REFERENCE
Abu Zahra H, Kuwamoto S, Uno T, Kanamaru K, Yamagata H. 2014. A
cis-element responsible for cGMP in the promoter of the soybean chalcone
synthase gene. Plant Physiology and Biochemistry 74 : 92-98.
DOI: 10.1016/j.plaphy.2013.10.034.
Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as
antioxidants in plants: Location and functional significance. Plant
Science 196 : 67-76. DOI: 10.1016/j.plantsci.2012.07.014.
Agati G, Matteini P, Goti A, Tattini M. 2007. Chloroplast-located
flavonoids can scavenge singlet oxygen. New Phytologist 174(1): 77-89. DOI: 10.1111/j.1469-8137.2007.01986.x.
Aguan K, Sugawara K, Suzuki N, Kusano T. 1991. Isolation of genes for
low-temperature-induced proteins in rice by a simple subtractive method.
Plant and Cell Physiology 32 (8): 1285-1289. DOI:
10.1093/oxfordjournals.pcp.a078207.
Aguan K, Sugawara K, Suzuki N, Kusano T. 1993. Low-temperature-dependent
expression of a rice gene encoding a protein with a leucine-zipper
motif. Molecular and General Genetics 240 (1): 1-8. DOI:
10.1007/bf00276876.
Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K.
2012. Seasonal abscisic acid signal and a basic leucine zipper
transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in
persimmon fruit. Plant Physiology 158 (2): 1089-1102. DOI:
10.1104/pp.111.191205.
Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K,
Tanaka Y, Kusumi T, Ayabe S. 1999. Molecular cloning and biochemical
characterization of a novel cytochrome P450, flavone synthase II, that
catalyzes direct conversion of flavanones to flavones. Plant and Cell
Physiology 40 (11): 1182-1186. DOI: 10.0000/PMID10635120.
Ali Z, Sarwat S S, Karim I, Rabia F, Jaskani M J, Khan A A. 2016.
Functions of plant’s bZIP transcription factors. Pakistan Journal of
Agricultural Sciences 53 (2): 303-314. DOI:
10.21162/PAKJAS/16.2043.
Amir Hossain M, Lee Y, Cho J I, Ahn C H, Lee S K, Jeon J S, Kang H, Lee
C H, An G, Park P B. 2010. The bZIP transcription factor OsABF1 is an
ABA responsive element binding factor that enhances abiotic stress
signaling in rice. Plant Molecular Biology 72 (4-5): 557-566.
DOI: 10.1007/s11103-009-9592-9.
An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017a.
The bZIP transcription factor MdHY5 regulates anthocyanin accumulation
and nitrate assimilation in apple. Horticulture research 4 :
17023-17030. DOI: 10.1038/hortres.2017.56.
An J P, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017b. MdHY5
positively regulates cold tolerance via CBF-dependent and
CBF-independent pathways in apple. Journal of Plant Physiology218 : 275-281. DOI: 10.1016/j.jplph.2017.09.001.
Aoki T, Akashi T, Ayabe S. 2000. Flavonoids of leguminous plants:
structure, biological activity, and biosynthesis. Journal of Plant
Research 113 : 475-488. DOI: 10.1007/pl00013958.
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y,
Li W W, Noble W S. 2009. MEME Suite: Tools for motif discovery and
searching. Nucleic Acids Research 37 : W202–W208. DOI:
10.1093/nar/gkp335.
Baloglu M C, Eldern V, Hajyzadeh M, Unver T. 2014. Genome-wide analysis
of the bZIP transcription factors in cucumber. PLoS ONE 9 (4):
e96014. DOI: 10.1371/journal.pone.0096014.
Bray E A. 1997. Plant responses to water deficit.
Trends in Plant Science 2 : 48-54. DOI:
10.1016/S1360-1385(97)82562-9.
Buer C S, Muday G K. 2004. The transparent testa4 mutation prevents
flavonoid synthesis and alters auxin transport and the response ofArabidopsis roots to gravity and light. The Plant Cell16 (5): 1191-1205. DOI: 10.1105/tpc.020313.
