References
An J, Gonzalez-Avalos E, Chawla A, Jeong M, Lopez-Moyado IF, Li W, et al. (2015). Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun 6: 10071.
Boucherat O, Vitry G, Trinh I, Paulin R, Provencher S, & Bonnet S (2017). The cancer theory of pulmonary arterial hypertension. Pulm Circ 7: 285-299.
Briscoe J, & Therond PP (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14: 416-429.
Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, et al. (2019). Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Epigenetics Chromatin 12: 3.
Cheng X, Wang Y, & Du L (2019). Epigenetic Modulation in the Initiation and Progression of Pulmonary Hypertension. Hypertension 74:733-739.
Chettimada S, Gupte R, Rawat D, Gebb SA, McMurtry IF, & Gupte SA (2015). Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 308:L287-300.
Chettimada S, Rawat DK, Dey N, Kobelja R, Simms Z, Wolin MS, et al. (2012). Glc-6-PD and PKG contribute to hypoxia-induced decrease in smooth muscle cell contractile phenotype proteins in pulmonary artery. Am J Physiol Lung Cell Mol Physiol 303: L64-74.
D’Alessandro A, El Kasmi KC, Plecita-Hlavata L, Jezek P, Li M, Zhang H, et al. (2018). Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 28: 230-250.
Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW, et al. (2018). Role of the Aryl Hydrocarbon Receptor in Sugen 5416-induced Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 58: 320-330.
Farber HW, & Loscalzo J (2004). Pulmonary arterial hypertension. N Engl J Med 351: 1655-1665.
Frismantiene A, Philippova M, Erne P, & Resink TJ (2018). Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 52: 48-64.
Gupte SA, Li KX, Okada T, Sato K, & Oka M (2002). Inhibitors of pentose phosphate pathway cause vasodilation: involvement of voltage-gated potassium channels. J Pharmacol Exp Ther 301: 299-305.
Gupte SA, & Wolin MS (2012). Relationships between vascular oxygen sensing mechanisms and hypertensive disease processes. Hypertension 60: 269-275.
Hamilton NM, Dawson M, Fairweather EE, Hamilton NS, Hitchin JR, James DI, et al. (2012). Novel steroid inhibitors of glucose 6-phosphate dehydrogenase. J Med Chem 55: 4431-4445.
Hashimoto R, Lanier GM, Dhagia V, Joshi SR, Jordan A, Waddell I, et al. (2020). Pluripotent hematopoietic stem cells augment alpha-adrenergic receptor-mediated contraction of pulmonary artery and contribute to the pathogenesis of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 318: L386-L401.
Hu CJ, Zhang H, Laux A, Pullamsetti SS, & Stenmark KR (2019). Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 597: 1103-1119.
Hu XQ, Dasgupta C, Chen M, Xiao D, Huang X, Han L, et al. (2017). Pregnancy Reprograms Large-Conductance Ca(2+)-Activated K(+) Channel in Uterine Arteries: Roles of Ten-Eleven Translocation Methylcytosine Dioxygenase 1-Mediated Active Demethylation. Hypertension 69:1181-1191.
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, et al. (2020). Hypoxic Activation of G6PD Controls the Expression of Genes Involved in the Pathogenesis of Pulmonary Hypertension Through the Regulation of DNA Methylation. Am J Physiol Lung Cell Mol Physiol
Kwon AT, Arenillas DJ, Worsley Hunt R, & Wasserman WW (2012). oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 2: 987-1002.
Lajoie AC, Lauziere G, Lega JC, Lacasse Y, Martin S, Simard S, et al. (2016). Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med 4:291-305.
Liu A (2019). Proteostasis in the Hedgehog signaling pathway. Semin Cell Dev Biol 93: 153-163.
Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, et al. (2013). Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation 128: 2047-2057.
Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54: S20-31.
Nakajima H, & Kunimoto H (2014). TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci 105:1093-1099.
Runo JR, & Loyd JE (2003). Primary pulmonary hypertension. Lancet 361: 1533-1544.
Sahoo S, Meijles DN, Al Ghouleh I, Tandon M, Cifuentes-Pagano E, Sembrat J, et al. (2016). MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS One 11: e0153780.
Stenmark KR, Meyrick B, Galie N, Mooi WJ, & McMurtry IF (2009). Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297: L1013-1032.
Vitali SH, Hansmann G, Rose C, Fernandez-Gonzalez A, Scheid A, Mitsialis SA, et al. (2014). The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up. Pulm Circ 4: 619-629.
Warburg O, Wind F, & Negelein E (1927). The Metabolism of Tumors in the Body. J Gen Physiol 8: 519-530.
Zhou W, Negash S, Liu J, & Raj JU (2009). Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase and myocardin. Am J Physiol Lung Cell Mol Physiol 296: L780-789.