Allergen modification of the ovalbumin as possible method to minimize the egg allergenic reaction into the human organism and its inclusion in a food product

Yiovann Alirio Arce Portilla¹, Felipe Rojas¹, Natalia Erazo Clavijo¹, Jessica Agresott¹, and Daniela Guáqueta¹

¹University of Los Andes (Uniandes)

May 22, 2020

Abstract

The production strategy for enhanced ovalbumin protein was realized based on the allergenic properties described in the previous delivery. As a production agency *Pichia Pastoris* was established which is a highly used eukaryotic organism for the mass production of proteins and *pPIC9K* was chosen as the cloning vector of the sequence to be synthesized. For the protein production strategy, the computer tools available on the web; *sequence Manipulation Suite* (www.bioinformatics.org) were used for reverse translation of the protein; *Codon Usage Database* (www.kazusa.or.jp) for the most likely codon usage table in *Pichia Pastoris*; *EMBL* (www.embl.de) for vector selection of interest; *SnapGene* (www.snapgene.com) as a search repository for plasmid mapping and *Benchling* (www.benchling.com) for the gene cloning process to be synthesized with the optimized codon sequence for our ovalbumin protein.

1. Introduction

Nowadays into a balanced daily diet two needs arise and consist in include functional and nourishing foods (Bhat & Bhat, 2011). However, currently there is a significant population that suffers certain limitations when consuming some foods due to they generate an allergic reaction (Sánchez & Sánchez, 2015). Within the market are products where it is excluded those allergic ingredients and they are substituted by other ones that have some similarities such as vegan food which no contains milk either egg. Also, these two are mostly affect to children with 5 -8 years old, and they tend to be outgrown (EUROPE, 2013). This trend was even coupled in other industries such as cosmetics and nutraceuticals which are named as hypoallergenic (M. Balsam, 2009). There are no clear proposals that aim to promote the consumption of these food into a final product, even without any improvement that has been achieved with biomolecular science modifications to reduce their allergic effect.

One of those daily foods that most of the people consume is egg. This is constituted by 55% of egg white (Rc et al., 2018), and contain certain proteins that cause allergy. The ovalbumin composes around of 65% of white, and is characterized by a sequence of amino acids that generate this allergic reaction (de Estudios del Huevo, 2009). The database created by National Institute of Allergy and Infectious Diseases reports almost the total ovalbumin chain is allergic, defining 298 epitopes as possible source of allergy. In 2003, (Mine & Rupa, 2003), determined along the chain there are five epitopes as the several sites that promotes the allergy. When the body tries to digest the entire protein, it recognizes like a threat, thus the body activates the antibody agents as a red flag. This causes allergic symptoms such as a rash, redness on the skin, and even closure of the trachea, reducing the ability to breathe (EUROPE, 2013).

Ovalbumin is a phosphoglycoprotein constituted by 368 amino acids and is generated in the oviduct of avian animals due to the located glandules in "magnum", which secretes the constituents of the egg white. It is part of the serine proteins, but its main characteristic is not to inhibit proteases, as this type of protein generally does (Huntington & Stein, 2001). Its real function in avian is not clear till this moment. However, it is consumed due to its high content part into the egg white and it was demonstrated that it can support some functions the serum albumin accomplishes in the human body. For instance, the transport of physiological and non-physiological substances that are not soluble in water, the maintenance of oncotic pressure, and the contribution of buffering capacity of the blood and even maintain albumin levels in people who have chronic kidney disease.

Based on the first report of the current project, which was determined the opportunity of the design of a product based on inclusion of a modified ovalbumin into a food daily product. This modification was developed with the exchange of some similar amino acids according with their hydrophobicity, and that are located on those five epitopes that were reported by (Mine & Rupa, 2003). The corresponding modifications showed that the tertiary conformation of the protein was maintained with respect to the original.

Also, the prediction of modified and original protein location showed a high probability of being extracellular as well as transmembrane location in 30-50 amino acid positions. The first indicates the molecule have hydrophilic radicals (Karp, 2011), and the second involves fulfilling functions such as being receptors that recognize and fix some molecules called ligands, channels or transporters of ions and solutes through the membrane and identifying nutrients, hormones or neurotransmitter (Karp, 2011). Finally, with this proposal the proteins structure was preserved which indicates the active sites are expected the same and it could be accomplished as the enhanced protein that will be added in a food product with a decrease in its allergic effects.

In this part of the project is proposed the microorganism and its production pathway to guarantee the fulfillment of having a modified ovalbumin produced and included into a daily product. Therefore, there was considered as *Pichia Pastoris* as the adequate microorganism to produce it based on recombinant technology. This consisted in determining the coding DNA sequence, the sequence expressed in codons, the RBS suitable for expressing GALNS, and making the cloning Fdesign.

2. Theoretical framework

The heterologous or recombinant protein production depends on the host to choose to produce the protein interest. This process consists in the isolation of the gene and subsequently cloned in an expression vector (Clark & Pazdernik, 2015). There are different organisms which act as the host such as animal cells, yeast, bacteria or fungus. However, their performance will depend on the preference in which codons are formed for each amino acid (Clark & Pazdernik, 2015). The protein expression system could be prokary-otic or eukaryotic. Prokaryotic is the renamed *Escherichia coli*, however this bacterium as prokaryotic cell microorganism has some limitations when a heterologous protein is going to be produced (García-Fruitós et al., 2014). Eukaryotic cells facilitate the postranslational modification process, like the glycosylation, for the proteins that need this. Therefore, the cultures of yeast, insect cells, microalgae, filamentous fungus, and mammalian cells can handle it(Clark & Pazdernik, 2015; García-Fruitós et al., 2014).

Human proteins are characterized for their postranslational modifications such as glycosylation, phosphorylation, acylation, carboximetilation, and others (Galindo & Ramirez, 1998). Most of the therapeutic proteins that are in the market were obtained through a eukaryotic system that permit those protein modifications(García-Fruitós et al., 2014). Mammalian cells is the first choice due to its ability to achieve adequate needed modifications, however, its maintenance is difficult due to it is very susceptible with environment changes and the treatment that they are exposed. In the last decade, yeast is the next option that which has been implemented to the recombinant human proteins, and the first selected fungus strain was the *Saccharomyces cerevisiae* in 1980, but some works affirm this has a unstable plasmid, low yield recorded, and hyperglycosilation phenomena (Rivero et al., 2016; Allende, 2007). In contrast, *Pichia* *pastoris* a methylotrophic yeast that has demonstrated its high yield production in the proper form for those therapeutic molecules. Due to its feeding source (methanol) most of the expression system are based on inducible promotes for methanol. Some of those recombinant proteins that have been cloned and expressed in this microorganism are: Kunitz inhibitor proteases, C fragment of tetanic toxin, human interleukin II, human lysozyme, human serum albumin, and among others (Rivero et al., 2016). Its high quality of performance is supported by the respiratory metabolism allows to be achieved enormous cellular densities in the bioreactors (Chen et al., 2012).

2.1. Pichia Pastoris

Pichia Pastoris is a single-celled eukaryotic organism called methylotophan yeast, which has a particular taxonomy, such that the genus *Pichia* is part of the family *Saccharomycetaceae*, the order *Saccharomycetales*, the Class *Saccharomycetes*, the *Ascomycota* phyleus and the *Fungis* kingdom, which is characterized by forming creamy, white and well-defined colonies. It is a highly used yeast as an expression system for the production of recombinant proteins, both for basic research and industrial purposes, this due to its easy genetic manipulation, its high levels of intra and extracellular production of the protein of interest and its ability to make post-translational modifications similar to those of higher eukaryote organisms; generating a correct folding of the protein (Viader-Salvadó & Guerrero-Olazarán, 2010).

This yeast has become one of the most important expression systems in the production of proteins, because it has a strong promoter and controlled which is the enzyme *alcohol oxidase* (pAOX1). It uses methanol as a source of carbon and energy and posses *histidinol dehydrogenase* gene (his4) for the synthesis of the amino acid histidine (Rivero et al., 2016). Therefore, as a eukaryotic cell *Pichia Pastoris* yeast has many of the advantages of higher eukaryotic expression systems, such as protein processing, protein folding, and post-translational modification which makes it easier to manipulate. It is faster, easier and less expensive to use than other eukaryotic expression systems and has the additional advantage of generating expression levels of heterologous proteins between 10 and 100 times higher. These characteristics make Pichia very useful as a protein expression system (Invitrogen, 2010).

2.2. Pichia Pastoris Characterization

Microscopically are positive large eukaryoticells, with a lenght of 9.6 (± 0.2) Mpb, organized into 4 chromosomes and around 5313 coding genes (Espejo, 2016). However, this strain highlights over other types of host due to its relatively fast growth rate in culture media. The culture is mainly composed of a carbon source, whether glucose, glycerol or methanol, and the last one is the most frequently used (Rivero et al., 2016). Moreover, it requires minimal, simple and economical factors in recombinant protein and cell growth, such as effects of: methanol concentration, dissolved oxygen concentration, induction temperature, pH and nitrogen concentration (Viader-Salvadó & Guerrero-Olazarán, 2010).

