References
Baim, S. B., Labow, M. A., Levine, A. J., & Shenk, T. (1991). A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl beta-D-thiogalactopyranoside. Proceedings of the National Academy of Sciences, 88(12), 5072-5076. Cheng, J., Huang, Y., Mi, L., Chen, W., Wang, D., & Wang, Q. (2018). An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes.Journal of industrial microbiology & biotechnology, 45(6), 405-415. Ding, P., Rekhter, D., Ding, Y., Feussner, K., Busta, L., Haroth, S., . . . Feussner, I. (2016). Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. The Plant Cell, 28(10), 2603-2615. Fujii, T., Aritoku, Y., Agematu, H., & TSUNEKAWA, H. (2002). Increase in the rate of L-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Bioscience, biotechnology, and biochemistry, 66(9), 1981-1984. Fujii, T., Mukaihara, M., Agematu, H., & Tsunekawa, H. (2002). Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Bioscience, biotechnology, and biochemistry, 66(3), 622-627. Gatto, G. J., Boyne, M. T., Kelleher, N. L., & Walsh, C. T. (2006). Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster.Journal of the American Chemical Society, 128(11), 3838-3847. Georgi, T., Rittmann, D., & Wendisch, V. F. (2005). Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1, 6-bisphosphatase. Metabolic engineering, 7(4), 291-301. Hartmann, M., Kim, D., Bernsdorff, F., Ajami-Rashidi, Z., Scholten, N., Schreiber, S., . . . Zeier, J. (2017). Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant physiology, 174(1), 124-153. He, M. (2006). Pipecolic acid in microbes: biosynthetic routes and enzymes. Journal of Industrial Microbiology and Biotechnology, 33(6), 401-407. Hong, Y.-G., Moon, Y.-M., Hong, J.-W., No, S.-Y., Choi, T.-R., Jung, H.-R., . . . Park, K.-M. (2018). Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis. Enzyme and microbial technology, 118, 57-65. Hong, Y. G., Moon, Y. M., Choi, T. R., Jung, H. R., Yang, S. Y., Ahn, J. O., . . . Bhatia, S. K. (2019). Enhanced production of glutaric acid by NADH oxidase and GabD‐reinforced bioconversion from L‐lysine. Biotechnology and bioengineering. Huang, C.-Y., Ting, W.-W., Chen, Y.-C., Wu, P.-Y., Dong, C.-D., Huang, S.-F., . . . Chang, J.-S. (2020). Facilitating the enzymatic conversion of lysineto cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion.Biochemical Engineering Journal, 156, 107514. Hugouvieux-Cotte-Pattat, N., Dominguez, H., & Robert-Baudouy, J. (1992). Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937. Journal of bacteriology, 174(23), 7807-7818. Ke, C., Yang, X., Rao, H., Zeng, W., Hu, M., Tao, Y., & Huang, J. (2016). Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli. Springerplus, 5(1), 591. Kim, H. J., Kim, Y. H., Shin, J.-H., Bhatia, S. K., Sathiyanarayanan, G., Seo, H.-M., . . . Park, K. (2015). Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol, 25(7), 1108-1113. Kim, H. T., Baritugo, K.-A., Hyun, S. M., Khang, T. U., Sohn, Y. J., Kang, K. H., . . . Kim, I.-K. (2019). Development of Metabolically Engineered Corynebacterium glutamicum for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry & Engineering. Kim, J.-H., Kim, H. J., Kim, Y. H., Jeon, J. M., Song, H. S., Kim, J., . . . Park, K. M. (2016). Functional study of lysine decarboxylases from Klebsiella pneumoniae in Escherichia coli and application of whole cell bioconversion for cadaverine production. J. Microbiol. Biotechnol, 26(9), 1586-1592. Kim, J.-H., Kim, J., Kim, H.-J., Sathiyanarayanan, G., Bhatia, S. K., Song, H.-S., . . . Yang, Y.-H. (2017). Biotransformation of pyridoxal 5′-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme and microbial technology, 104, 9-15. Kim, J., Seo, H.-M., Bhatia, S. K., Song, H.-S., Kim, J.-H., Jeon, J.-M., . . . Kim, Y.-G. (2017). Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Scientific reports, 7(1), 1-9. Kim, Y. H., Park, B. S., Bhatia, S. K., Seo, H.-M., Jeon, J.-M., Kim, H.-J., . . . Park, H.-Y. (2014). Production of rapamycin in Streptomyces hygroscopicus from glycerol-based media optimized by systemic methodology. J Microbiol Biotechnol, 24(10), 1319-1326. Kimura, E. (2003). Metabolic engineering of glutamate production. In Microbial Production of l-Amino Acids (pp. 37-57): Springer. Li, Z., Xu, J., Jiang, T., Ge, Y., Liu, P., Zhang, M., . . . Xu, P. (2016). Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Scientific reports, 6, 30884. Moon, Y.-M., Yang, S. Y., Choi, T. R., Jung, H.-R., Song, H.-S., hoon Han, Y., . . . Park, K. (2019). Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5′-phosphate and ATP. Enzyme and microbial technology, 127, 58-64. Muramatsu, H., Mihara, H., Yasuda, M., Ueda, M., Kurihara, T., & Esaki, N. (2006). Enzymatic synthesis of L-pipecolic acid by Δ1-piperideine-2-carboxylate reductase from Pseudomonas putida. Bioscience, biotechnology, and biochemistry, 70(9), 2296-2298. Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H., & Yura, T. (1998). Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, inEscherichia coli. Appl. Environ. Microbiol., 64(5), 1694-1699. Pérez-García, F., Max Risse, J., Friehs, K., & Wendisch, V. F. (2017). Fermentative production of L‐pipecolic acid from glucose and alternative carbon sources.Biotechnology journal, 12(7), 1600646. Pérez-García, F., Peters-Wendisch, P., & Wendisch, V. F. (2016). Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Applied microbiology and biotechnology, 100(18), 8075-8090. Park, S. J., Kim, E. Y., Noh, W., Oh, Y. H., Kim, H. Y., Song, B. K., . . . Jegal, J. (2013). Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and biosystems engineering, 36(7), 885-892. Plokhov, A. Y., Gusyatiner, M., Yampolskaya, T., Kaluzhsky, V., Sukhareva, B., & Schulga, A. (2000). Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied biochemistry and biotechnology, 88(1-3), 257-265. Rui, J., You, S., Zheng, Y., Wang, C., Gao, Y., Zhang, W., . . . He, Z. (2020). High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli.Bioresource technology, 302, 122844. Shin, J., Joo, J. C., Lee, E., Hyun, S. M., Kim, H. J., Park, S. J., . . . Park, K. (2018). Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial grade L-lysine. Applied biochemistry and biotechnology, 185(4), 909-924. Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J.-L., & Wendisch, V. F. (2005). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.Appl. Environ. Microbiol., 71(10), 5920-5928. Steffes, C., Ellis, J., Wu, J., & Rosen, B. P. (1992). The lysP gene encodes the lysine-specific permease.Journal of bacteriology, 174(10), 3242-3249. Tani, Y., Miyake, R., Yukami, R., Dekishima, Y., China, H., Saito, S., . . . Mihara, H. (2015). Functional expression of l-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of l-pipecolic acid from dl-lysine.Applied microbiology and biotechnology, 99(12), 5045-5054. Tian, Y., Chen, J., Yu, H., & Shen, Z. (2016). Overproduction of the Escherichia coli chaperones GroEL-GroES in Rhodococcus ruber improves the activity and stability of cell catalysts harboring a nitrile hydratase. J Microbiol Biotechnol, 26, 337. Tobe, T., Nagai, S., Okada, N., Adter, B., Yoshikawa, M., & Sasakawa, C. (1991). Temperature‐regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid.Molecular microbiology, 5(4), 887-893. Tsotsou, G. E., & Barbirato, F. (2007). Biochemical characterisation of recombinant Streptomyces pristinaespiralis L-lysine cyclodeaminase. Biochimie, 89(5), 591-604. Xu, B., Fan, Z., Lei, Y., Ping, Y., Jaisi, A., & Xiao, Y. (2018). Insights into pipecolic acid biosynthesis in Huperzia serrata. Organic letters, 20(8), 2195-2198. Yang, S.-Y., Choi, T.-R., Jung, H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., . . . Jeon, W.-Y. (2019). Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol.Enzyme and microbial technology, 128, 72-78. Yang, S.-Y., Choi, T.-R., Jung, H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., . . . Ahn, J.-O. (2020). Development of glutaric acid production consortium system with α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli. Enzyme and microbial technology, 133, 109446. Yi, D.-H., Sathiyanarayanan, G., Seo, H. M., Lee, J. H., Kim, H.-J., Kim, Y.-G., . . . Yang, Y.-H. (2015). Linear correlation of aliphatic diamines to response factors by number of carbons in GC–MS. Journal of Industrial and Engineering Chemistry, 30, 322-327. Ying, H., Tao, S., Wang, J., Ma, W., Chen, K., Wang, X., & Ouyang, P. (2017). Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli. Microbial cell factories, 16(1), 52. Ying, H., Wang, J., Shi, T., Zhao, Y., Ouyang, P., & Chen, K. (2019). Engineering of lysine cyclodeaminase conformational dynamics for relieving substrate and product inhibitions in the biosynthesis of l-pipecolic acid. Catalysis Science & Technology, 9(2), 398-405. Ying, H., Wang, J., Shi, T., Zhao, Y., Wang, X., Ouyang, P., & Chen, K. (2018). Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state. Biochemical and biophysical research communications, 495(1), 306-311. Ying, H., Wang, J., Wang, Z., Feng, J., Chen, K., Li, Y., & Ouyang, P. (2015). Enhanced conversion of l-lysine to l-pipecolic acid using a recombinant Escherichia coli containing lysine cyclodeaminase as whole-cell biocatalyst.Journal of Molecular Catalysis B: Enzymatic, 117, 75-80. Yuan, H., Wang, H., Fidan, O., Qin, Y., Xiao, G., & Zhan, J. (2019). Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. Journal of Biological Engineering, 13(1), 24.