References

[1] Wei Zhou, Xiaoxiao Meng, Jihui Gao, Akram N. Alshawabkeh. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review. Chemosphere. 2019; 225: 588-607.
[2] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro. Hydrogen Peroxide Synthesis: An Outlook Beyond the Anthraquinone Process. Angew. Chem.2006;45: 6962–6984.
[3] R. Hage, A. Lienke, Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching. Angew. Chem. Int. Ed. 2006; 37: 206–222. [4] M. Ksibi, Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 2006; 119: 161–165.
[5] M.E. Falagas, P.C. Thomaidis, I.K. Kotsantis, K. Sgouros, G. Samonis, D.E.Karageorgopoulos, Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. Hosp. Infect. 2011; 78: 171–177.
[6] Yongcuan Guan, Weihua Li,Jinli Zhang. Advances in green synthesis of hydrogen peroxide. Chemical progress. 2012; 31: 1641-1647.
[7] Zhimin Qiang, Jih-Hsing Chang, Chin-Pao Huang. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002; 36: 85–94.
[8] Yang, S., Verdaguer-Casadevall, A., Arnarson, L., Silvioli, L., Čolić, V., Frydendal, R., Rossmeisl, J., Chorkendorff, I., Stephens, I.E.L. Toward the decentralized electrochemical production of H2O2: Afocus on the catalysis. ACS Catal.2018; 8: 4064-4081.
[9] Ciriminna, R., Albanese, L., Meneguzzo, F., Pagliaro, M. Hydrogen peroxide: A key chemical for today’s sustainable development. ChemSusChem. 2016; 9: 3374-3381.
[10] Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., Deiana,D., Malacrida, P., Wickman, B., Escudero-Escribano, M., Paoli, E. A., Frydendal, R., Hansen, T. W., Chorkendorff, I., Stephens, I. E., Rossmeisl, J. Enabling direct H2O2production through rational electrocatalyst design. Nat. Mater. 2013; 12: 1137−1143.
[11] Shucheng Chen, Zhihua Chen, Samira Siahrostami, Drew Higgins, Dennis Nordlund, Dimosthenis Sokaras, Taeho Roy Kim, Yunzhi Liu, Xuzhou Yan, Elisabeth Nilsson, Robert Sinclair, Jens K. Nørskov, Thomas F. Jaramillo, Zhenan Bao. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Am. Chem. Soc. 2018; 140: 7851−7859.
[12] Xinjian Shi, Samira Siahrostami, Guo-Ling Li, Yirui Zhang, Pongkarn Chakthranont, Felix Studt, Thomas F Jaramillo, Xiaolin Zheng, Jens K Nørskov. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 2017; 8: 701-706.
[13] Weifeng Tu, Xinli Li , Renquan Wang , Haripal Singh Malhi , Jingyu Ran , Yanling Shi , Yi-Fan Han. Catalytic consequences of the identity of surface reactive intermediates during direct hydrogen peroxide formation on Pd particles. Journal of Catalysis. 2019; 377: 494–506.
[14] Pengfei Tian , Doudou Ding , Yang Sun , Fuzhen Xuan , Xingyan Xu , Jing Xu , Yi-Fan Han. Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts. Journal of Catalysis. 2019; 369: 95–104.
[15] Yi Wang , Mi Yi , Kun Wang , Shuqin Song. Enhanced electrocatalytic activity for H2O2production by the oxygen reduction reaction: Rational control of the structure and composition of multi-walled carbon nanotubes. Chinese Journal of Catalysis. 2019; 40 : 523–533.
[16] Dr. Jennifer K. Edwards; James Pritchard; Li Lu; Marco Piccinini; Greg Shaw; Dr. Albert F. Carley; David J. Morgan; Prof. Christopher J. Kiely; Prof. Graham J. Hutchings. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angew. Chem., Int. Ed. 2014; 53: 2381−2384.
[17] Shibata, S.; Suenobu, T.; Fukuzumi, S. Direct synthesis of hydrogen peroxide from hydrogen and oxygen by using a watersoluble iridium complex and flavin mononucleotide. Angew. Chem.,Int. Ed. 2013; 52: 12327−12331.
[18] Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A. 2008; 350: 133−149.
[19] Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catal. 2014; 4: 3749−3754.
