Baim, S. B., Labow, M. A., Levine, A.
J., & Shenk, T. (1991). A chimeric mammalian transactivator based on
the lac repressor that is regulated by temperature and isopropyl
beta-D-thiogalactopyranoside. Proceedings of the National Academy
of Sciences, 88(12), 5072-5076.
Cheng, J., Huang, Y., Mi, L., Chen,
W., Wang, D., & Wang, Q. (2018). An economically and environmentally
acceptable synthesis of chiral drug intermediate l-pipecolic acid from
biomass-derived lysine via artificially engineered microbes.Journal of industrial microbiology & biotechnology, 45(6),
405-415.
Ding, P., Rekhter, D., Ding, Y.,
Feussner, K., Busta, L., Haroth, S., . . . Feussner, I. (2016).
Characterization of a pipecolic acid biosynthesis pathway required for
systemic acquired resistance. The Plant Cell, 28(10), 2603-2615.
Fujii, T., Aritoku, Y., Agematu, H.,
& TSUNEKAWA, H. (2002). Increase in the rate of L-pipecolic acid
production using lat-expressing Escherichia coli by lysP and yeiE
amplification. Bioscience, biotechnology, and biochemistry,
66(9), 1981-1984.
Fujii, T., Mukaihara, M., Agematu, H.,
& Tsunekawa, H. (2002). Biotransformation of L-lysine to L-pipecolic
acid catalyzed by L-lysine 6-aminotransferase and
pyrroline-5-carboxylate reductase. Bioscience, biotechnology, and
biochemistry, 66(3), 622-627.
Gatto, G. J., Boyne, M. T., Kelleher,
N. L., & Walsh, C. T. (2006). Biosynthesis of pipecolic acid by RapL, a
lysine cyclodeaminase encoded in the rapamycin gene cluster.Journal of the American Chemical Society, 128(11), 3838-3847.
Georgi, T., Rittmann, D., & Wendisch,
V. F. (2005). Lysine and glutamate production by Corynebacterium
glutamicum on glucose, fructose and sucrose: roles of malic enzyme and
fructose-1, 6-bisphosphatase. Metabolic engineering, 7(4),
291-301.
Hartmann, M., Kim, D., Bernsdorff, F.,
Ajami-Rashidi, Z., Scholten, N., Schreiber, S., . . . Zeier, J. (2017).
Biochemical principles and functional aspects of pipecolic acid
biosynthesis in plant immunity. Plant physiology, 174(1),
124-153.
He, M. (2006). Pipecolic acid in
microbes: biosynthetic routes and enzymes. Journal of Industrial
Microbiology and Biotechnology, 33(6), 401-407.
Hong, Y.-G., Moon, Y.-M., Hong,
J.-W., No, S.-Y., Choi, T.-R., Jung, H.-R., . . . Park, K.-M. (2018).
Production of glutaric acid from 5-aminovaleric acid using Escherichia
coli whole cell bio-catalyst overexpressing GabTD from Bacillus
subtilis. Enzyme and microbial technology, 118, 57-65.
Hong, Y. G., Moon, Y. M., Choi, T.
R., Jung, H. R., Yang, S. Y., Ahn, J. O., . . . Bhatia, S. K. (2019).
Enhanced production of glutaric acid by NADH oxidase and GabD‐reinforced
bioconversion from L‐lysine. Biotechnology and bioengineering.
Huang, C.-Y., Ting, W.-W., Chen,
Y.-C., Wu, P.-Y., Dong, C.-D., Huang, S.-F., . . . Chang, J.-S. (2020).
Facilitating the enzymatic conversion of lysineto cadaverine in
engineered Escherichia coli with metabolic regulation by genes deletion.Biochemical Engineering Journal, 156, 107514.
Hugouvieux-Cotte-Pattat, N.,
Dominguez, H., & Robert-Baudouy, J. (1992). Environmental conditions
affect transcription of the pectinase genes of Erwinia chrysanthemi
3937. Journal of bacteriology, 174(23), 7807-7818.
Ke, C., Yang, X., Rao, H., Zeng, W.,
Hu, M., Tao, Y., & Huang, J. (2016). Whole-cell conversion of
L-glutamic acid into gamma-aminobutyric acid by metabolically engineered
Escherichia coli. Springerplus, 5(1), 591.
Kim, H. J., Kim, Y. H., Shin, J.-H.,
Bhatia, S. K., Sathiyanarayanan, G., Seo, H.-M., . . . Park, K. (2015).
Optimization of direct lysine decarboxylase biotransformation for
cadaverine production with whole-cell biocatalysts at high lysine
concentration. J. Microbiol. Biotechnol, 25(7), 1108-1113.
Kim, H. T., Baritugo, K.-A., Hyun, S.