Cai W T, Yang Y L, Wang W W, Guo G Y, Liu W, Bi C L. 2018.
Overexpression of a wheat (Triticum aestivum L.) bZIP
transcription factor gene, TabZIP6 , decreased the freezing
tolerance of transgenic Arabidopsis seedlings by down-regulating
the expression of CBFs. Plant Physiology and Biochemistry 124 :
100-111. DOI: 10.1016/j.plaphy.2018.01.008.
Casaretto J, Ho T H D. 2003. The transcription factors HvABI5 and HvVP1
are required for the ABA induction of gene expression in burley aleurone
cells. Plant Cell 15 : 271-284. DOI: 10.1105/tpc.007096.
Chang Y, Nguyen B H, Xie Y J, Xiao B Z, Tang N, Zhu W L, Mou T M, Xiong
L Z. 2017. Co-overexpression of the constitutively active form of
OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and
temperature stress resistance in rice. Frontiers in Plant Science8 : 1102. DOI: 10.3389/fpls.2017.01102.
Cheng C, Yun K Y, Ressom H W, Mohanty B, Bajic V B, Jia Y, Yun S J, de
los Reyes B G. 2007. An early response regulatory cluster induced by low
temperature and hydrogen peroxide in seedlings of chilling-tolerant
japonica rice. BMC Genomics 8 :175. DOI:
10.1186/1471-2164-8-175.
Cheng L B, Li S Y, Hussain J, Xu X Y, Yin J J, Zhang Y, Chen X H, Li L
J. 2013. Isolation and functional characterization of a salt responsive
transcriptional factor, LrbZIP from lotus root (Nelumbo nuciferaGaertn). Molecular Biology Reports 40 (6): 4033-4045. DOI:
10.1007/s11033-012-2481-3.
Chen H, Chen W, Zhou J L, He H, Chen L B, Chen H D, Deng X W. 2012.
Basic leucine zipper transcription factor OsbZIP16 positively regulates
drought resistance in rice. Plant Science 193-194 : 8-17. DOI:
10.1016/j.plantsci.2012.05.003.
Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y. 2000. ABFs, a family of
ABA-responsive element binding factors. Journal of Biological Chemistry275 (3): 1723-1730. DOI: 10.1074/jbc.275.3.1723.
Corrêa L G G, Riaño-Pachón D M, Schrago C G, dos Santos R V,
Mueller-Roeber B, Vincentz M. 2008. The role of bZIP transcription
factors in green plant evolution: adaptive features emerging from four
founder genes. PLoS One 3 (8): e2944. DOI:
10.1371/journal.pone.0002944.
Dash M, Yordan Y S, Georgieva T, Tschaplinski T J, Yordanova E, Busov V.
2017. Poplar PtabZIP1-like enhances lateral root formation and biomass
growth under drought stress. The Plant Journal: for cell and molecular
biology 89 (4): 692-705. DOI: 10.1111/tpj.13413.
Debeaujon I, Léon-kloosterziel K M, Koornneef M. 2000. Influence of the
testa on seed dormancy, germination, andlongevity in Arabidopsis .
Plant Physiology 122 (2): 403-414. DOI:
doi:10.1104/pp.122.2.403.
de Vetten N C, Ferl R J. 1995. Characterization of a maize G-box binding
factor that is induced by hypoxia. The Plant Journal: for cell and
molecular biology 7 (4): 589-601. DOI:
10.1046/j.1365-313X.1995.7040589.x.
Dey A, Samanta M K, Gayen S, Sen S K, Maiti M K. 2016. Enhanced gene
expression rather than natural polymorphism in coding sequence of theOsbZIP23 determines drought tolerance and yield improvement in
rice genotypes. PLoS One 11 (3): e0150763. DOI:
10.1371/journal.pone.0150763.
Du H, Huang Y B, Tang Y X. 2010. Genetic and metabolic engineering of
isoflavonoid biosynthesis. Applied microbiology and biotechnology86 (5): 1293-1312. DOI: 10.1007/s00253-010-2512-8.
Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X. 2012.
Genome-wide analysis of the MYB transcription factor superfamily in
soybean. BMC Plant Biology 12 (106): 1-22. DOI:
10.1186/1471-2229-12-106.