[20] Anam Asghar, Abdul Aziz Abdul Raman , Wan Mohd Ashri Wan Daud, Anantharaj Ramalingam. Reactivity, Stability, and Thermodynamic Feasibility of H2O2/H2O at Graphite Cathode: Application of
Quantum Chemical Calculations in MFCs. American Institute of Chemical Engineers Environ Prog. 2017; 00: 1–14.
[21] William P. Mounfield, Aaron Garg, Yang Shao-Horn, Yuriy Román-Leshkov. Electrochemical Oxygen Reduction for the Production of Hydrogen Peroxide. Chem. 2018; 4: 18−19.
[22] Fellinger, Tim-Patrick; Hasche, Frederic; Strasser, Peter; Antonietti, Markus. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. Am. Chem. Soc. 2012; 134: 4072−4075.
[23] Yanming Liu; Prof. Xie Quan; Xinfei Fan; Dr. Hua Wang; Dr. Shuo Chen. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015; 54: 6837−6841.
[24] Yanyan Sun, Shuang Li, Zarko Petar Jovanov, Denis Bernsmeier, Huan Wang, Benjamin Paul, Xingli Wang, Stefanie Kühl, Peter Strasser. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production. ChemSusChem. 2018; 11: 3388−3395.
[25] Minjie Wang, Tao Zhao, Wei Luo, Zhanxin Mao, Siguo Chen, Wei Ding, Yonghui Deng, Wei Li, Jing Li, Zidong Wei. Quantified Mass Transfer and Superior Antiflooding Performance of Ordered Macro-Mesoporous Electrocatalysts. AIChE J. 2018; 64: 2881–2889.
[26] Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J., Rizzi, G.A., Martucci, A., Granozzi, G., Gennaro, A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon. 2015; 95: 949–963.
[27] Tingting Jiang, Yi Wang, Kun Wang, Yeru Liang, Dingcai Wu, Panagiotis Tsiakaras, Shuqin Song. A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction. Appl. Catal. B-Environ.2016; 189: 1–11.
[28] Lobyntseva, E.; Kallio, T.; Alexeyeva, N.; Tammeveski, K.; Kontturi, K. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies. Electrochim. Acta. 2007; 52: 7262−7269.
[29] Tammeveski, K.; Kontturi, K.; Nichols, R. J.; Potter, R. J.;Schiffrin, D. J. Surface redox catalysis for O2reduction on quinonemodified glassy carbon electrodes. Electroanal. Chem. 2001; 515: 101−112.
[30] Rensheng Zhong, Yuanhang Qin, Dongfang Niu, Jingwei Tian, Xinsheng Zhang, Xingui Zhou, Shigang Sun, Weikang Yuan. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J. Power Sources. 2013; 225: 192–199.
[31] Hasché, F., Oezaslan, M., Strasser, P., Fellinger, T.P. Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 2016; 25: 251–257.
[32] Yanyan Sun, Ilya Sinev, Wen Ju, Arno Bergmann, Sören Dresp, Stefanie Kühl, Camillo Spöri, Henrike Schmies, Huan Wang, Denis Bernsmeier, Benjamin Paul, Roman Schmack, Ralph Kraehnert, Beatriz Roldan Cuenya, Peter Strasser. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018; 8: 2844–2856.
[33] Kun Zhao, Xie Quan, Shuo Chen, Hongtao Yu, Yaobin Zhang, Huimin Zhao. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater. Chem. Eng. J. 2018; 354: 606–615.
[34] Kun Zhao, Yan Su, Xie Quan, Yanming Liu, Shuo Chen, Hongtao Yu. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. Catal. 2018; 357: 118–126.
[35] Kunquan Li, Jiamin Liu, Jun Li, Zeqing Wan. Effects of N mono- and N/P dual-doping on H2O2, OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes. Chemosphere. 2018; 193: 800–810.
[36] Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Electroanal. Chem. 2003; 541: 23−29.
[37] Vaik, K.; Sarapuu, A.; Tammeveski, K.; Mirkhalaf, F.; Schiffrin, D. J. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. Electroanal. Chem. 2004; 564: 159−166.