M., Khang, T. U., Sohn, Y. J., Kang, K. H., . . . Kim, I.-K. (2019).
Development of Metabolically Engineered Corynebacterium glutamicum for
Enhanced Production of Cadaverine and Its Use for the Synthesis of
Bio-Polyamide 510. ACS Sustainable Chemistry & Engineering.
Kim, J.-H., Kim, H. J., Kim, Y. H.,
Jeon, J. M., Song, H. S., Kim, J., . . . Park, K. M. (2016). Functional
study of lysine decarboxylases from Klebsiella pneumoniae in Escherichia
coli and application of whole cell bioconversion for cadaverine
production. J. Microbiol. Biotechnol, 26(9), 1586-1592.
Kim, J.-H., Kim, J., Kim, H.-J.,
Sathiyanarayanan, G., Bhatia, S. K., Song, H.-S., . . . Yang, Y.-H.
(2017). Biotransformation of pyridoxal 5′-phosphate from pyridoxal by
pyridoxal kinase (pdxY) to support cadaverine production in Escherichia
coli. Enzyme and microbial technology, 104, 9-15.
Kim, J., Seo, H.-M., Bhatia, S. K.,
Song, H.-S., Kim, J.-H., Jeon, J.-M., . . . Kim, Y.-G. (2017).
Production of itaconate by whole-cell bioconversion of citrate mediated
by expression of multiple cis-aconitate decarboxylase (cadA) genes in
Escherichia coli. Scientific reports, 7(1), 1-9.
Kim, Y. H., Park, B. S., Bhatia, S.
K., Seo, H.-M., Jeon, J.-M., Kim, H.-J., . . . Park, H.-Y. (2014).
Production of rapamycin in Streptomyces hygroscopicus from
glycerol-based media optimized by systemic methodology. J
Microbiol Biotechnol, 24(10), 1319-1326.
Kimura, E. (2003). Metabolic
engineering of glutamate production. In Microbial Production of
l-Amino Acids (pp. 37-57): Springer.
Li, Z., Xu, J., Jiang, T., Ge, Y.,
Liu, P., Zhang, M., . . . Xu, P. (2016). Overexpression of transport
proteins improves the production of 5-aminovalerate from l-lysine in
Escherichia coli. Scientific reports, 6, 30884.
Moon, Y.-M., Yang, S. Y., Choi, T.
R., Jung, H.-R., Song, H.-S., hoon Han, Y., . . . Park, K. (2019).
Enhanced production of cadaverine by the addition of
hexadecyltrimethylammonium bromide to whole cell system with
regeneration of pyridoxal-5′-phosphate and ATP. Enzyme and
microbial technology, 127, 58-64.
Muramatsu, H., Mihara, H., Yasuda,
M., Ueda, M., Kurihara, T., & Esaki, N. (2006). Enzymatic synthesis of
L-pipecolic acid by Δ1-piperideine-2-carboxylate reductase from
Pseudomonas putida. Bioscience, biotechnology, and biochemistry,
70(9), 2296-2298.
Nishihara, K., Kanemori, M.,
Kitagawa, M., Yanagi, H., & Yura, T. (1998). Chaperone coexpression
plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and
GroEL-GroES in assisting folding of an allergen of Japanese cedar
pollen, Cryj2, inEscherichia coli. Appl. Environ. Microbiol.,
64(5), 1694-1699.
Pérez-García, F., Max Risse, J.,
Friehs, K., & Wendisch, V. F. (2017). Fermentative production of
L‐pipecolic acid from glucose and alternative carbon sources.Biotechnology journal, 12(7), 1600646.
Pérez-García, F., Peters-Wendisch,
P., & Wendisch, V. F. (2016). Engineering Corynebacterium glutamicum
for fast production of L-lysine and L-pipecolic acid. Applied
microbiology and biotechnology, 100(18), 8075-8090.
Park, S. J., Kim, E. Y., Noh, W., Oh,
Y. H., Kim, H. Y., Song, B. K., . . . Jegal, J. (2013). Synthesis of
nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant
Escherichia coli. Bioprocess and biosystems engineering, 36(7),
885-892.
Plokhov, A. Y., Gusyatiner, M.,
Yampolskaya, T., Kaluzhsky, V., Sukhareva, B., & Schulga, A. (2000).
Preparation of γ-aminobutyric acid using E. coli cells with high
activity of glutamate decarboxylase. Applied biochemistry and
biotechnology, 88(1-3), 257-265.
Rui, J., You, S., Zheng, Y., Wang,
C., Gao, Y., Zhang, W., . . . He, Z. (2020). High-efficiency and
low-cost production of cadaverine from a permeabilized-cell
bioconversion by a Lysine-induced engineered Escherichia coli.Bioresource technology, 302, 122844.