On the other hand, expression systems require a method of transferring the DNA sequence of interest to the host cell together with a promoter capable of controlling the production of the foreign genetic product. Successful promoters have very high transcription efficiency, and these are very cheap (Vedvick, 1991), however, most of the foreign protein genes expressed in *P. Pastoris* strains have shown high copy numbers and numbers and higher number of expression cassettes. Thus cassettes. Thus greater amount of protein are produced (Vedvick, 1991).

2.3. Necessary conditions for the recombinant protein production using the P. Pastoris

To obtain high levels of modified ovalbumin in the crop, the strain is required to have the optimal conditions of substrate, dissolved oxygen, temperature, pH and nitrogen that allow the protein to be developed properly.

2.3.1. Effects of methanol concentration

The presence of methanol as an energy source is important for the culture medium medium because the

transcription levels of the heterologous protein depend on the amount of methanol presented by the expression system of the enzyme alcohol oxidase (AOX). If there is shortage or excess of methanol in the culture it would impair the transcriptional efficiency of AOX and it cause the accumulation of formaldehyde by contact of the dissolved oxygen (DO). A possible result the protein expression rate would be affected. Mayson, Kilburn and their co-authors in 2003 suggested that the percentage rate of methanol in the culture medium for heterologous proteins varies from a range of 0.1 to 3.0 % (v/v), since the methanol feeding system at growth-limiting rates could be 3 to 5 times higher than with excessive methanol feeding (Rivero et al., 2016; Mayson et al., 2003).

When starting the methanol feed, the gene is rapidly and fully transcribed. The strength of the promoter is demonstrated by the observation that the enzyme AOX comprises up to 30% of the soluble protein in extracts of P. pastoris grown in methanol (Vedvick, 1991).

2.3.2. Effects of dissolved oxygen concentration

The use of methanol in the presence of oxygen is the first step in the assimilation of carbon sources, as well as in obtaining energy from it, generating with it the formation of formaldehydes $[CH_3OH-CH_2O]$, a chemical that increases the production of recombinant proteins (GAO & SHI, 2013), for this reason it is important to note that the metabolism of methanol in the presence of large quantities of P. *Pastoris* cultures results in an increase in the demand for DO, so that when cells grow under limiting conditions of DO decreases production levels of the heterologous protein (Rivero et al., 2016; Mayson et al., 2003); for this reason there are several strategies that can be used to maintain the ideal concentration of DO in the culture medium, such as (Rivero et al., 2016):

- 1. Increases rainflow.
- 2. Increases the rpm of the stirring process, which generates more oxygen in the culture medium.
- 3. Cultivar la cepa P. Pastoris at temperatures below 30 °C.
- 4. Increasers the ratio of the Air/O_2 mixture.
- 5. A use the ratio of the mixture of O_2/N_2 .
- 6. Controls methanol de feeding.

However, the dissolved oxygen ideonee concentration in the culture medium can range from 20% to 30% (Rivero et al., 2016; GAO & SHI, 2013).

2.3.3. Effets of indution temperature

The effect of temperature on cell growth and the production of recombinant proteins on the endoplasmic reticulum of yeast, can be relevant due to if very high temperatures are used, folding can occur incorrectly, causing the degradation of the same and hence the stress of the strain. This would cause a metabolic overload in it, so the use of optimal temperature is very important. The feeding of the substrate during the growth of the strain and methanol induction phases is 30° C, the metabolic stress of *P. Pastoris* and the formation of toxic products decrease significantly, causing cell growth and the production of recombinant proteins to increase (Rivero et al., 2016). On the other hand, some research has reported that reducing the induction temperature of methanol from 30° C to 20° C is beneficial for the production of recombinant proteins, because at lower induction temperature, activation of alcohol oxidase (AOX) would increase the oxygen uptake rate (OUR), alleviating cell skeleton lysis and the secretion of protease, proteolytically reducing extracellular activity. However, doing this temperature drop and increasing OUR could be an inconvenience in the industry, as this increase would be a problem in terms of energy and as a result economic losses (GAO & SHI, 2013).

Different studies have shown that the growth temperature of Pichia pastoris is 28 - 30°C for liquid cultures, plates, and slants. Growth above 32°C during induction can be detrimental to protein expression and can even lead to cell death (Invitrogen, 2010).

2.3.4. Effects of pH

The *P. Pastoris* strain has a wide pH range to which they can be used, these can range from a pH range of 3.0 to 7.0, however, the optimal pH for strain and methanol growth as an inducer for the production of heterologous proteins is approximately 3.5 and 5.5, depending on the nature of the recombinant protein, for this, the pH has to be adjusted during the growth of the strain to a pH of 5.0 and this has to be adjusted again to a pH of 4.5 to introduce the methanol (Rivero et al., 2016; GAO & SHI, 2013).

2.3.5. Effects of nitrogen concentration

Nitrogen concentration is generally used to control the pH of the crop and for this, Yang and his co-authors in 2004 determined that the production of recombinant huridine by ammonium hydroxide (NH_4OH) was obtained at a concentration of 0.4 M (Rivero et al., 2016; Yang et al., 2004).

3. Methodology

3.1 Determine the DNA sequence coding for the selected protein

The production of the recombinant protein is carried out through the eukaryotic organism *Pichia Pastoris*, due to the advantages it has such as the processing and folding of proteins, in addition to its easy manipulation for it. On the other hand, the system that uses *Pichia Pastoris* as a host is simpler and less expensive than others (Cab-Barrera, 2000). The protein of interest to be manufactured is Ovalbumin, the modified sequence of amino acids for Ovalbumin (Agresott et al., 2020) is expressed below (see Figure 1) and corresponds to the approach developed in the first delivery.

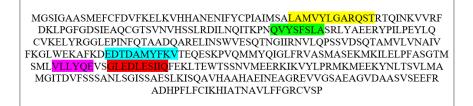


Figure 1: Sequence of the protein to be cloned (modified Ovalbumin).

3.1.1 Reverse translation

Starting from the modified sequence of amino acids for the Ovalbumin protein (Figure 1) and by means of the online tool *Sequence Manipulation Suite (www.bioinformatics.org)* reversed translation of amino acid sequence was performed. Simultaneously in the same interface of *Sequence Manipulation Suite* you enter the most likely s codon usage table for our *Pichia Pastoris* agency (this due to the snout bias) illustrated below.

AmAcid	Codon	Number	/1000	Fraction	AmAcid	Codon	Number	/1000	Fraction
G	GGG	468.00	5.76	0.00	W	TGG	834.00	10.26	0.00
G	GGA	1550.00	19.06	0.00	END	TGA	27.00	0.33	0.00
G	GGT	2075.00	25.52	0.00	С	TGT	626.00	7.70	0.00
G	GGC	655.00	8.06	0.00	С	TGC	356.00	4.38	0.00
Е	GAG	2360.00	29.03	0.00	END	TAG	40.00	0.49	0.00
Е	GAA	3043.00	37.43	0.00	END	TAA	69.00	0.85	0.00
D	GAT	2899.00	35.66	0.00	Y	TAT	1300.00	15.99	0.00
D	GAC	2103.00	25.87	0.00	Y	TAC	1473.00	18.12	0.00
V	GTG	998.00	12.28	0.00	L	TTG	2562.00	31.51	0.00
V	GTA	804.00	9.89	0.00	L	TTA	1265.00	15.56	0.00
V	GTT	2188.00	26.91	0.00	F	TTT	1963.00	24.14	0.00
V	GTC	1210.00	14.88	0.00	F	TTC	1675.00	20.60	0.00
A	GCG	314.00	3.86	0.00	S	TCG	598.00	7.36	0.00
A	GCA	1228.00	15.10	0.00	S	TCA	1234.00	15.18	0.00
A	GCT	2351.00	28.92	0.00	S	TCT	1983.00	24.39	0.00
A	GCC	1348.00	16.58	0.00	S	TCC	1344.00	16.53	0.00
R	AGG	539.00	6.63	0.00	R	CGG	158.00	1.94	0.00
R	AGA	1634.00	20.10	0.00	R	CGA	340.00	4.18	0.00
S	AGT	1020.00	12.55	0.00	R	CGT	564.00	6.94	0.00
S	AGC	621.00	7.64	0.00	R	CGC	175.00	2.15	0.00
К	AAG	2748.00	33.80	0.00	Q	CAG	1323.00	16.27	0.00
K	AAA	2433.00	29.93	0.00	Q	CAA	2069.00	25.45	0.00
Ν	AAT	2038.00	25.07	0.00	Н	CAT	960.00	11.81	0.00
Ν	AAC	2168.00	26.67	0.00	Н	CAC	737.00	9.07	0.00
М	ATG	1517.00	18.66	0.00	L	CTG	1215.00	14.94	0.00
I	ATA	906.00	11.14	0.00	L	CTA	873.00	10.74	0.00
I	ATT	2532.00	31.14	0.00	L	CTT	1289.00	15.85	0.00
I	ATC	1580.00	19.43	0.00	L	CTC	620.00	7.63	0.00
Т	ACG	491.00	6.04	0.00	P	CCG	320.00	3.94	0.00
Т	ACA	1118.00	13.75	0.00	P	CCA	1540.00	18.94	0.00
Т	ACT	1820.00	22.39	0.00	P	CCT	1282.00	15.77	0.00
Т	ACC	1175.00	14.45	0.00	P	ccc	553.00	6.80	0.00

Figure 2: Codon usage from Pichia Pastoris (www.kazusa.or.jp).

