REFERENCES
Bonner, M.T.L., Castro, D., Schneider, A.N., Sundström, G., Hurry, V.,
Street, N.R. et al. (2019). Why does nitrogen addition to forest
soils inhibit decomposition? Soil Biol. Biochem. 137, 107570.
Brenner, R.E., Boone, R.D. & Ruess, R.W. (2005). Nitrogen additions to
pristine, high-latitude, forest ecosystems: consequences for soil
nitrogen transformations and retention in mid and late succession.Biogeochemistry , 72, 257-282.
Chen, L., Liu, L., Mao, C., Qin, S., Wang, J., Liu, F. et al.(2018). Nitrogen availability regulates topsoil carbon dynamics after
permafrost thaw by altering microbial metabolic efficiency. Nat
Commun. , 9, 3951.
Cornell, S.E. (2011). Atmospheric nitrogen deposition: revisiting the
question of the importance of the organic component. Environ.
Pollut. , 159, 2214-2222.
Currey, P.M., Johnson, D., Sheppard, L.J., Leith, I.D., Toberman, H.,
Van Der Wal, R. et al. (2010). Turnover of labile and
recalcitrant soil carbon differ in response to nitrate and ammonium
deposition in an ombrotrophic peatland. Glob. Change Biol. , 16,
2307-2321.
Dias, T., Clemente, A., Martins-Loucao, M.A., Sheppard, L., Bobbink, R.
& Cruz, C. (2014). Ammonium as a driving force of plant diversity and
ecosystem functioning: observations based on 5 years’ manipulation of N
dose and form in a Mediterranean ecosystem. PLoS One , 9, e92517.
Du, Y., Guo, P., Liu, J., Wang, C., Yang, N. & Jiao, Z. (2014).
Different types of nitrogen deposition show variable effects on the soil
carbon cycle process of temperate forests. Glob. Change Biol. ,
20, 3222-3228.
Fu, G. & Shen, Z.-X. (2017). Response of alpine soils to nitrogen
addition on the Tibetan Plateau: A meta-analysis. Appl. Soil
Ecol. , 114, 99-104.
Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D.,
Allen, J.W. et al. (2005). Nitrogen transfer in the arbuscular
mycorrhizal symbiosis. Nature , 435, 819-823.
Gu, X., Wang, Y., Laanbroek, H.J., Xu, X., Song, B., Huo, Y. et
al. (2019). Saturated N2O emission rates occur above
the nitrogen deposition level predicted for the semi-arid grasslands of
Inner Mongolia, China. Geoderma , 341, 18-25.
Guo, P., Wang, C., Jia, Y., Wang, Q., Han, G. & Tian, X. (2011).
Responses of soil microbial biomass and enzymatic activities to
fertilizations of mixed inorganic and organic nitrogen at a subtropical
forest in East China. Plant Soil , 338, 355-366.
Hedges, L.V., Gurevitch, J. & Curtis, P.S.J.E. (1999). The
meta‐analysis of response ratios in experimental ecology.Ecology , 80, 1150-1156.
Hodge, A. (2017). Accessibility of Inorganic and Organic Nutrients for
Mycorrhizas. In: Mycorrhizal Mediation of Soil (eds. Johnson, NC,
Gehring, C & Jansa, J). Elsevier, pp. 129-148.
Holland, E.A., Braswell, B.H., Sulzman, J. & Lamarque, J.-F. (2005).
Nitrogen Deposition onto the United States and Western Europe: Synthesis
of Observations and Models. Ecol. Appl. , 15, 38-57.
Hong, S., Gan, P. & Chen, A. (2019). Environmental controls on soil pH
in planted forest and its response to nitrogen deposition.Environ. Rese. , 172, 159-165.
Humbert, J.Y., Dwyer, J.M., Andrey, A. & Arlettaz, R. (2016). Impacts
of nitrogen addition on plant biodiversity in mountain grasslands depend
on dose, application duration and climate: a systematic review.Glob. Change Biol. , 22, 110-120.
Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z. & Yan, W. (2020).
Effects of nitrogen enrichment on soil microbial characteristics: From
biomass to enzyme activities. Geoderma , 366, 114256.
Khalili, B., Ogunseitan, O.A., Goulden, M.L. & Allison, S.D. (2016).