[38] Strasser, P.; Gliech, M.; Kuehl, S.; Moeller, T. Electrochemical processes on solid shaped nanoparticles with defined facets. Chem.Soc. Rev. 2018; 47: 715−735.
[39] Beermann, V.; Gocyla, M.; Kuhl, S.; Padgett, E.; Schmies, H.;Goerlin, M.; Erini, N.; Shviro, M.; Heggen, M.; Dunin-Borkowski, R.E.; Muller, D. A.; Strasser, P. Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni Nanoparticles by Thermal Annealing - Elucidating the Surface Atomic Structural and Compositional Changes. Am. Chem. Soc. 2017; 139: 16536−16547.
[40] Shucheng Chen, Zhihua Chen, Samira Siahrostami, Taeho Roy Kim, Dennis Nordlund, Dimosthenis Sokaras, Stanislaw Nowak, John W. F. To, Drew Higgins, Robert Sinclair, Jens K. Nørskov, Thomas F. Jaramillo, Zhenan Bao. Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chem. Eng. 2018; 6: 311−317.
[41] Shuang Li, Chong Cheng, Hai‐Wei Liang, Xinliang Feng, Arne Thomas. 2D Porous Carbons prepared from Layered Organic-Inorganic Hybrids and their Use as Oxygen-Reduction Electrocatalysts. Adv. Mater. 2017; 29: 700-707.
[42] Yiran Yang, Fei He, Yanfei Shen, Xinghua Chen, Hao Mei, Songqin Liu, Yuanjian Zhang. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide. Chem. Commun. 2017; 53: 9994−9997.
[43] Shuang Li, Chong Cheng, Xiaojia Zhao, Johannes Schmidt, Arne Thomas. Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx-Carbon as Bifunctional Oxygen Electrodes for Zinc-Air Batteries. Angew. Chem. Int. Ed. 2018; 57: 1856−1862.
[44] Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.;Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato,M.; Fornasiero, P. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2Reduction to H2O2. Chem. 2018; 4: 106−123.
[45] Kruusenberg, I.; Leis, J.; Arulepp, M.; Tammeveski, K. Oxygen Reduction on Carbon Nanomaterial Modified Glassy Carbon Electrodes in Alkaline Solution. Solid State Electrochem. 2010; 14: 1269−1277.
[46] Lei Han, Yanyan Sun, Shuang Li, Chong Cheng, Christian E. Halbig, Patrick Feicht, Jessica Liane Hübner, Peter Strasser, Siegfried Eigler. In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catal. 2019; 9: 1283−1288.
[47] Haijian Luo, Chaolin Li, Chiqing Wu, Wei Zheng, Xiaoqing Dong. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochim. Acta. 2015; 186: 486–493.
[48] Jun Li, Guangxu Chen, Yangying Zhu, Zheng Liang, Allen Pei, Chun-Lan Wu, Hongxia Wang, Hye Ryoung Lee, Kai Liu, Steven Chu, Yi Cui. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nature Catalysis. 2018; 1: 592-600.
[49] Shiming Chen, Siglinda Perathoner, Claudio Ampelli, Chalachew Mebrahtu, Dangsheng Su, Gabriele Centi. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor. ACS Sustain. Chem. Eng. 2017; 5: 7393–7400.
[50] Zarei, M., Salari, D., Niaei, A., Khataee, A. Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochim. Acta .2009; 54: 6651–6660.
[51] Khataee, A.R., Safarpour, M., Zarei, M., Aber, S. Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters. Electroanal. Chem. 2011; 659: 63–68.
[52] Babaei-Sati, R., Basiri Parsa, J. Electrogeneration of H2O2 using graphite cathode modified withelectrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process. Ind. Eng.Chem. 2017; 52: 270–276.
[53] Flores, N., Thiam, A., Rodríguez, R.M., Centellas, F., Cabot, P.L., Garrido, J.A., Brillas, E., Sirés, I. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route. Environ. Sci. Pollut. Res. 2017; 24: 6071–6082.
[54] Darvishi, R., Soltani, C., Rezaee, A., Khataee, A. Combination of carbon black− ZnO/UV process with an electrochemical process equipped with a carbon black −PTFE-coated gas-diffusion cathode for removal of a textile dye. Ind. Eng. Chem. Res. 2013; 52: 14133–14142.