Ellenberger T E, Brandl C J, Struhl K, Harrison S C. 1992. The GCN4
basic region leucine zipper binds DNA as a dimer of uninterrupted alpha
helices: crystal structure of the protein-DNA complex. Cell 71(7): 1223-1237. DOI: 10.1016/s0092-8674(05)80070-4.
Falcone Ferreyra M L, Rius S P, Casati P. 2012. Flavonoids:
biosynthesis, biological functions, and biotechnological applications.
Frontiers in Plant Science. 2012, 3 : 222. DOI:
10.3389/fpls.2012.00222.
Fan L X, Xu L, Wang Y, Tang M J, Liu L W. 2019. Genome- and
Transcriptome-Wide Characterization of bZIP Gene Family
Identifies Potential Members Involved in Abiotic Stress Response and
Anthocyanin Biosynthesis in Radish (Raphanus sativus L.).
International Journal of Molecular Sciences 20 (24): 6334. DOI:
10.3390/ijms20246334.
Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo
S, Leone A, Inzé D. 2014. Role of Arabidopsis UV RESISTANCE LOCUS
8 in plant growth reduction under osmotic stress and low levels of UV-B.
Molecular Plant 7 (5): 773-791. DOI: 10.1093/mp/ssu002.
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K,
Ohme-Takagi M, Shinosaki K, Yamaguchi-Shinosaki K. 2005. AREB1 is a
transcription activator of novel ABRE- dependent ABA signaling that
enhances drought stress tolerance in Arabidopsis . The Plant Cell17 (12): 3470-3488. DOI: 10.1105/tpc.105.035659.
Furihata T, Maruyama K, Fujita Y, Umczawa T, Yoshida R, Shinozaki K,
Yamaguchi-Shinozaki K. 2006. Abscisic acid-dependent multisite
phosphorylation regulates the activity of a transcription activator
AREB1. Proceedings of the National Academy of Sciences of the United
States of America 103 (6): 1988-1993. DOI:
10.1073/pnas.0505667103.
Gao S Q, Chen M, Xu Z S, Zhao C P, Li L C, Xu H J, Tang Y M, Zhao X, Ma
Y Z. 2011. The soybean GmbZIP1 transcription factor enhances multiple
abiotic stress tolerances in transgenic plants. Plant Molecular Biology75 (6): 537-553. DOI: 10.1007/s11103-011-9738-4.
Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. 2009. How
relevant are flavonoids as antioxidants in plants? Trends in Plant
Science 14 (3): 125-132. DOI: 10.1016/j.tplants.2008.12.003.
Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. 2010.
The ABRE-binding bZIP transcription factor OsABF2 is a positive
regulator of abiotic stress and ABA signaling in rice. Journal of Plant
Physiology 167 (17): 1512-1520. DOI:
10.1016/j.jplph.2010.05.008.
Hsieh T H, Li C W, Su R C, Cheng C P, Sanjaya, Tsai Y C, Chan M T. 2010.
A tomato bZIP transcription factor, SlAREB, is involved in water deficit
and salt stress response. Planta 231 (6): 1459-1473. DOI:
10.1007/s00425-010-1147-4.
Huang C J, Zhou J H, Jie Y C, Xing H C, Zhong Y L, Yu W L, She W, Ma Y
S, Liu Z H, Zhang Y. 2016. A ramie bZIP transcription factor BnbZIP2 is
involved in drought, salt, and heavy metal stress response. DNA and Cell
Biology 35 (12): 776-786. DOI: 10.1089/dna.2016.3251.
Huang X S,Liu J H,Chen X J. 2010. Overexpression of PtrABFgene, a bZIP transcription factor isolated from Poncirus
trifoliate , enhances dehydration and drought tolerance in tobacco via
scavenging ROS and modulating expression of stress-responsive genes. BMC
Plant Biology 10 (1): 230. DOI: 10.1186/1471-2229-10-230.
Hurst H C. 1994. Transcription factors. 1: bZIP proteins. Protein
profile 2 (2): 101-168. DOI: http://dx.doi.org/.