Interactive effects of precipitation manipulation and nitrogen addition
on soil properties in California grassland and shrubland. Appl.
Soil Ecol. , 107, 144-153.
Kong, X., Jia, Y., Song, F., Tian, K., Lin, H., Bei, Z. et al.(2018). Insight into litter decomposition driven by nutrient demands of
symbiosis system through the hypha bridge of arbuscular mycorrhizal
fungi. Environ. Sci. Pollut. Res. , 25, 5369-5378.
Li, H., Yang, S., Xu, Z., Yan, Q., Li, X., van Nostrand, J.D. et
al. (2017). Responses of soil microbial functional genes to global
changes are indirectly influenced by aboveground plant biomass
variation. Soil Biol. Biochem. , 104, 18-29.
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H.Y.H. et
al. (2019). Microbes drive global soil nitrogen mineralization and
availability. Glob. Change Biol. , 25, 1078-1088.
Liu, C., Dong, Y., Sun, Q. & Jiao, R. (2016). Soil Bacterial Community
Response to Short-Term Manipulation of the Nitrogen Deposition Form and
Dose in a Chinese Fir Plantation in Southern China. Water Air Soil
Pollut. , 227, 447.
Liu, X. & Zhang, S. (2019). Nitrogen addition shapes soil enzyme
activity patterns by changing pH rather than the composition of the
plant and microbial communities in an alpine meadow soil. Plant
Soil , 440, 11-24.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z. et al.(2013). Enhanced nitrogen deposition over China. Nature , 494,
459-462.
Luan, J., Wu, J., Liu, S., Roulet, N. & Wang, M. (2019). Soil nitrogen
determines greenhouse gas emissions from northern peatlands under
concurrent warming and vegetation shifting. Commun. Biol. , 2,
132.
Moldan, F., Jutterström, S.E.A.K., Hruška, J. & Wright, R.F. (2018).
Experimental addition of nitrogen to a whole forest ecosystem at
Gårdsjön, Sweden (NITREX): Nitrate leaching during 26 years of
treatment. Environ. Pollut. , 242, 367-374.
Paredes, C., Menezes-Blackburn, D., Cartes, P., Gianfreda, L. & Luz
Mora, M. (2011). Phosphorus and Nitrogen Fertilization Effect on
Phosphorus Uptake and Phosphatase Activity in Ryegrass and Tall Fescue
Grown in a Chilean Andisol. Soil Sci. , 176, 245-251.
Peng, Y., Li, F., Zhou, G., Fang, K., Zhang, D., Li, C. et al.(2017). Nonlinear response of soil respiration to increasing nitrogen
additions in a Tibetan alpine steppe. Environ.l Res. Lett. , 12.
Phoenix, G.K., Emmett, B.A., Britton, A.J., Caporn, S.J.M., Dise, N.B.,
Helliwell, R. et al. (2012). Impacts of atmospheric nitrogen
deposition: responses of multiple plant and soil parameters across
contrasting ecosystems in long-term field experiments. Glob.
Change Biol. , 18, 1197-1215.
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C.,
Caporaso, J.G. et al. (2010). Soil bacterial and fungal
communities across a pH gradient in an arable soil. ISME J. , 4,
1340-1351.
Sala, O.E., Chapin, F.S., 3rd, Armesto, J.J., Berlow, E., Bloomfield,
J., Dirzo, R. et al. (2000). Global biodiversity scenarios for
the year 2100. Science , 287, 1770-1774.
Shcherbak, I., Millar, N. & Robertson, G.P. (2014). Global metaanalysis
of the nonlinear response of soil nitrous oxide (N2O)
emissions to fertilizer nitrogen. Proc. Natl Acad. Sci., , 111,
9199-9204.
Tahovská, K., Choma, M., Kaštovská, E., Oulehle, F., Bárta, J.,
Šantrůčková, H. et al. (2020). Positive response of soil microbes
to long-term nitrogen input in spruce forest: Results from Gårdsjön
whole-catchment N-addition experiment. Soil Biol. Biochem. , 143,
107732.
Thirukkumaran, C.M. & Parkinson, D. (2000). Microbial respiration,
biomass, metabolic quotient and litter decomposition in a lodgepole pine
forest floor amended with nitrogen and phosphorous fertilizers.Soil Biol. Biochem. , 32, 59-66.
