REFERENCES
Bonner, M.T.L., Castro, D., Schneider, A.N., Sundström, G., Hurry, V., Street, N.R. et al. (2019). Why does nitrogen addition to forest soils inhibit decomposition? Soil Biol. Biochem. 137, 107570.
Brenner, R.E., Boone, R.D. & Ruess, R.W. (2005). Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession.Biogeochemistry , 72, 257-282.
Chen, L., Liu, L., Mao, C., Qin, S., Wang, J., Liu, F. et al.(2018). Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun. , 9, 3951.
Cornell, S.E. (2011). Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. Environ. Pollut. , 159, 2214-2222.
Currey, P.M., Johnson, D., Sheppard, L.J., Leith, I.D., Toberman, H., Van Der Wal, R. et al. (2010). Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland. Glob. Change Biol. , 16, 2307-2321.
Dias, T., Clemente, A., Martins-Loucao, M.A., Sheppard, L., Bobbink, R. & Cruz, C. (2014). Ammonium as a driving force of plant diversity and ecosystem functioning: observations based on 5 years’ manipulation of N dose and form in a Mediterranean ecosystem. PLoS One , 9, e92517.
Du, Y., Guo, P., Liu, J., Wang, C., Yang, N. & Jiao, Z. (2014). Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. , 20, 3222-3228.
Fu, G. & Shen, Z.-X. (2017). Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. , 114, 99-104.
Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D., Allen, J.W. et al. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature , 435, 819-823.
Gu, X., Wang, Y., Laanbroek, H.J., Xu, X., Song, B., Huo, Y. et al. (2019). Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma , 341, 18-25.
Guo, P., Wang, C., Jia, Y., Wang, Q., Han, G. & Tian, X. (2011). Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant Soil , 338, 355-366.
Hedges, L.V., Gurevitch, J. & Curtis, P.S.J.E. (1999). The meta‐analysis of response ratios in experimental ecology.Ecology , 80, 1150-1156.
Hodge, A. (2017). Accessibility of Inorganic and Organic Nutrients for Mycorrhizas. In: Mycorrhizal Mediation of Soil (eds. Johnson, NC, Gehring, C & Jansa, J). Elsevier, pp. 129-148.
Holland, E.A., Braswell, B.H., Sulzman, J. & Lamarque, J.-F. (2005). Nitrogen Deposition onto the United States and Western Europe: Synthesis of Observations and Models. Ecol. Appl. , 15, 38-57.
Hong, S., Gan, P. & Chen, A. (2019). Environmental controls on soil pH in planted forest and its response to nitrogen deposition.Environ. Rese. , 172, 159-165.
Humbert, J.Y., Dwyer, J.M., Andrey, A. & Arlettaz, R. (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review.Glob. Change Biol. , 22, 110-120.
Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z. & Yan, W. (2020). Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma , 366, 114256.
Khalili, B., Ogunseitan, O.A., Goulden, M.L. & Allison, S.D. (2016). Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland. Appl. Soil Ecol. , 107, 144-153.
Kong, X., Jia, Y., Song, F., Tian, K., Lin, H., Bei, Z. et al.(2018). Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res. , 25, 5369-5378.
Li, H., Yang, S., Xu, Z., Yan, Q., Li, X., van Nostrand, J.D. et al. (2017). Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biol. Biochem. , 104, 18-29.
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H.Y.H. et al. (2019). Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. , 25, 1078-1088.
Liu, C., Dong, Y., Sun, Q. & Jiao, R. (2016). Soil Bacterial Community Response to Short-Term Manipulation of the Nitrogen Deposition Form and Dose in a Chinese Fir Plantation in Southern China. Water Air Soil Pollut. , 227, 447.
Liu, X. & Zhang, S. (2019). Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant Soil , 440, 11-24.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z. et al.(2013). Enhanced nitrogen deposition over China. Nature , 494, 459-462.
Luan, J., Wu, J., Liu, S., Roulet, N. & Wang, M. (2019). Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Commun. Biol. , 2, 132.