Hwang I, Jung H J, Park J I, Yang T J, Nou I S. 2014. Transcriptome
analysis of newly classified bZIP transcription factors ofBrassica rapa in cold stress response. Genomics 104 (3):
194-202. DOI: 10.1016/j.ygeno.2014.07.008.
Ito K, Kusano T, Tsutsumi K I. 1999. A cold-inducible bZIP protein gene
in radish root regulated by calcium- and cycloheximide-mediated signals.
Plant Science 142 : 57-65. DOI: 10.1016/S0168-9452(98)00250-7.
Izawa T, Foster R, Chua N H. 1993.
Plant bZIP protein DNA binding specificity. Journal of Molecular Biology230 (4): 1131-1144. DOI: 10.1006/jmbi.1993.1230.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J,
Kroj T, Parcy F. 2002. bZIP transcription factors in Arabidopsis .
Trends Plant Science 7 (3): 106-111. DOI:
10.1016/S1360-1385(01)02223-3.
Jiang Y N, Wang B, Li H, Yao L M, Wu T L. 2010. Flavonoid production is
effectively regulated by RNA1 interference of two flavone synthase genes
from Glycine max . Journal of Plant Biology 53 (6):
425-432. DOI: 10.1007/s12374-010-9132-9.
Ji X Y, Liu G F, Liu Y H, Zheng L, Nie X G, Wang Y C. 2013. The bZIP
protein from Tamarix hispida , ThbZIP1, is ACGT elements binding
factor that enhances abiotic stress signaling in transgenicArabidopsis . BMC Plant Biology 13 (1): 151. DOI:
10.1186/1471-2229-13-151.
Joo J S, Lee Y H, Song S I. 2019. OsbZIP42 is a positive regulator of
ABA signaling and confers drought tolerance to rice. Planta 249(5): 1521-1533. DOI: 10.1007/s00425-019-03104-7.
Kaminaka H, Nake C, Epple P, Dittgen J, Schütze K, Chaban C, Holt B F,
Merkle T, Schäfer E, Harter K, Dangl J L. 2006. bZIP10-LSD1antagonism modulates basal defense and cell death in Arabidopsisfollowing infection. The EMBO Journal 25 (18): 4400-4411. DOI:
10.1038/sj.emboj.7601312.
Kim S, Kang J Y, Cho D L, Park J H, Kim S Y. 2004. ABF2, an ABRE-binding
bZIP factor, is an essential component of glucose signaling and its
overexpression affects multiple stress tolerance. The Plant Journal: for
cell and molecular biology 40 (1): 75-87. DOI:
10.1111/j.1365-313x.2004.02192.x.
Kobayashi F, Maeta E, Terashima A, Takumi S. 2008. Positive role of a
wheat HvABI5 ortholog in abiotic stress response of seedlings.
Physiologia Plantarum 134 (1):74-86. DOI:
10.1111/j.1399-3054.2008.01107.x.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary
Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and
Evolution 33 (7): 1870-1874. DOI: 10.1093/molbev/msw054.
Lakra N, Nutan K K, Das P, Anwar K, Singla-Pareek S L, Pareek A. 2015. A
nuclear-localized histone-gene binding protein from rice
(OsHBP1b ) functions in salinity and drought stress tolerance by
maintaining chlorophyll content and improving the antioxidant machinery.
Journal of Plant Physiology 176 : 36-46. DOI:
10.1016/j.jplph.2014.11.005.
Lam P Y, Zhu F Y, Chan W L, Liu H, Lo C. 2014. Cytochrome P450 93G1 is a
flavone synthase II that channels flavanones to the biosynthesis of
tricin O-linked conjugates in rice. Plant Physiology 165 (3):
1315-1327. DOI: 10.1104/pp.114.239723.
Landschulz W H, Johnson P F, McKnight S L. 1988. The leucine zipper: a
hypothetical structure common to a new class of DNA binding proteins.
Science 240 (4860): 1759-1764. DOI: 10.1126/science.3289117.