[55] Soltani, R.D.C., Rezaee, A., Khataee, A.R., Godini, H. Electrochemical generation of hydrogen peroxide using carbon black-, carbon nanotube-, and carbon black/ carbon nanotube-coated gas-diffusion cathodes: effect of operational parameters and decolorization study. Res Chem Intermed. 2013; 39: 4277–4286.
[56] Fangke Yu, Minghua Zhou, Xinmin Yu. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim. Acta. 2015; 163: 182-189.
[57] Yiping Sheng, Shili Song, Xiuli Wang, Laizhou Song, Chunjia Wang, Honghong Sun, Xueqing Niu. Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film. Electrochim. Acta. 2011; 56: 8651–8656.
[58] Yiping Sheng, Yue Zhao, Xiuli Wang, Rui Wang, Ting Tang. Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating. Electrochim. Acta.2014; 133: 414–421.
[59] Thi Xuan Huong Le, Mikhael Bechelany, Joffrey Champavert, Marc Cretin. A highly active based graphene cathode for the electro-Fenton reaction. RSC Adv. 2015; 5: 42536–42539.
[60] Thi Xuan Huong Le, Mikhael Bechelany, Stella Lacour, Nihal Oturan, Mehmet A. Oturan, Marc Cretin. High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon. 2015; 94: 1003–1011.
[61] Weilu Yang, Minghua Zhou, Jingju Cai, Liang Liang, Gengbo Ren, Lili Jiang. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene. Mater. Chem. A. 2017; 5: 8070–8080.
[62] Divyapriya, G., Thangadurai, P., Nambi, I. Green Approach To Produce a Graphene thin film on a conductive LCD matrix for the oxidative transformation of ciprofloxacin. ACS Sustainable Chem. Eng. 2018; 6: 3453–3462.
[63] Hyo Won Kim, Michael B. Ross, Nikolay Kornienko, Liang Zhang, Jinghua Guo, Peidong Yang, Bryan D. McCloskey. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis. 2018; 1: 282–290
[64] Lei Zhou, Minghua Zhou, Chao Zhang, Yonghai Jiang, Zhaoheng Bi, Jie Yang. Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts. Chem. Eng. J. 2013; 233: 185–192.
[65] Jie Miao, Hui Zhu, Yang Tang, Yongmei Chen, Pingyu Wan. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem. Eng. J. 2014; 250: 312–318.
[66] Zhiyi Lu, Guangxu Chen, Samira Siahrostami, Zhihua Chen, Kai Liu, Jin Xie, Lei Liao, Tong Wu, Dingchang Lin, Yayuan Liu, Thomas F. Jaramillo, Jens K. Nørskov, Yi Cui. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis. 2018; 1: 156-162.
[67] Fellinger, T.P., Hasché, F., Strasser, P., Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. Journal of the American Chemical Society. 2012; 134: 4072–4075.
[68] Yinghui Lee, Feng Li, Kuohsin Chang, Chichang Hu, Takeo Ohsaka. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B-Environ. 2012; 126: 208–214.
[69] Roldán, L., Truong-Phuoc, L., Ansón-Casaos, A., Pham-Huu, C., García-Bordejé, E. Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catal. Today. 2018; 301: 2–10.
[70] Arman Bonakdarpour, Daniel Esau, Hillary Cheng, Andrew Wang, Elöd Gyenge, David P. Wilkinson. Preparation and electrochemical studies of metal-carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim. Acta. 2011; 56: 9074–9081
[71] Jussara F. Carneiro, Maria J. Paulo, Mohamed Siaj, Ana C. Tavares, Marcos R.V. Lanza. Nb2O5nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2electrogeneration. Catal. 2015; 332: 51–61.
[72] Chuan Xia, Seoin Back, Stefan Ringe, Kun Jiang , Fanhong Chen, Xiaoming Sun,Samira Siahrostami , Karen Chan , Haotian Wang. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nature Catalysis. 2020; 3: 125–134.
[73] Qian Zhao, Jingkun An, Shu Wang, Yujie Qiao, Chengmei Liao, Cong Wang, Xin Wang, Nan Li. Superhydrophobic Air-Breathing Cathode for Efficient Hydrogen Peroxide Generation through Two-Electron Pathway Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces. 2019; 11: 35410−35419.