Shin, J., Joo, J. C., Lee, E., Hyun,
S. M., Kim, H. J., Park, S. J., . . . Park, K. (2018). Characterization
of a whole-cell biotransformation using a constitutive lysine
decarboxylase from Escherichia coli for the high-level production of
cadaverine from industrial grade L-lysine. Applied biochemistry
and biotechnology, 185(4), 909-924.
Stansen, C., Uy, D., Delaunay, S.,
Eggeling, L., Goergen, J.-L., & Wendisch, V. F. (2005).
Characterization of a Corynebacterium glutamicum lactate utilization
operon induced during temperature-triggered glutamate production.Appl. Environ. Microbiol., 71(10), 5920-5928.
Steffes, C., Ellis, J., Wu, J., &
Rosen, B. P. (1992). The lysP gene encodes the lysine-specific permease.Journal of bacteriology, 174(10), 3242-3249.
Tani, Y., Miyake, R., Yukami, R.,
Dekishima, Y., China, H., Saito, S., . . . Mihara, H. (2015). Functional
expression of l-lysine α-oxidase from Scomber japonicus in Escherichia
coli for one-pot synthesis of l-pipecolic acid from dl-lysine.Applied microbiology and biotechnology, 99(12), 5045-5054.
Tian, Y., Chen, J., Yu, H., & Shen,
Z. (2016). Overproduction of the Escherichia coli chaperones GroEL-GroES
in Rhodococcus ruber improves the activity and stability of cell
catalysts harboring a nitrile hydratase. J Microbiol Biotechnol,
26, 337.
Tobe, T., Nagai, S., Okada, N.,
Adter, B., Yoshikawa, M., & Sasakawa, C. (1991). Temperature‐regulated
expression of invasion genes in Shigella flexneri is controlled through
the transcriptional activation of the virB gene on the large plasmid.Molecular microbiology, 5(4), 887-893.
Tsotsou, G. E., & Barbirato, F.
(2007). Biochemical characterisation of recombinant Streptomyces
pristinaespiralis L-lysine cyclodeaminase. Biochimie, 89(5),
591-604.
Xu, B., Fan, Z., Lei, Y., Ping, Y.,
Jaisi, A., & Xiao, Y. (2018). Insights into pipecolic acid biosynthesis
in Huperzia serrata. Organic letters, 20(8), 2195-2198.
Yang, S.-Y., Choi, T.-R., Jung,
H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., . . . Jeon, W.-Y. (2019).
Production of glutaric acid from 5-aminovaleric acid by robust
whole-cell immobilized with polyvinyl alcohol and polyethylene glycol.Enzyme and microbial technology, 128, 72-78.
Yang, S.-Y., Choi, T.-R., Jung,
H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., . . . Ahn, J.-O. (2020).
Development of glutaric acid production consortium system with
α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia
coli. Enzyme and microbial technology, 133, 109446.
Yi, D.-H., Sathiyanarayanan, G., Seo,
H. M., Lee, J. H., Kim, H.-J., Kim, Y.-G., . . . Yang, Y.-H. (2015).
Linear correlation of aliphatic diamines to response factors by number
of carbons in GC–MS. Journal of Industrial and Engineering
Chemistry, 30, 322-327.
Ying, H., Tao, S., Wang, J., Ma, W.,
Chen, K., Wang, X., & Ouyang, P. (2017). Expanding metabolic pathway
for de novo biosynthesis of the chiral pharmaceutical intermediate
l-pipecolic acid in Escherichia coli. Microbial cell factories,
16(1), 52.
Ying, H., Wang, J., Shi, T., Zhao,
Y., Ouyang, P., & Chen, K. (2019). Engineering of lysine cyclodeaminase
conformational dynamics for relieving substrate and product inhibitions
in the biosynthesis of l-pipecolic acid. Catalysis Science &
Technology, 9(2), 398-405.
Ying, H., Wang, J., Shi, T., Zhao,
Y., Wang, X., Ouyang, P., & Chen, K. (2018). Studies of lysine
cyclodeaminase from Streptomyces pristinaespiralis: Insights into the
complex transition NAD+ state. Biochemical and biophysical
research communications, 495(1), 306-311.
Ying, H., Wang, J., Wang, Z., Feng,
J., Chen, K., Li, Y., & Ouyang, P. (2015). Enhanced conversion of
l-lysine to l-pipecolic acid using a recombinant Escherichia coli
containing lysine cyclodeaminase as whole-cell biocatalyst.Journal of Molecular Catalysis B: Enzymatic, 117, 75-80.
Yuan, H., Wang, H., Fidan, O., Qin,
Y., Xiao, G., & Zhan, J. (2019). Identification of new glutamate
decarboxylases from Streptomyces for efficient production of
γ-aminobutyric acid in engineered Escherichia coli. Journal of
Biological Engineering, 13(1), 24.