Lee B J, Park C J, Kim S K, Kim K J, Paek K H. 2006a. In vivo binding of
hot pepper bZIP transcription factor CabZIP1 to the G-box region ofpathogenesis-related protein 1 promoter. Biochemical and
Biophysical Research Communications 344 (1): 55-62. DOI:
10.1016/j.bbrc.2006.03.153.
Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. 2006b. Functional
roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1,
in enhanced resistance to pathogen infection and environmental stresses.
Planta 224 (5): 1209-1225. DOI: 10.2307/23389543.
Lian J P, Lu X C, Yin N W, Ma L J, Lu J, Liu X, Li J N, Lu J, Lei B,
Wang R, Chai Y R. 2017. Silencing of BnTT1 family genes affects
seed flavonoid biosynthesis and alters seed fatty acid composition inBrassica napus . Plant Science 254 : 32-47. DOI:
10.1016/j.plantsci.2016.10.012.
Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S,
Chen S Y. 2008. Soybean GmbZIP44 , GmbZIP62 andGmbZIP78 genes function as negative regulator of ABA signaling
and confer salt and freezing tolerance in transgenic Arabidopsis .
Planta 228 (2): 225-240. DOI: 10.1007/s00425-008-0731-3.
Li D Y, Fu F Y, Zhang H J, Song F M. 2015. Genome-wide systematic
characterization of the bZIP transcriptional factor family in tomato
(Solanum lycopersicum L.). BMC Genomic 16 (771): 60-78.
DOI: 10.1186/s12864-015-1990-6.
Li J S, Wang X M. Zhang Y L, Jia H L, Bi Y R. 2011. cGMP regulates
hydrogen peroxide accumulation in calcium-dependent salt resistance
pathway in Arabidopsis thaliana roots. Planta 234 (4):
709-722. DOI: 10.1007/s00425-011-1439-3.
Li J Y, Ou-Lee T M, Raba R, Amundson R G, Last R L. 1993.Arabidopsis flavonoid mutants are hypersensitive to UV-B
irradiation. The Plant Cell 5 (2): 171-179. DOI:
10.2307/3869583.
Lim C W, Baek W, Lee S C. 2018. Roles of pepper bZIP protein CaDILZ1 and
its interacting partner RING-type E3 ligase CaDSR1 in modulation of
drought tolerance. The Plant Journal: for cell and molecular biology96 (2): 452-467. DOI: 10.1111/tpj.14046.
Liu C J, Huhman D, Sumner L W, Dixon R A. 2003. Regiospecific
hydroxylation of isoflavones by cytochrome p450 81E enzymes fromMedicago truncatula . The Plant Journal: for cell and molecular
biology 36 (4): 471-484. DOI: 10.1046/j.1365-313X.2003.01893.x.
Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P.
2014a. OsbZIP71, a bZIP transcription factor, confers salinity and
drought tolerance in rice. Plant Molecular Biology 84 (12):
19-36. DOI: 10.1007/s11103-013-0115-3.
Liu C T, Ou S J, Mao B G, Tang J Y, Wang W, Wang H R, Cao S Y, Schlappi
M R, Zhao B R, Xiao G Y, Wang X P, Chu C C. 2018. Early selection ofbZIP73 facilitated adaptation of japonica rice to cold climates.
Nature Communications 9 (1): 3302. DOI:
10.1038/s41467-018-05753-w.
Liu C T, Schläppi M R, Mao B R, Wang W, Wang A J, Chu C C. 2019a. The
bZIP73 transcription factor controls rice cold tolerance at the
reproductive stage. Plant Biotechnology Journal 17 (9):
1834-1849. DOI: 10.1111/pbi.13104.
Liu C T, Wu Y B, Wang X P. 2012. bZIP transcription factor
OsbZIP52/RISBZ5: a potential negative regulator of cold and drought
stress response in rice. Planta 235 (6): 1157-1169. DOI:
10.1007/s00425-011-1564-z.
Liu J X, Srivastava R, Che P, Howell S H. 2007. Salt stress inArabidopsis utilize a signal transduction pathway related to
endoplasmic reticulum stress signaling. The Plant Journal: for cell and
molecular biology 51 (5): 897-909. DOI:
10.1111/j.1365-313x.2007.03195.x.