With this clear, the next step was to obtain the sequence of AND encoding the sequence of inserted amino acids (enhanced sequence of amino acids for Ovalbumin), that is, the sequence of AND to be cloned without optimization of codons for the Ovalbumin of interest (see Figure reported in results and discussion).

3.2 Optimized sequence of codons for the Pichia Pastoris playback platform

Through the online application *Benchling (www.benchling.com)* develops the project for the cloning of the protein of interest, for this the optimized sequence of codons will be inserted into the *Benchling* tool.

3.2.1. Plasmid selection

To select the plasmid to use first, the vector expression for *Pichia Pastoris* is searched using the *EMBL* online tool (*www.embl.de*). Due to the great use that has commercial mind *pPIC9K* (with promoter AOX1) was selected as a vector to carry out cloning in *Pichia Pastoris* (Invitrogen, 2010). For the download of the *pPIC9K* plasmid map the *SnapGene* software (*www.snapgene.com*), this map was of great importance because it made the relevant modifications for the cloning of the protein in the *Benchling* tool.

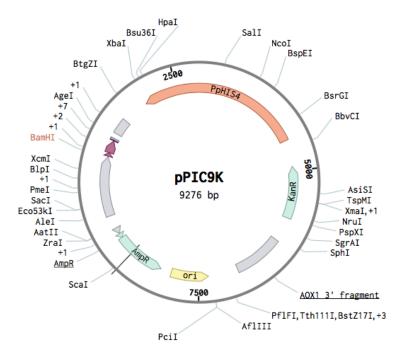


Figure 3: Plasmid Map from pPIC9K (Invitrogen, 2010).

When is open the vector map within the *Benchling* online tool, the insertion of the codon sequence within the plasmid is located in the region followed by the promoter and previous of the MCS. For the selection of restriction enzymes, we work with the cutting enzymes listed by NEB within the *Benchling* tool.

Where it is observed that the plasmid promoter is found the enzyme BamHI which makes a cohesive cut, the other restriction enzyme selected is PsiI, this is located at the end of the area where the gene is introduced. The information contained between the two plasmid enzymes (BamHI and PsiI) is replaced to clone there the AND sequence of the modified Ovalbumin protein, the procedure consists of disposition of these enzymes at the beginning and end of the optimized sequence of codons for ovalbumin. When cutting the sequence with BamHI and PsiI, the entire sequence is taken from BamHI to the site where it cuts the PsiI enzyme all this based on the leading strand of the AND chain, simultaneously and based on the complementary thread is taken what includes between the enzyme PsiI to the cutting of the enzyme BamHI, the product of doing this is the sequence which is subsequently inserted into the plasmid pPIC9K with the help of the ligase enzyme.

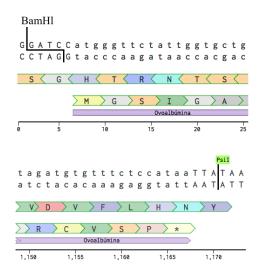


Figure 4: Cut site from enzyme BamHl (recognizes the sequence: GGATCC) this cuts at base 939 of the plasmid leader chain and Psil (recognizes the sequence: TTATAA) that cuts at base 1145 of the plasmid leader chain.

After obtaining $_{\mathrm{the}}$ sequence of codons of the ovalbumin protein inserted inthe plasfor mid pPIC9Kgives way the realization of optimization the to sequence of codons for which we have the *Benchling* tool, to carry out this process taking into account that the host organism corresponds to Pichia Pastoris, it also generates the elimination of sequences of restriction enzymes that are not necessary for the case (the enzymes of restrictions must be protected so as not to be removed), and defining the GC content between 0.33 - 0.66 this in order to have greater stability in the sequence to be cloned. The results are reported in Figure 9.

3.3. Design for gene cloning in pPIC9K plasmid for Pichia Pastoris

After obtaining the optimized la codon sequence for Ovalbumin and through the *Benchiling's* online tool, the step is to perform cloning, this cloning is executed with a vector corresponding to the plasmid *pPIC9K*. For this, the first to consider is to establish the coding gene of the protein (as well as the single cutting sites corresponding to the Enzymes *BamHI* and *PsiI*). The gene to be sequence for the modified ovalbumin corresponds to the optimized sequence of codons subsequently developed (see Figure 9). This is done by considering that what is going to occur corresponds to the optimized sequence of codons plus the restriction site (because the restriction site allows us to "cut" and "paste" our sequence into our *pPIC9K* plasmid). Restriction enzymes cut into DNA, preferably restriction enzymes are not left at the ends of the chain, so it's convenient to additionally take a number of nucleotides before *BamHI* and after *PsiI*, then the sequence to be synthesized (including the optimized sequence of codons for ovalbumin + cutting sites + additional nucleotides) corresponds to the one shown in Figure 5.

a	ditional nucleotides	Bar	nHI	ovalbumine optimized codon sequence	Р	siI	additio	nal nucl	eotides
Т	TA TTC GAA	GGA	TCC	(Length 1161)	TTA	TAA	ATA	CTA	CTA

Figure 5: Sequence to synthesize.

Subsequently, the DNA fragment found above is used to determine its size, this is done through virtual digestion, where the restriction enzymes BamHI and PsiI are used.

3.3.1. Virtual Digestion

Cutting sites are established by the restriction enzymes *BamHI* and *PsiI*, for this process it should benoted that restriction enzymes are only functional under certain temperature conditions, pH, buffer.

NOTE: The selected enzymes are from NEB (*New England Biolabs*), for which the provider reports the following conditions of functionality in Figure 6.

Enzymes	Cuts	Temp.	1.1	2.1	3.1	4/CS
BamHI	1	37°C	75'	100'	100	100'
Psil	1	37°C	10	100'	101	100'

Figure 6: Functionality conditions for restriction enzymes.

Therefore, the original plasmid without any modification must be digested by both restriction enzymes, the virtual digestion obtained for the plasmid pPIC9K in its factory state is observed in column 1 of Figure 10.

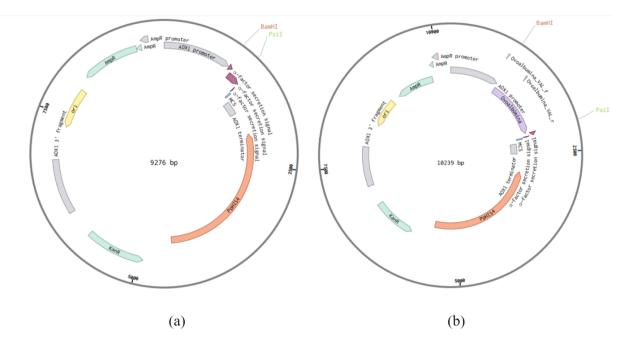


Figure 7: pPIC9K plasmid with restriction enzymes: (a) original and (b) with optimized sequence of codons.

On the other hand, when we digest the plasmid that possesses the optimized sequence of codons for the ovoalbumin protein with the cutting enzymes BamHI and PsiI, the result reported in column 2 of Figure 10 is obtained.

3.3.2. Linking the gene to be cloned and the plasmid

With the above digestions, the next step is to perform the ligation between the gene to be cloned and the plasmid, to perform this ligation and run it in the same gel we are located in the plasmid that has inserts the optimization of codons and we digest this with the enzyme of restriction PsiI that cuts only once (this is done because the plasmid has a circular shape, but when cut with the enzyme the plasmid opens up linear). Reporting in column 3 of Figure 10.

In this way the plasmids to be cloned are built and the insertion of the ovalbumin protein is validated correctly in the plasmid.

3.3.3. Polimerase chain reaction

To perform the PCR process is part of the design of a Primer in the region before the gene to be cloned and a Primer located within the same gene (these Primers must have a melting temperature around 58°C and an approximate size of between 18 to 25 base pairs for each). The Primer located in the forward position has 24 base pairs with a melting temperature of 58.00°C and the other Primer in reverse orientation consists of 24 base pairs with a melting temperature of 58.37°C. Subsequently, the two *Primers* are linked to the product to obtain PCR, obtaining 412 pairs of bases that can be seen in Figure 8.

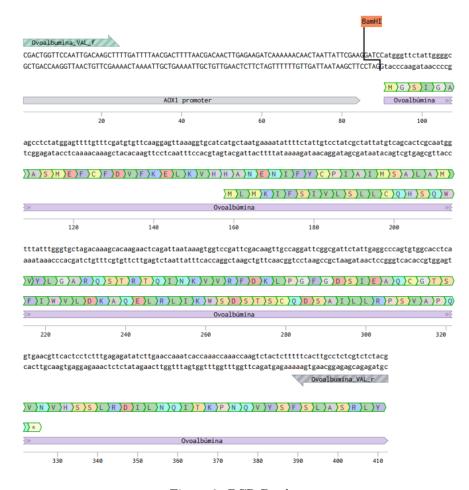


Figure 8: PCR Product

4. Results and Discussion

4.1. DNA sequence of modified ovoalbumina without optimizing its codons and DNA sequence with the optimization of them.

In this figure 9 is the comparison of the DNA sequence of modified ovoalbumin without optimizing its codons and DNA sequence with the optimization of them, where it was found that 196 codons belonging to the amino acid chain of the modified ovoalbumin, which are reflected in gray.