Moldan, F., Jutterström, S.E.A.K., Hruška, J. & Wright, R.F. (2018). Experimental addition of nitrogen to a whole forest ecosystem at Gårdsjön, Sweden (NITREX): Nitrate leaching during 26 years of treatment. Environ. Pollut. , 242, 367-374.
Paredes, C., Menezes-Blackburn, D., Cartes, P., Gianfreda, L. & Luz Mora, M. (2011). Phosphorus and Nitrogen Fertilization Effect on Phosphorus Uptake and Phosphatase Activity in Ryegrass and Tall Fescue Grown in a Chilean Andisol. Soil Sci. , 176, 245-251.
Peng, Y., Li, F., Zhou, G., Fang, K., Zhang, D., Li, C. et al.(2017). Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environ.l Res. Lett. , 12.
Phoenix, G.K., Emmett, B.A., Britton, A.J., Caporn, S.J.M., Dise, N.B., Helliwell, R. et al. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. , 18, 1197-1215.
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G. et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. , 4, 1340-1351.
Sala, O.E., Chapin, F.S., 3rd, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R. et al. (2000). Global biodiversity scenarios for the year 2100. Science , 287, 1770-1774.
Shcherbak, I., Millar, N. & Robertson, G.P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci., , 111, 9199-9204.
Tahovská, K., Choma, M., Kaštovská, E., Oulehle, F., Bárta, J., Šantrůčková, H. et al. (2020). Positive response of soil microbes to long-term nitrogen input in spruce forest: Results from Gårdsjön whole-catchment N-addition experiment. Soil Biol. Biochem. , 143, 107732.
Thirukkumaran, C.M. & Parkinson, D. (2000). Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers.Soil Biol. Biochem. , 32, 59-66.
Tian, D. & Niu, S. (2015). A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. , 10.
Townsend, A.R., Braswell, B.H., Holland, E.A. & Penner, J.E. (1996). Spatial and Temporal Patterns in Terrestrial Carbon Storage Due to Deposition of Fossil Fuel Nitrogen. Ecol. Appl. , 6, 806-814.
Treseder, K.K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett , 11, 1111-1120.
Turlapati, S.A., Minocha, R., Bhiravarasa, P.S., Tisa, L.S., Thomas, W.K. & Minocha, S.C. (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol. Ecol. , 83, 478-493.
Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G. et al. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods , 7, 55-79.
Wang, C., Liu, D. & Bai, E. (2018a). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. , 120, 126-133.
Wang, C., Lu, X., Mori, T., Mao, Q., Zhou, K., Zhou, G. et al.(2018b). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. , 121, 103-112.
Wang, Y.S., Cheng, S.L., Fang, H.J., Yu, G.R., Xu, X.F., Xu, M.J.et al. (2015). Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China. Biol. Fert. Soils , 51, 815-825.
Wardle, D.A., Gundale, M.J., Jäderlund, A. & Nilsson, M.-C. (2013). Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology , 94, 904-919.
Yang, K., Zhu, J. & Xu, S. (2014). Influences of various forms of nitrogen additions on carbon mineralization in natural secondary forests and adjacent larch plantations in Northeast China. Can. J. Forest Res. 44, 441-448.
You, C., Wu, F., Yang, W., Xu, Z., Tan, B., Zhang, L. et al.(2018). Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition? Sci. Total Environ. , 645, 733-742.
Zhang, C., Zhang, X.Y., Zou, H.T., Kou, L., Yang, Y., Wen, X.F. et al. (2017). Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China. Biogeosciences , 14, 4815-4827.
Zhang, H., Ding, W., Yu, H. & He, X. (2015). Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fert. Soils , 51, 137-150.
Zhang, T.a., Chen, H.Y.H. & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. ISME J. , 12, 1817-1825.
Zhou, J., Liu, X., Xie, J., Lyu, M., Zheng, Y., You, Z. et al.(2019). Nitrogen Addition Affects Soil Respiration Primarily through Changes in Microbial Community Structure and Biomass in a Subtropical Natural Forest. Forests , 10, 435.
Zong, N., Zhao, G. & Shi, P. (2019). Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau.Ecol. Evol. , 9, 9782-9793.
Table 1 The influences of addition with different N types on the changes (%) of soil microbial characteristics under different ecosystems.