Liu J X, Srivastava R, Howell S H. 2008. Stress-induced expression of an
activated form of AtbZIP17 provides protection from salt stress
in Arabidopsis. Plant, cell and Environment 31 (12):
1735-1743. DOI: 10.1111/j.1365-3040.2008.01873.x.
Liu J Y, Chen N N, Chen F, Cai B, Dal Santo S, Tornielli G B, Pezzotti
M, Cheng Z M. 2014b. Genome-wide analysis and expression profile of the
bZIP transcription factor gene family in grapevine (Vitis
vinifera ). BMC Genomics 15 (281): 1-18. DOI:
10.1186/1471-2164-15-281.
Liu J Y, Chu J J, Ma C J, Jiang Y T, Ma Y C, Xiong J S, Cheng Z M.
2019b. Overexpression of an ABA-dependent grapevine bZIP transcription
factor, VvABF2, enhances osmotic stress in Arabidopsis . Plant
Cell Report 38 (5): 587-596. DOI: 10.1007/s00299-019-02389-y.
Li Y Y,Meng D,Li M J,Cheng L L. 2016. Genome-wide identification and
expression analysis of the bZIP gene family in apple (Malus
domestica ). Tree Genetics and Genomes 12 (82): 1-17. DOI:
10.1007/s11295-016-1043-6.
Lu G J, Gao C X, Zheng X N, Han B. 2009. Identification of OsbZIP72 as a
positive regulator of ABA response and drought tolerance in rice. Planta229 (3): 605-615. DOI: 10.1007/s00425-008-0857-3.
Lu Y H, Lam H M, Pi E X, Zhan Q L, Tsai S N, Wang C M, Kwan Y W, Ngai S
M. 2013. Comparative metabolomics in Glycine max andGlycine soja under salt stress to reveal the phenotypes of their
offspring. Journal of Agricultural and Food Chemistry 61 (36):
8711-8721. DOI: 10.1021/jf405681k.
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V,
Bogs J, Moser C. 2016. The grapevine VvibZIPC22 transcription factor is
involved in the regulation of flavonoid biosynthesis. Journal of
Experimental Botany 67 (11): 3509-3522. DOI:
10.1093/jxb/erw181.
Matousek J, Kocabek T, Patzak J, Stehlík J, Füssy Z, Krofta K, Heyerick
A, Roldán-Ruiz I, Maloukh L, De Keukeleire D. 2010. Cloning and
molecular analysis of HlbZip1 and HlbZip2 transcription factors
putatively involved in the regulation of the lupulin metabolome in Hop
(Humulus lupulus L.). Journal of Agricultural and Food Chemistry58 (2): 902-912. DOI: 10.1021/jf9043106.
McKhann H I, Hirsch A M. 1994. Isolation of chalcone synthase and
chalcone isomerase cDNAs from alfalfa (Medicago sativa L.):
highest transcript levels occur in young roots and root tips. Plant
Molecular Biology 24 (5): 767-777. DOI: 10.1007/BF00029858.
Mellway R D, Tran L T, Prouse M B, Campbell M M, Constabel C P. 2009.
The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene
encodes an R2R3 MYB transcription factor that regulates proanthocyanidin
synthesis in poplar. Plant Physiology 150 (2): 924-941. DOI:
10.1104/pp.109.139071.
Mola J, Grotewold E, Koesa R. 1998. How genes paintflowers and seeds.
Trends in Plant Science 3 (6): 212-217. DOI:
10.1016/S1360-1385(98)01242-4.
Mukherjee K, Choudhury A R, Gupta B, Gupta S, Sengupta D N. 2006. An
ABRE-binding factor,OSBZ8, is highly expressed in salt tolerant
cultivars than in salt sensitive cultivars of indica rice. BMC Plant
Biology 6 (1):1-14. DOI: 10.1186/1471-2229-6-18.
Munns R. 2005. Genes and salt tolerance: bringing them together. New
Phytologist 167 (3): 645-663. DOI:
10.1111/j.1469-8137.2005.01487.x.