I I		1	2	2	4	6	6	-		0	10	11	10	12	1.4	15	16	1/7	10	10-	20
Colon Colon Colo Colo <thcolo< th=""> Colo Colo <t< th=""><th>Codon</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></thcolo<>	Codon																				
Aminosi I G A A S M E F C F D V F K E L K Colon Optimize function a cal		-					-	-		-	-		-		-	-		-	-	-	-
Colon gr cat cat gr	-	-					-	-		-			-		-			-			
Colon gr cat cat gr																					
Codon Optimized Aminoldi U H H A N E N I F Y C P I A I B C B Aminoldi V H H A N E N I F Y C P I A I B C C B C <t< th=""><th></th><th>21</th><th>22</th><th>23</th><th>24</th><th>25</th><th>26</th><th>27</th><th>28</th><th>29</th><th>30</th><th>31</th><th>32</th><th>33</th><th>34</th><th>35</th><th>36</th><th>37</th><th>38</th><th>39</th><th>40</th></t<>		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Aminoidi V H A N E N I F Y C P I A I M S A L A Conon ara Bit icc Us gat etc icc icc <td< th=""><th>Codon</th><th>gtt</th><th>cat</th><th>cat</th><th>gct</th><th>aac</th><th>gaa</th><th>aac</th><th>att</th><th>ttt</th><th>tac</th><th>tgt</th><th>cca</th><th>att</th><th>gct</th><th>att</th><th>atg</th><th>tct</th><th>gct</th><th>ttg</th><th>gct</th></td<>	Codon	gtt	cat	cat	gct	aac	gaa	aac	att	ttt	tac	tgt	cca	att	gct	att	atg	tct	gct	ttg	gct
Code 41 42 43 44 45 45 45 55 55 54 55 55 56 57 58 59 60 Code 70 70 72 73 74 75 77 78 79 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 77 78 70 78 70 78 70 78 70 78 70 78 70 78 70 78 70	-				-		-					-			-		-		gca		_
Codon visi visit	Aminoacid	V	H	H	A	N	E	N	Ι	F	Y	C	Р	Ι	Α	Ι	Μ	S	Α	L	Α
Codon visi visit		41	40	42	44	45	16	47	40	40	50	51	50	52	54	55	56	57	50	50	60
Codon Optimized age et et B et et age et et B G G G G G G B S G B S G B S G B S G B S G <th>Codon</th> <th></th>	Codon																				
Aminoacid M V Y L G A R Q S T R T Q I N K V V R F Golon Ga aag ttg Co aag ttg Co aag ttg Co agg ttd gg att ttg gg co att att gg att gg att gg att gg att ttd gg att att gg att att gg att att gg att ttd gg att ttd gg <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th>		-	-				-	-				-					-	-	-		
Codon gat age tes gat gat </th <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th>	-	-	-				-	-		-		-		-					-	-	
Codon gat age tes gat gat </th <th></th>																					
Codon Optimized ga ad tip tip <thtip< th=""> tip <t< th=""><th></th><th>61</th><th>62</th><th>63</th><th>64</th><th>65</th><th>66</th><th>67</th><th>68</th><th>69</th><th>70</th><th>71</th><th>72</th><th>73</th><th>74</th><th>75</th><th>76</th><th>77</th><th>78</th><th>79</th><th>80</th></t<></thtip<>		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Aminoacid D K L P G F G D S I E A Q C G T S V N V SI S2 S3 S4 S5 S6 97 88 90 91 92 93 4 S S V N V N V N V N V N V N V N V N V	Codon	gat	aag	ttg	cca	ggt	ttt	ggt	gat	tct	att	gaa	gct	caa	tgt	ggt	act	tct	gtt	aac	gtt
Norm Norm <th< th=""><th>Codon Optimized</th><th>gac</th><th>-</th><th>ttg</th><th></th><th></th><th></th><th>ggc</th><th>gat</th><th></th><th></th><th></th><th>gcc</th><th>cag</th><th>-</th><th></th><th></th><th></th><th></th><th>aac</th><th>-</th></th<>	Codon Optimized	gac	-	ttg				ggc	gat				gcc	cag	-					aac	-
Codoncattut	Aminoacid	D	K	L	Р	G	F	G	D	S	Ι	E	A	Q	С	G	Т	S	v	Ν	v
Codoncattut		01	02	02	0.4	0.5	06	07	00	00	00	01	02	02	0.4	05	06	07	09	00	100
Codon Optimized case tes	Codor																				
Aminoacid H S L R D I L N Q I T K P N Q V Y S F 101 102 103 104 105 106 107 108 109 10 11 1					-	-	-		-					-				-			
Codon tet tet </th <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>	-				-	-	-		-									-			
Codon tet tet </th <th></th>																					
Codon Optimized tea et c et </th <th></th> <th>101</th> <th>102</th> <th>103</th> <th>104</th> <th>105</th> <th>106</th> <th>107</th> <th>108</th> <th>109</th> <th>110</th> <th>111</th> <th>112</th> <th>113</th> <th>114</th> <th>115</th> <th>116</th> <th>117</th> <th>118</th> <th>119</th> <th>120</th>		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Aminoacid S L A S R L Y A E E R Y P I L P E Y L Q 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 136 137 138 136 137 138 136 137 138 136 137 138 136 137 138 136 137 138 136 137 138 140 150 151 153 154 155 156 157 158 159 160 170 <	Codon	tct	ttg	gct	tct	aga	ttg	tac	gct	gaa	gaa	aga	tac	cca	att	ttg	cca	gaa	tac	ttg	caa
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 Codon 195 196 197 198 198 198 198 198 198 198 198 198 140 Codon Optimized 197 18 1	-			-		-			-		-	-									
Codon [y] git ag ga tit ga	Aminoacid	S	L	A	S	R	L	Y	A	E	E	R	Y	Р	Ι	L	Р	E	Y	L	Q
Codon [y] git ag ga tit ga		121	122	123	124	125	126	127	128	120	130	131	132	133	134	135	136	137	138	130	140
Codon Optimized U	Codon																				
Aminoacid C V K E L Y R G G L E P I N F Q T A A D 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 143 144 143 144 143 144 143 144 143 144 143 144 <		-	-	-	-	-		-			-	-							-	-	-
CodoncaagaagaatigatinatiCodonftftftftftftftftftftftftftftftftftftft <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th>Y</th> <th>-</th> <th></th> <th></th> <th>L</th> <th>-</th> <th>Р</th> <th>Ι</th> <th>N</th> <th>F</th> <th>Q</th> <th>Т</th> <th></th> <th>-</th> <th>-</th>		-	-	-		-	Y	-			L	-	Р	Ι	N	F	Q	Т		-	-
CodoncaagaagaatigatinatiCodonftftftftftftftftftftftftftftftftftftft <th></th>																					
Codon Optimized C <thc< th=""> C <thc< th=""> <</thc<></thc<>												_									
Aminoacid Q A R E L I N S W V E S Q T N G I I R N Ioi <		141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ioi I						ttg	att		tct		gtt				act			att		aga	aac
Codongittitcaaccatitgitgitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgittitgitgitgittitgit	Codon Optimized	caa cag	gct	aga cgg	gaa gaa	ttg ctt	att	aac aac	tct tcc	tgg tgg	gtt gtt	gaa gag	tct agt	caa caa	act acc	aac aac	ggt ggt	att	att	aga cgt	aac aat
Codongittitcaaccatitgitgitgittitgittitgittitgittitgittitgit	Codon Optimized	caa cag	gct	aga cgg	gaa gaa	ttg ctt	att	aac aac	tct tcc	tgg tgg	gtt gtt	gaa gag	tct agt	caa caa	act acc	aac aac	ggt ggt	att	att	aga cgt	aac aat
Codon Optimized gt ttg caa cct ttg agt gt gat ttc cag act gcc alt gt ttd gt at gt gt at gt gt<	Codon Optimized	caa cag Q	gct gca A	aga cgg R	gaa gaa E	ttg ctt L	att att I	aac aac N	tct tcc S	tgg tgg W	gtt gtt V	gaa gag E	tct agt S	caa caa Q	act acc T	aac aac N	ggt ggt G	att atc I	att atc I	aga cgt R	aac aat N
Number	Codon Optimized Aminoacid	caa cag Q 161	gct gca A 162	aga cgg R 163	gaa gaa E 164	ttg ctt L 165	att att I 166	aac aac N 167	tct tcc S 168	tgg tgg W 169	gtt gtt V 170	gaa gag E 171	tct agt S 172	caa caa Q 173	act acc T 174	aac aac N 175	ggt ggt G 176	att atc I 177	att atc I 178	aga cgt R 179	aac aat N 180
Codontttaagggtttgigggaaaggcttttaaggatgagatga	Codon Optimized Aminoacid Codon	caa cag Q 161 gtt	gct gca A 162 ttg	aga cgg R 163 caa	gaa gaa E 164 cca	ttg ctt L 165 tct	att att I 166 tct	aac aac N 167 gtt	tct tcc S 168 gat	tgg tgg W 169 tct	gtt gtt V 170 caa	gaa gag E 171 act	tct agt S 172 gct	caa caa Q 173 atg	act acc T 174 gtt	aac aac N 175 ttg	ggt ggt G 176 gtt	att atc I 177 aac	att atc I 178 gct	aga cgt R 179 att	aac aat N 180 gtt