Tian, D. & Niu, S. (2015). A global analysis of soil acidification
caused by nitrogen addition. Environ. Res. Lett. , 10.
Townsend, A.R., Braswell, B.H., Holland, E.A. & Penner, J.E. (1996).
Spatial and Temporal Patterns in Terrestrial Carbon Storage Due to
Deposition of Fossil Fuel Nitrogen. Ecol. Appl. , 6, 806-814.
Treseder, K.K. (2008). Nitrogen additions and microbial biomass: a
meta-analysis of ecosystem studies. Ecol. Lett , 11, 1111-1120.
Turlapati, S.A., Minocha, R., Bhiravarasa, P.S., Tisa, L.S., Thomas,
W.K. & Minocha, S.C. (2013). Chronic N-amended soils exhibit an altered
bacterial community structure in Harvard Forest, MA, USA. FEMS
Microbiol. Ecol. , 83, 478-493.
Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J.,
Knapp, G. et al. (2016). Methods to estimate the between-study
variance and its uncertainty in meta-analysis. Res. Synth.
Methods , 7, 55-79.
Wang, C., Liu, D. & Bai, E. (2018a). Decreasing soil microbial
diversity is associated with decreasing microbial biomass under nitrogen
addition. Soil Biol. Biochem. , 120, 126-133.
Wang, C., Lu, X., Mori, T., Mao, Q., Zhou, K., Zhou, G. et al.(2018b). Responses of soil microbial community to continuous
experimental nitrogen additions for 13 years in a nitrogen-rich tropical
forest. Soil Biol. Biochem. , 121, 103-112.
Wang, Y.S., Cheng, S.L., Fang, H.J., Yu, G.R., Xu, X.F., Xu, M.J.et al. (2015). Contrasting effects of ammonium and nitrate inputs
on soil CO2 emission in a subtropical coniferous
plantation of southern China. Biol. Fert. Soils , 51, 815-825.
Wardle, D.A., Gundale, M.J., Jäderlund, A. & Nilsson, M.-C. (2013).
Decoupled long-term effects of nutrient enrichment on aboveground and
belowground properties in subalpine tundra. Ecology , 94, 904-919.
Yang, K., Zhu, J. & Xu, S. (2014). Influences of various forms of
nitrogen additions on carbon mineralization in natural secondary forests
and adjacent larch plantations in Northeast China. Can. J. Forest
Res. 44, 441-448.
You, C., Wu, F., Yang, W., Xu, Z., Tan, B., Zhang, L. et al.(2018). Does foliar nutrient resorption regulate the coupled
relationship between nitrogen and phosphorus in plant leaves in response
to nitrogen deposition? Sci. Total Environ. , 645, 733-742.
Zhang, C., Zhang, X.Y., Zou, H.T., Kou, L., Yang, Y., Wen, X.F. et
al. (2017). Contrasting effects of ammonium and nitrate additions on
the biomass of soil microbial communities and enzyme activities in
subtropical China. Biogeosciences , 14, 4815-4827.
Zhang, H., Ding, W., Yu, H. & He, X. (2015). Linking organic carbon
accumulation to microbial community dynamics in a sandy loam soil:
result of 20 years compost and inorganic fertilizers repeated
application experiment. Biol. Fert. Soils , 51, 137-150.
Zhang, T.a., Chen, H.Y.H. & Ruan, H. (2018). Global negative effects of
nitrogen deposition on soil microbes. ISME J. , 12, 1817-1825.
Zhou, J., Liu, X., Xie, J., Lyu, M., Zheng, Y., You, Z. et al.(2019). Nitrogen Addition Affects Soil Respiration Primarily through
Changes in Microbial Community Structure and Biomass in a Subtropical
Natural Forest. Forests , 10, 435.
Zong, N., Zhao, G. & Shi, P. (2019). Different sensitivity and
threshold in response to nitrogen addition in four alpine grasslands
along a precipitation transect on the Northern Tibetan Plateau.Ecol. Evol. , 9, 9782-9793.
Table 1 The influences of addition with different N types on
the changes (%) of soil microbial characteristics under different
ecosystems.