Nakagawa H, Ohmiya K and Hattori T. 1996. A rice bZIP protein,
designated OSBZ8, is rapidly induced by abscisic acid. The Plant Journal9 (2): 217-227. DOI: 10.1046/j.1365-313X.1996.09020217.x.
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional
regulatory networks in response to abiotic stresses inArabidopsis and grasses. Plant Physiology 149 (1):
88-95. DOI: 10.1104/pp.108.129791.
Nijhawan A, Jain M, Tyagi A K, Khurana J P. 2008. Genomic survey and
gene expression analysis of the basic leucine zipper transcription
factor family in rice. Plant Physiology 146 (2): 333-350. DOI:
10.1104/pp.107.11282.
Pandey A S, Sharma E, Jain N, Singh B, Burman N, Khurana J P. 2018. A
rice bZIP transcription factor, OsbZIP16, regulates abiotic stress
tolerance when over-expressed in Arabidopsis . Journal of Plant
Biochemistry and Biotechnology 27 (4): 393-400. DOI:
10.1007/s13562-018-0448-8.
Pan Y L, Hu X, Li C Y, Xu X, Su C G, Li J H, Song H Y, Zhang X G, Pan Y.
2017. SlbZIP38 , a tomato bZIP family gene downregulated by
abscisic acid,is a negative regulator of drought and salt stress
tolerance. Genes 8 (12): 402. DOI: 10.3390/genes8120402.
Pé rez-Rodriguez P,
Riañ o-Pachon D M, Corrê a L G, Rensing S A, Kersten B,
Mueller-Roeber B. 2010. PlnTFDB: updated content and new features of the
plant transcription factor database. Nucleic Acids Research 38(Database issue): D822-827. DOI: 10.1093/nar/gkp805.
Pi E X, Qu L Q, Hu J W, Huang Y Y, Qiu L J, Lu H F, Jiang B, Liu C, Peng
T T, Zhao Y, Wang H Z, Tsai S N, Ngai S M, Du L Q. 2016. Mechanisms of
soybean roots’ tolerances to salinity revealed by proteomic and
phosphoproteomic comparisons between two cultivars. Molecular and
Cellular Proteomics 15 (1): 266-288. DOI:
10.1074/mcp.M115.051961.
Pi E X, Xu J, Li H H, Fan W, Zhu C M, Zhang T Y, Jiang J C, He L T, Lu H
F, Wang H Z, Poovaiah B W, Du L Q. 2019. Enhanced salt tolerance of
rhizobia-inoculated soybean correlates with decreased phosphorylation of
the transcription factor GmMYB183 and altered flavonoid biosynthesis.
Molecular & Cellular Proteomics 18 (11): 2225-2243. DOI:
10.1074/mcp.RA119.001704.
Pi E X, Zhu C M, Fan W, Huang Y Y, Qu L Q, Li Y Y, Zhao Q Y, Ding F, Qiu
L J, Wang H Z, Poovaiah B W, Du L Q. 2018. Quantitative phosphoproteomic
and metabolomic analyses reveal GmMYB173 optimizes flavonoid metabolism
in soybean under salt stress. Molecular and Cellular Proteomics17 (6): 1209-1224. DOI: 10.1074/mcp.RA117.000417.
Pourabed E, Golmohamadi F G, Monfared P S, Razavi S M, Shobbar Z S.
2015. Basic Leucine Zipper Family in Barley: Genome-Wide
Characterization of Members and Expression Analysis. Molecular
Biotechnology 57 (1): 12-26. DOI: 10.1007/s12033-014-9797-2.
Pourcel L, Routaboul J M, Cheynier V, Lepiniec L, Debeaujon I. 2007.
Flavonoid oxidation in plants: from biochemical properties to
physiological functions. Trends in Plant Science 12 (1): 29-36.
DOI: 10.1016/j.tplants.2006.11.006.
Qiu D Y, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z, Wang S P. 2008.
Rice gene network inferred from expression profiling of plants
overexpressing OsWRKY13, a positive regulator of disease resistance.
Molecular Plant 1 (3): 538-551. DOI: 10.1093/mp/ssn012.
Rai A, Umashankar S, Rai M, Kiat L B, Bing J A, Swarup S. 2016.