Codontttaagggtttgigggaaaggcttttaaggatgagatga	Codon Optimized Aminoacid Codon Codon Optimized	caa cag Q 161 gtt gta	gct gca A 162 ttg ttg	aga cgg R 163 caa caa	gaa gaa E 164 cca cct	ttg ctt L 165 tct tcg	att att I 166 tct agt	aac aac N 167 gtt gtt	tct tcc S 168 gat gat	tgg tgg W 169 tct tcc	gtt gtt V 170 caa cag	gaa gag E 171 act act	tct agt S 172 gct gcc	caa caa Q 173 atg atg	act acc T 174 gtt gta	aac aac N 175 ttg ctt	ggt ggt G 176 gtt gtg	att atc I 177 aac aat	att atc I 178 gct gct	aga cgt R 179 att atc	aac aat N 180 gtt gtt
Codon Optimized tt aag gga ttg tg ga aag gct tt aag gaa aag gct tt aag gaa aag gct tt aag gaa gaa <t< th=""><th>Codon Optimized Aminoacid Codon Codon Optimized</th><th>caa cag Q 161 gtt gta V</th><th>gct gca A 162 ttg ttg L</th><th>aga cgg R 163 caa caa Q</th><th>gaa gaa E 164 cca cct P</th><th>ttg ctt L 165 tct tcg S</th><th>att att I 166 tct agt S</th><th>aac aac N 167 gtt gtt V</th><th>tct tcc S 168 gat gat D</th><th>tgg tgg W 169 tct tcc S</th><th>gtt gtt V 170 caa cag Q</th><th>gaa gag E 171 act act T</th><th>tct agt S 172 gct gcc A</th><th>caa Q 173 atg atg M</th><th>act acc T 174 gtt gta V</th><th>aac aac N 175 ttg ctt L</th><th>ggt ggt G 176 gtt gtg V</th><th>att atc I 177 aac aat N</th><th>att atc I 178 gct gct A</th><th>aga cgt R 179 att atc I</th><th>aac aat N 180 gtt gtt V</th></t<>	Codon Optimized Aminoacid Codon Codon Optimized	caa cag Q 161 gtt gta V	gct gca A 162 ttg ttg L	aga cgg R 163 caa caa Q	gaa gaa E 164 cca cct P	ttg ctt L 165 tct tcg S	att att I 166 tct agt S	aac aac N 167 gtt gtt V	tct tcc S 168 gat gat D	tgg tgg W 169 tct tcc S	gtt gtt V 170 caa cag Q	gaa gag E 171 act act T	tct agt S 172 gct gcc A	caa Q 173 atg atg M	act acc T 174 gtt gta V	aac aac N 175 ttg ctt L	ggt ggt G 176 gtt gtg V	att atc I 177 aac aat N	att atc I 178 gct gct A	aga cgt R 179 att atc I	aac aat N 180 gtt gtt V
Aminoacid F K G L W E K A F K D E D T D A M Y F K 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 Codon gtt act gaa caa gaa tt aga cca gtt cca gaa caa gtt act gaa caa gaa cca gtt cca gtt	Codon Optimized Aminoacid Codon Codon Optimized Aminoacid	caa cag Q 161 gtt gta V	gct gca A 162 ttg ttg L 182	aga cgg R 163 caa caa Q 183	gaa gaa E 164 cca cct P	ttg ctt L 165 tct tcg S 185	att att I 166 tct agt S 186	aac aac N 167 gtt gtt V	tct tcc S 168 gat gat gat D	tgg tgg W 169 tct tcc S 189	gtt gtt V 170 caa cag Q 190	gaa gag E 171 act act T 191	tct agt S 172 gct gcc A 192	caa Q 173 atg atg M 193	act acc T 174 gtt gta V	aac aac N 175 ttg ctt L 195	ggt ggt G 176 gtt gtg V	att atc I 177 aac aat N	att atc I 178 gct gct A 198	aga cgt R 179 att atc I 199	aac aat N 180 gtt gtt V 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 Codon gtt act gaa caa gaa tt aag cca gtt caa atg	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon	caa cag Q 161 gtt gta V 181 ttt	gct gca A 162 ttg ttg L 182 aag	aga cgg R 163 caa caa Q 183 ggt	gaa gaa E 164 cca cct P 184 ttg	ttg ctt L 165 tct tcg S 185 tgg	att att I 166 tct agt S 186 gaa	aac aac N 167 gtt gtt V V	tct S 168 gat gat D 188 gct	tgg tgg W 169 tct tcc S 189 ttt	gtt gtt V 170 caa cag Q 190 aag	gaa gag E 171 act act T 191 gat	tct agt S 172 gct gcc A 192 gaa	caa Q 173 atg atg M 193 gat	act T 174 gtt gta V 194	aac aac N 175 ttg ctt L 195 gat	ggt ggt 176 gtt gtg V 196 gct	att atc I 177 aac aat N 197 atg	att atc I Sct gct gct A 198 tac	aga cgt R 179 att atc I 199 ttt	aac aat N 180 gtt gtt V 200 aag
Codon Optimized Optimizedget actact gaagaa gaaict gaaaca gaaict gaa gaaict gaa gaaict gaa gaaict gaa gaaict gaa gaa gaaict gaa<	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Codon	caa cag Q 161 gtt gta V 181 ttt ttt	gct gca A 162 ttg ttg ttg L 182 aag aag	aga cgg R 163 caa caa Q 183 ggt	gaa gaa E 164 cca cct P 184 ttg ttg	ttg ctt L 165 tct tcg S 185 tgg tgg	att att I 166 tct agt S 186 gaa gaa	aac aac N 167 gtt gtt t V 187 aag aag	tct tcc S 168 gat gat D 188 gct gct	tgg tgg W 169 tct tcc S 189 ttt ttt	gtt gtt V 170 caa Q 190 aag	gaa gag E 171 act T 191 gat gac	tct agt S 172 gct gcc A 192 gaa gaa	caa caa Q 173 atg atg M 193 gat gat	act acc T 174 gtt gta V 194 act aca	aac aac N 175 ttg ttg ttg L 195 gat gat	ggt ggt G 176 gtt gtg V 196 gct gca	att atc I 177 aac aat N 197 atg atg	att atc I I S gct gct A 198 tac tat	aga cgt R 179 att atc I 199 ttt ttt	aac aat N 180 gtt gtt V 200 aag aag
Codon Optimized gtc act gaa caa gaa tcc aaa ccc gtt caa atc caa gaa tcc aaa ccc gtt caa atg tac caa atc gaa ggt ttc aaa ggt ttc aaa ggt ttc aaa ggt gtt ttc aga ggt ggt ttc aga ggt ggt ttc aga ggt	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Codon	caa cag Q 161 gtt gta V 181 ttt ttt	gct gca A 162 ttg ttg ttg L 182 aag aag	aga cgg R 163 caa caa Q 183 ggt	gaa gaa E 164 cca cct P 184 ttg ttg	ttg ctt L 165 tct tcg S 185 tgg tgg	att att I 166 tct agt S 186 gaa gaa	aac aac N 167 gtt gtt t V 187 aag aag	tct tcc S 168 gat gat D 188 gct gct	tgg tgg W 169 tct tcc S 189 ttt ttt	gtt gtt V 170 caa Q 190 aag	gaa gag E 171 act T 191 gat gac	tct agt S 172 gct gcc A 192 gaa gaa	caa caa Q 173 atg atg M 193 gat gat	act acc T 174 gtt gta V 194 act aca	aac aac N 175 ttg ttg ttg L 195 gat gat	ggt ggt G 176 gtt gtg V 196 gct gca	att atc I 177 aac aat N 197 atg atg	att atc I I S gct gct A 198 tac tat	aga cgt R 179 att atc I 199 ttt ttt	aac aat N 180 gtt gtt V 200 aag aag
Aminoacid V T E Q E S K P V Q M Y Q I G L F R V 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Codon gct tct atg get tct gaa atg	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Codon	caa cag Q 161 gtt gta V 181 ttt ttt F	gct gca A 162 ttg ttg L L 182 aag aag aag	aga cgg R 163 caa caa Q 183 ggt gga G	gaa gaa E Cca cct P 184 ttg ttg L	ttg ctt L 165 tct tcg S 185 tgg tgg W	att att I 166 tct agt S I 86 gaa gaa E	aac aac N 167 gtt gtt V 187 aag aag aag K	tct tcc S gat gat D 188 gct gct A	tgg tgg W 169 tct tcc S S 189 ttt ttt F	gtt gtt V 170 caa cag Q 190 aag aag K	gaa gag E 171 act act T 191 gat gac D	tct agt S IT2 gct gcc A I92 gaa gaa E	caa Q Q 173 atg atg M 193 gat gat D	act acc T 174 gtt gta V 194 act aca T	aac aac N 175 ttg ctt L 195 gat gat D	ggt ggt G 176 gtt gtg V 196 gct gca A	att atc I 177 aac aat N 197 atg atg M	att atc I I S gct gct A I 198 tac tat Y	aga cgt R 179 att atc I 99 ttt ttt F	aac aat N gtt gtt V 200 aag aag K
