances. Sensors. 2018;18(10):3249.
42. Green WJ, Ball G, Hulman G, Johnson C, Van Schalwyk G, Ratan HL, et
al. KI67 and DLX2 predict increased risk of metastasis formation in
prostate cancer–a targeted molecular approach. British journal of
cancer. 2016;115(2):236.
43. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et
al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in
breast cancer. Journal of clinical oncology. 2011;29(15):1949-55.
44. Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T
cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell.
2016;165(5):1092-105.
45. Laghi L, Bianchi P, Miranda E, Balladore E, Pacetti V, Grizzi F, et
al. CD3+ cells at the invasive margin of deeply invading (pT3–T4)
colorectal cancer and risk of post-surgical metastasis: a longitudinal
study. The lancet oncology. 2009;10(9):877-84.
46. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B,
Lagorce-Pagès C, et al. Type, density, and location of immune cells
within human colorectal tumors predict clinical outcome. Science.
2006;313(5795):1960-4.