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Codon gct tct atg gct tct gaa atg <td< th=""><th>Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid</th><th>caa cag Q 161 gtt gta V V 181 ttt ttt F</th><th>gct gca A 162 ttg ttg ttg L 182 aag aag K</th><th>aga cgg R 163 caa caa Q 183 ggt gga G</th><th>gaa gaa E 164 cca cct P 184 ttg ttg L</th><th>ttg ctt L 165 tct tcg S 185 tgg tgg tgg W</th><th>att att I 166 tct agt S I 86 gaa gaa gaa E 206</th><th>aac aac N 167 gtt gtt V 187 aag aag K</th><th>tct tcc S l68 gat gat D l88 gct gct A</th><th>tgg tgg W 169 tct tcc S 189 ttt ttt F</th><th>gtt gtt V 170 caa Q 190 aag aag k K</th><th>gaa gag E 171 act T 191 gat gac D</th><th>tct agt S 172 gct gcc A 192 gaa gaa gaa E</th><th>caa Q Q 173 atg atg atg gat gat D</th><th>act acc T 174 gtt gta V 194 act aca T</th><th>aac aac N 175 ttg ctt L 195 gat gat gat D</th><th>ggt ggt G 176 gtt gtg yv 196 gct gca A</th><th>att atc I 1777 aac aat N 1997 atg atg M 217</th><th>att atc I I S gct gct A I I 98 tac tat Y 218</th><th>aga cgt R 179 att atc I 199 ttt ttt F</th><th>aac aat N 180 gtt gtt V 200 aag aag k X</th></td<>	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt F	gct gca A 162 ttg ttg ttg L 182 aag aag K	aga cgg R 163 caa caa Q 183 ggt gga G	gaa gaa E 164 cca cct P 184 ttg ttg L	ttg ctt L 165 tct tcg S 185 tgg tgg tgg W	att att I 166 tct agt S I 86 gaa gaa gaa E 206	aac aac N 167 gtt gtt V 187 aag aag K	tct tcc S l68 gat gat D l88 gct gct A	tgg tgg W 169 tct tcc S 189 ttt ttt F	gtt gtt V 170 caa Q 190 aag aag k K	gaa gag E 171 act T 191 gat gac D	tct agt S 172 gct gcc A 192 gaa gaa gaa E	caa Q Q 173 atg atg atg gat gat D	act acc T 174 gtt gta V 194 act aca T	aac aac N 175 ttg ctt L 195 gat gat gat D	ggt ggt G 176 gtt gtg yv 196 gct gca A	att atc I 1777 aac aat N 1997 atg atg M 217	att atc I I S gct gct A I I 98 tac tat Y 218	aga cgt R 179 att atc I 199 ttt ttt F	aac aat N 180 gtt gtt V 200 aag aag k X
CodongcttctatggcttctgaaatgatgatgatgttggaattggcattggcatttgcttctggtatgatgCodon OptimizegccatgatggcttctgaggagatgatgatgatgatgatgatgatgatgttggaattggcattggcttctggtactatgAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASGC4Z43Z43Z43Z44Z45Z46Z47Z48Z49Z50Z51Z52Z53Z54Z55Z56Z57Z58Z59Z60Codonttdttdttdttdttdttdttdttdttdttdttdttdttdttdt	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V 181 ttt ttt ttt F 201 gtt	gct gca A 162 ttg ttg L 182 aag aag K K 202 act	aga cgg R 163 caa caa Q 183 ggt gga gga G 203 gaa	gaa gaa E 164 cca cct P 184 ttg ttg ttg L 204 caa	ttg ctt L 165 tct tcg S 185 tgg tgg tgg W 205 gaa	att att I I att att att att agt gaa gaa gaa gaa E 206 tct	aac aac N 167 gtt gtt V 187 aag aag K 207 aag	tct tcc S 168 gat gat gat gat gct gct A 208 cca	tgg tgg W 169 tct tcc S 189 ttt ttt ttt F 209 gtt	gtt gtt V 170 caa cag Q 190 aag aag aag K 210 caa	gaa gag E 171 act act T 191 gat gat gat 211 atg	tct agt S 172 gct gcc A 192 gaa gaa gaa gaa E	caa caa Q 173 atg atg M 193 gat gat gat D 213 tac	act acc T 174 gtt gtt 194 act aca T 214 caa	aac aac N 175 ttg ctt L 195 gat gat gat D 215 att	ggt ggt G 176 gtt gtg gct gct gca A 216 ggt	att atc I 177 aac aat N 197 atg atg atg M 217 ttg	att atc I I I I R gct gct A I I 98 tac tat Y 218 ttt	aga cgt R 179 att atc I 99 ttt ttt F 219 aga	aac aat N 180 gtt gtt V 200 aag aag K 220 gtt
CodongcttctatggcttctgaaatgatgatgatgttggaattggcattggcatttgcttctggtatgatgCodon OptimizegccatgatggcttctgaggagatgatgatgatgatgatgatgatgatgttggaattggcattggcttctggtactatgAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASMASEKMKILELPFASGTMAminoacidASGC4Z43Z43Z43Z44Z45Z46Z47Z48Z49Z50Z51Z52Z53Z54Z55Z56Z57Z58Z59Z60Codonttdttdttdttdttdttdttdttdttdttdttdttdttdttdt	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V 181 ttt ttt F 201 gtt gtc	gct gca A 162 ttg ttg L 182 aag aag X X 202 act	aga cgg R 163 caa caa Q 183 ggt gga gga gga gaa	gaa gaa E 164 cca cct P 184 ttg ttg ttg ttg 204 caa	ttg ctt L 165 tct tcg S 185 tgg tgg tgg tgg tgg tgg gaa	att att I I att att att att att agt gaa gaa gaa E 206 tct tcc	aac aac N gtt gtt V 187 aag aag X X	tct tcc S at gat gat gat gat gct ac ac cca ccc	tgg tgg W 169 tct tcc S 189 ttt ttt ttt F 209 gtt gtt	gtt gtt V 170 caa cag Q 190 aag aag aag aag 210 caa	gaa gag E 171 act act T 191 gat gac gac D 211 atg	tct agt S 172 gct gcc A 192 gaa gaa gaa gaa E 212 atg	caa caa Q 173 atg atg dt gat gat gat gat 213 tac	act acc T 174 gtt gta V 194 act aca aca t caa caa	aac aac N 175 ttg ctt L 195 gat gat gat gat 215 att	ggt ggt G 176 gtt gtg gt gct gca A 216 ggt ggt	att atc I I atc atc atc atc atc atg atg atg atg atg ttg	att atc I I Sgct gct A I 198 tac tat tat Y 218 ttt ttc	aga cgt R 179 att atc I 99 ttt ttt F 219 aga aga	aac aat N 180 gtt gtt V 200 aag aag k 220 gtt gtg
Codon Optimized gcc agc atg gct tct gag aag atg aaa att ctt gaa ttg cca ttt gct tct ggg acg atg att ctt gaa ttg cca ttt gct tct ggg atg atg Aminoacid A S M A S E K M K I L E L P F A S G T M 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 Codon tct atg ttg ttg ttg ttg tac caa gaa gtt ttg gta tat ttd tat	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V I81 ttt ttt ttt ttt gtt gtt gtt v V	gct gca A 162 ttg ttg ttg L 182 aag aag aag X 202 act act T	aga cgg R 163 caa caa Q 183 ggt ggt gga G C 203 gaa gaa gaa E	gaa gaa E 164 cca cct P 184 ttg ttg ttg ttg L 204 caa caa Q	ttg ctt L 165 tct tcg S 185 tgg tgg tgg W 205 gaa gaa gaa E	att att I I G G C C G G aa gaa gaa gaa E 2006 tct tcc S	aac aac N Iff7 gtt V Iff7 aag aag K 207 aag aaa K	tct tcc S I68 gat gat D I88 gct gct gct A 208 cca ccc P	tgg tgg W 169 tct tcc S S 189 ttt ttt ttt F C 209 gtt gtt V	gtt gtt V 170 caa cag Q 190 aag aag aag tK 210 caa cag Q	gaa gag E 171 act act T 191 gat gat gat 211 atg atg	tct agt S gct gcc A gaa gaa gaa gaa gaa gaa gaa gaa gaa g	caa caa Q 173 atg atg gat gat gat D 213 tac tac tac Y	act acc T 174 gtt gta V 194 act aca aca 214 caa cag Q	aac aac N 175 ttg ctt L 195 gat gat gat D 215 att atc I	ggt ggt G gtt gtg V 196 gct gct gct ggt ggt ggt ggt	att atc I I aac aat N I 197 atg atg atg M Z 17 ttg ttg ttg L	att atc I I S G Ct G Ct A I 98 tac tat Y 218 ttt ttc F	aga cgt R 179 att atc I 199 ttt ttt F 219 aga aga aga R	aac aat N 180 gtt gtt V 200 aag aag aag k 220 gtt gtg V
Aminoacid A S M A S E K M K I L E L P F A S G T M 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 Codon tct atg ttg gtt ttg ttg tac caa gaa gtt ttg tac	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt F 201 gtt gtc V 221	gct gca A 162 ttg ttg ttg L 182 aag aag K 202 act act T 2222	aga cgg R 163 caa caa Q 183 ggt gga gga gga gga gaa gaa E	gaa gaa E 164 cca cct P 184 ttg ttg ttg ttg L 204 caa caa Q	ttg ctt L 165 tct tcg tgg tgg tgg tgg w 205 gaa gaa E 2225	att att I I G C C C C C C C C C C C C C C C C C	aac aac N gtt gtt v v 187 aag aag K 207 aag aaa K 227	tct tcc S at gat gat gat gat gct gct A 208 cca ccc P	tgg tgg W 169 tct tcc S S 189 ttt ttt ttt F 209 gtt gtt V	gtt gtt V 170 caa cag Q 190 aag aag aag aag cag Q 210 caa cag Q	gaa gag E 171 act act T 191 gat gac D 211 atg atg atg M	tct agt S Gct gct gcc A 192 gaa gaa gaa B 212 atg atg atg M	caa caa Q 173 atg atg atg gat gat gat D 213 tac tac tac Y	act acc T 174 gtt gtt gtt 194 act aca aca T 214 caa cag Q Q	aac aac N 175 ttg ctt L 195 gat gat gat gat 215 att atc I 235	ggt ggt G gtt gtt gtt gtt gct gca A 216 ggt ggt G	att atc I I aac aat N I 197 atg atg atg atg ttg ttg L 237	att atc I I gct gct A I 98 tac tat tat Y 218 ttt ttc F	aga cgt R 179 att atc I 99 ttt ttt F 219 aga aga aga R 239	aac aat N 180 gtt V 200 aag aag K 220 gtg gtg y V
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 Codon tct atg ttg gtt ttg ttg ttg tcc caa gaa gtt ttg gaa ttg ttg att att	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt F 201 gtt gtc V 221 gct	gct gca A 162 ttg ttg ttg L 182 aag aag K 202 act act act T 7	aga cgg R 163 caa caa Q 183 ggt gga gga gga gaa gaa E 223 atg	gaa gaa E 164 cca cct P 184 ttg ttg ttg L 204 caa caa Q 224 gct	ttg ctt L 165 tct tcg S 185 tgg tgg W 205 gaa gaa E 225 tct	att att I I I I I I I I I I I I I I I I	aac aac N gtt gtt V V 187 aag aag K 207 aag aaa K 227 aag	tct tcc S at gat gat gat gat gct gct A 208 cca ccc P 228 atg	tgg tgg W 169 tct tcc S S 189 ttt ttt ttt F 209 gtt gtt V 229 aag	gtt gtt V 170 caa cag Q 190 aag aag K 210 caa cag Q 230 att	gaa gag E 171 act act T 191 gat gac D 211 atg atg atg M	tct agt S 172 gct gcc A 192 gaa gaa E 212 atg atg atg M	caa caa Q 173 atg atg atg gat gat gat D 213 tac tac tac Y	act acc T gta gta V 194 act aca aca T 214 caa cag Q Q	aac aac N 175 ttg ctt L U 195 gat gat gat D 215 att atc I I 235 ttt	ggt ggt G gtt gtg gt gct gca A 216 ggt ggt G 236 gct	att atc I I I A atg atg atg M I I I T ttg ttg L Z 37 tct	att atc I I I I I I I I I I I I I I I I I I I	aga cgt R 179 att atc I 99 ttt ttt F 219 aga aga R R 239 act	aac aat N gtt gtt V 2000 aag aag aag K 2200 gtt gtg V V 2400 atg
Codon tct atg ttg gtt ttg ttg tac caa gaa gtt ttg gaa ttt att	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt F 201 gtt gtc V 221 gcc gcc	gct gca A 162 ttg ttg ttg L 182 aag aag K 202 act act T 2222 tct agc	aga cgg R 163 caa caa Q 183 ggt gga gga gga gga gaa gaa gaa gaa gaa	gaa gaa E 164 cca cct P 184 ttg ttg ttg L 204 caa caa Q 224 gct gct	ttg ctt L 165 tct tcg S 185 tgg tgg W 205 gaa gaa E 225 tct tct tct	att att I I I I I I I I I I I I I I I I	aac aac N gtt gtt V V 187 aag aag K 207 aag aaa K 227 aag aag	tct tcc S agat gat gat gat gat gct gct A 208 cca ccc P 228 atg atg atg	tgg tgg W 169 tct tcc S S 189 ttt ttt F 209 gtt gtt V V 229 aaa	gtt gtt V 170 caa cag Q 190 aag aag K 210 caa cag Q 230 att att	gaa gag E 171 act act T 191 gat gac D 211 atg atg M 231 ttg ctt	tct agt S dr gct gcc A gaa gaa gaa E 212 atg atg atg M M	caa caa Q 173 atg atg atg gat gat gat D 213 tac tac tac tac 233	act acc T gta gta V 194 act aca aca T 214 caa cag Q Q 234 cca	aac aac N 175 ttg ctt L U 195 gat gat gat D 215 att atc I I 235 ttt ttt	ggt ggt G gtt gtg gt gct gca A 216 ggt ggt G ggt ggt ggt ggt ggt ggt	att atc I I I I I I I I I I I I I I I I I I I	att atc I I I I I I I I I I I I I I I I I I I	aga cgt R 179 att atc I 99 ttt ttt F 219 aga aga aga R 239 act acg	aac aat N gtt gtt V 200 aag aag k 220 gtt gtg V V 240 atg atg
Codon tct atg ttg gtt ttg ttg tac caa gaa gtt ttg gaa ttt att	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt F 201 gtt gtc V 221 gcc gcc	gct gca A 162 ttg ttg ttg L 182 aag aag K 202 act act T 2222 tct agc	aga cgg R 163 caa caa Q 183 ggt gga gga gga gga gaa gaa gaa gaa gaa	gaa gaa E 164 cca cct P 184 ttg ttg ttg L 204 caa caa Q 224 gct gct	ttg ctt L 165 tct tcg S 185 tgg tgg W 205 gaa gaa E 225 tct tct tct	att att I I I I I I I I I I I I I I I I	aac aac N gtt gtt V V 187 aag aag K 207 aag aaa K 227 aag aag	tct tcc S agat gat gat gat gat gct gct A 208 cca ccc P 228 atg atg atg	tgg tgg W 169 tct tcc S S 189 ttt ttt F 209 gtt gtt V 229 aaa	gtt gtt V 170 caa cag Q 190 aag aag K 210 caa cag Q 230 att att	gaa gag E 171 act act T 191 gat gac D 211 atg atg M 231 ttg ctt	tct agt S dr gct gcc A gaa gaa gaa E 212 atg atg atg M M	caa caa Q 173 atg atg atg gat gat gat D 213 tac tac tac tac 233	act acc T gta gta V 194 act aca aca T 214 caa cag Q Q 234 cca	aac aac N 175 ttg ctt L U 195 gat gat gat D 215 att atc I I 235 ttt ttt	ggt ggt G gtt gtg gt gct gca A 216 ggt ggt G ggt ggt ggt ggt ggt ggt	att atc I I I I I I I I I I I I I I I I I I I	att atc I I I I I I I I I I I I I I I I I I I	aga cgt R 179 att atc I 99 ttt ttt F 219 aga aga aga R 239 act acg	aac aat N gtt gtt V 200 aag aag k 220 gtt gtg V V 240 atg atg
Codon Optimized agt atg ctg gtt ctc ttg tat cag gag gtt tct ggt ctg gag gac cta gaa tct att att	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt f F 201 gtt gtc V 221 gcc gcc A	gct gca A 162 ttg ttg ttg L 182 aag aag K 202 act act act T 2222 tct agc S	aga cgg R 163 caa caa Q 183 ggt gga gga gga gga gaa gaa gaa gaa gaa	gaa gaa E 164 cca cct P 184 ttg ttg ttg ttg L 204 caa caa Q 224 gct gct A	ttg ctt L 165 tct tcg S 185 tgg tgg W 205 gaa gaa gaa gaa E 225 tct tct tct	att att I I I I I I I I I I I I I I I I	aac aac N gtt gtt V aag aag aag aaa K 207 aag aaa K 227 aag aaa K	tct tcc S a gat gat gat gat gat gat gat gat gat g	tgg tgg W 169 tct tcc S 189 ttt ttt ttt F 209 gtt gtt V 229 aaa aaa K	gtt gtt V 170 caa cag Q 190 aag aag aag K 210 caa cag Q 230 att att 1	gaa gag E 171 act act T gat gat gat gat 211 atg atg M 211 atg ttg ttg ttg	tct agt 3 3 4 3 4 4 2 3 2 3 2 3 2 3 2 3 2 3 2 3	caa caa Q 173 atg atg m 9 193 gat gat gat D 213 tac tac tac tac tac tac tac tac	act acc T gta gta v v 194 act aca aca t caa cag Q 214 caa cag Q 2 2 4 cca p	aac aac N 175 ttg ctt L 195 gat gat D 215 att atc I I 235 ttt ttt F	ggt ggt G gtt gtg gtg gt gct gct ggt ggt ggt ggt	att atc I I I I I I I I I I I I I I I I I I I	att atc I I I I I I R I I R I I I I I R I I I R I I R I I R I I R I I R I I R I I R I	aga cgt R 179 att atc I 99 ttt ttt ttt F 219 aga aga aga R 239 act acg T	aac aat N 180 gtt gtt V 200 aag aag k 220 gtt gtg V V 240 atg atg M
	Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid Codon Optimized Aminoacid	caa cag Q 161 gtt gta V V 181 ttt ttt ttt gtt gtt gtc V 221 gct gcc A 241	gct gca A 162 ttg ttg L 182 aag aag aag K 202 act act act T 7 222 tct agc S	aga cgg R 163 caa caa Q 183 ggt ggt gga gga gga gaa gaa gaa gaa gaa	gaa gaa E Cca cct P I84 ttg ttg ttg ttg ttg 204 caa caa Q 224 gct gct gct 2244	ttg ctt L 165 tct tcg S 185 tgg tgg W 205 gaa gaa gaa gaa E 225 tct tct tct S	att att I I I I I I I I I I I I I I I I	aac aac N gtt gtt V aag aag aag X 207 aag aaa K 227 aag aag aaa K	tct tcc S 3 4 3 4 3 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4	tgg tgg W 169 tct tcc S S 189 ttt ttt ttt ttt gtt V 209 gtt gtt 229 aaa aaa K	gtt gtt 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	gaa gag E 1711 act act T gat gat gat 2111 atg atg atg ttg ctt L 231	tct agt 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	caa caa Q 173 atg atg gat gat gat D 213 tac tac tac Y 233 ttg ttg L	act acc T gta gta v v 194 act aca aca Caa Q Q 214 caa caa caa Q 214 caa caa caa Q 214	aac aac N 175 ttg ctt L gat gat gat 215 att atc I I 2255	ggt ggt G gtt gtg gct gct ggt ggt ggt ggt ggt ggt	att atc I I I I I I I I I I I I I I I I I I I	att atc I I I I I I R I I R I I I R I I I R I I I R I I R I I R I I R I I R I	aga cgt R 179 att atc I 99 ttt ttt ttt F 219 aga aga aga R 239 act acg T 259	aac aat N 180 gtt gtt V 200 aag aag k 220 gtt gtg V 240 atg atg atg M

4.2. Design for gene cloning in pPIC9K plasmid for Pichia Pastoris

When performing virtual digestions and then an agarous gel by means of electrophoresis to determine the size of the bands for the plasmid pPIC9K in factory state, pPIC9K with optimized sequence of codons (double cut *BamHI* and *PsiI*) and pPIC9K with optimized sequence of codons (1 *PsiI* cut only) represented in columns 1, 2, 3 of Figure 10 respectively.

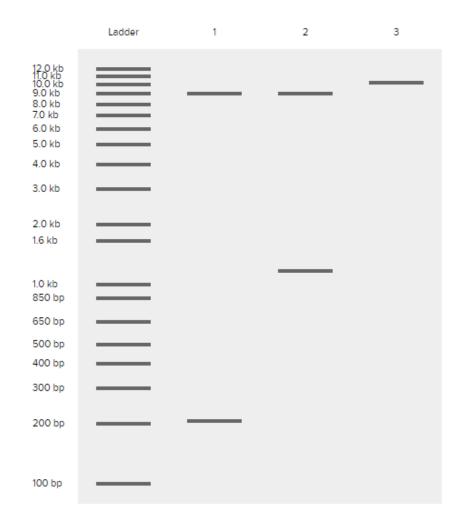


Figure 10: Electrophoresis performed (1: Factory pPIC9K, 2: pPIC9K with codon optimization, 3: pPIC9K with a single cut).

Column 1 of Figure 10 developed the electrophoresis for pPIC9K in its original state, where a higher band corresponding to a size of 9.1 kb of the acquired plasmid is observed. On the other hand in column 2 of Figure 10, two fragments are observed, the smaller fragment corresponds to the ovalbumin protein, which is the gene to be cloned with a size of 1.2 kb, while the other fragment corresponds to the plasmid pPIC9K of 9.1 kb. By linking the gene to be cloned (lower band column 2) and plasmid (upper band column 1) the digestion observed in column 3 is obtained with a band size of 10.2 kb, which validates the insertion of the ovalbumin protein within the plasmid pPIC9K.

5. Conclusions

The sequence of codons optimized using the computational tools allows to guarantee the stabilization of the sequence of this gene for the execution of its cloning in *Pichia Pastoris* with pPIC9K as a cloning vector (under the functionality conditions of the *BamHI* and *PSiI* restriction enzymes). In addition, through electrophoresis it is possible to validate the correct insertion of the optimized sequence to be cloned within the plasmid, for its subsequent downstream production strategy.

References

Milk and Dairy Products as Functional Foods: A Review. (2011). International Journal of Dairy Science, 6(1), 1–12. https://doi.org/10.3923/ijds.2011.1.12

Epidemiology of Food Allergy in Latin America. (2015). Allergol Immunopathol, 43.

"Guidance on Food Allergen Management for Food Manufacturers". (2013).

Cosmetic Science and Technology. (2009). In *Oil Spill Science and Technology*. Elsevier. https://doi.org/10.1016/b978-1-85617-943-0.10041-3

A review: Chemical Composition and Utilization of Egg. (2018). Int. J. Chem. Stud., 6, 3186-3189.

El Gran Libro del Huevo. (2009). Editorial Everest S.A. http://institutohuevo.com/wp-content/uploads/2017/07/EL-GRAN-LIBRO-DEL-HUEVO.pdf

Fine Mapping and Structural Analysis of Immunodominant IgE Allergenic Epitopes in Chicken Egg Ovalbumin. (2003). Protein Engineering Design and Selection, 16(10), 747-752. https://doi.org/10.1093/ protein/gzg095

Structure and Properties of Ovalbumin. (2001). Journal of Chromatography B: Biomedical Sciences and Applications, 756(1-2), 189–198. https://doi.org/10.1016/s0378-4347(01)00108-6

BIOLOGIA CELULAR Y MOLECULAR: Conceptos y Experimentos. (2011). McGraw-Hill Interamericana de España.

Biotechnology. (2015). Elsevier Science. https://books.google.com/books/about/Biotechnology. html?hl=es&id=osqcBAAQBAJ

Insoluble Proteins: Methods and Protocols. (2014). Humans Press. http://bio1.ir/images/pdf/96/10/ book/Insoluble%20Proteins_%20Methods%20and%20Protocols-Springer%20New%20York%20(2015).pdf

Galindo, E., & Ramírez, O. T. (Eds.). (1998). Advances in Bioprocess Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-017-0643-8

Pichia Pastoris: Una Plataforma Para la Producción de Proteínas Heterólogas. (2016). Revista CENIC. Ciencias Biológicas, 47, 67–77.

Comparación Teórica de las Capacidades Metabólicas de Saccharomyces Cerevisiae y Pichia Pastoris para la Producción de SOD. (2007). Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Química y Biotecnología. http://repositorio.uchile.cl/tesis/uchile/2007/cominetti_oa/sources/cominetti_oa.pdf

Generation of Diploid Pichia Pastoris Strains by Mating and Their Application for Recombinant Protein Production. (2012). *Microbial Cell Factories*, 11(1), 91. https://doi.org/10.1186/1475-2859-11-91

Biotecnología de Proteínas Recombinantes con Pichia Pastoris. (2010). XIV Congreso Nacional De Biotecnología y Bioingeniería. https://smbb.mx/congresos%20smbb/queretaro11/TRABAJOS/simposios/SimposioVI_Viader.pdf

Pichia Expression Kit for Expression of Recombinant Proteins in Pichia Pastoris. (2010). Life Technologies. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/pich_man.pdf

Producción, Purificación, Caracterización de Tres Hexosaminidasas Lisosomales Recombinantes en Pichia Pastoris. (2016). Pontifica Universidad Javeriana. 36-37. https://repository.javeriana.edu.co/ bitstream/handle/10554/19644/EspejoMojicaAngelaJohana2016.pdf?sequence=1&isAllowed=y

Gene expression in yeast: Pichia Pastoris. (1991). Current Opinion in Biotechnology, 2(5), 742–745. https://doi.org/10.1016/0958-1669(91)90045-7

Effects of Methanol Concentration On Expression Levels of Recombinant Protein in Fed-batch Cultures of Pichia Methanolica. (2003). *Biotechnology and Bioengineering*, 81(3), 291–298. https://doi.org/10.1002/bit.10464

Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris. (2013). Chinese Journal of Chemical Engineering, 21(2), 216-226. https://doi.org/10.1016/s1004-9541(13)60461-9

Improvement of Recombinant Hirudin Production by Controlling NH4+ Concentration in Pichia Pastoris Fermentation. (2004). *Biotechnology Letters*, 26(12), 1013–1017. https://doi.org/10.1023/b:bile.0000030049.75092.95

Construccion de una cepa de Pichia Pastorís Sobreproductora de la Isoforma de 20 Kda de la Hormona Del Crecimiento Humano. (2000). [Master's thesis, http://eprints.uanl.mx/6421/1/1080111679.PDF]. http://eprints.uanl.mx/6421/1/1080111679.PDF

Allergen Modification Of The Ovalbumin As Possible Method To Minimize The Egg Allergenic Reaction Into The Human Organism And Its Inclusion in a Food Product. (2020). Autherea. https://www.authorea.com/users/308685/articles/439669-allergen-modification-of-the-ovalbumin-as-possible-method-to-minimize-the-egg-allergenic-reaction-into-the-human-organism-and-its-inclusion-in-a-food-product