Coordinate regulation of metabolite glycosylation and stress hormone
biosynthesis by TT8 in Arabidopsis . Plant Physiology 171(4): 2499-2515. DOI: 10.1104/pp.16.00421.
Rice-Evans C A, Miller N J. 2010. ChemInform Abstract:
Structure-antioxidant activityrela-tionships of flavonoids and
isoflavonoids. ChemInform 29 (19). DOI: 10.1002/chin.199819287.
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L,
Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P,
Zhang J Z, Ghandehari D, Sherman B K, Yu G L. 2000. Arabidopsistranscription factors genome-wide comparative analysis among eukaryotes.
Science 290 (5499): 2105-2110. DOI:
10.1126/science.290.5499.2105.
Rozema J, Flowers T. 2008. Crops for a salinized world. Science322 (5907): 1478-1480. DOI: 10.1126/science.1168572.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution4 (4): 406-425. DOI: 10.1093/oxfordjournals.molbev.a040454.
Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K.
2004. A novel subgroup of bZIP proteins functions as transcriptional
activators in hypoosmolarity-responsive expression of the ProDHgene in Arabidopsis . Plant and Cell Physiology 45 (3):
309-317. DOI: 10.1093/pcp/pch036.
Schütze K, Harter K, Chaban C. 2008. Post-translational regulation of
plant bZIP factors. Trends In Plant Science 13 (5): 247-255.
DOI: 10.1016/j.tplants.2008.03.002.
Shaikhali J, Norén L, de Dios Barajas-López J, Srivastava V, König J,
Sauer U H, Wingsle G, Dietz K J, Strand Å. 2012. Redox-mediated
mechanisms regulate DNA binding activity of the G-group of basic region
leucine zipper (bZIP) transcription factors in Arabidopsis .
Journal of Biological Chemistry 287 (33): 27510-27525. DOI:
10.1074/jbc.M112.361394.
Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R and Kusano
T. 2005. LIP19, a basic region leucine zipper protein, is a Fos-like
molecular switch in the cold signaling of rice plants. Plant Cell
Physiology 46 (10): 1623-1634. DOI: 10.1093/pcp/pci178.
Shinozaki K, Yamaguchi-Shinozaki K. 1996. Molecular responses to drought
and cold stress. Current Opinion in Biotechnology 7 (2):
161-167. DOI: 10.1016/B978-0-444-82884-2.50013-3.
Shinozaki K, Yamaguchi -Shinozaki K. 2007. Gene networks involved in
drought stress response and tolerance. Journal of Experimental Botany58 (2): 221-227. DOI: 10.1093/jxb/erl164.
Shi Y T, Ding Y L, Yang S H. 2018. Molecular regulation of CBF signaling
in cold acclimation. Trends in Plant Science 23 (7): 623-637.
DOI: 10.1016/j.tplants.2018.04.002.
Sornaraj P, Luang S, Lopato S, Hrmova M. 2016. Basic leucine zipper
(bZIP) transcription factors involved in abiotic stresses: A molecular
model of a wheat bZIP factor and implications of its structure in
function. Biochimica et Biophysica Acta 1860 (1 Pt A): 46-56.
DOI: 10.1016/j.bbagen.2015.10.014.
Stanković B, Vian A, Henry-Vian C, Davies E. 2000. Molecular cloing and
characterization of a tomato cDNA encoding a systemically
wound-inducible bZIP DNA binding protein. Planta 212 (1):
60-66. DOI: 10.1007/s004250000362.
Sun X L, Li Y, Cai H, Bai X, Ji W, Ji Z J, Zhu Y M. 2011.Arabidopsis bZIP1 transcription factor binding to ABRE
cis-element regulates abscisic acid signal transduction. Acta Agronomica
Sinica 37 (4): 612-619. DOI: 10.1016/s1875-2780(11)60016-3.
Tang N, Zhang H, Li X H, Xiao J H, Xiong L Z. 2012a. Constitutive
activation of transcription factor OsbZIP46 improves drought tolerance
in rice. Plant Physiology 158 (4): 1755-1768. DOI:
10.1104/pp.111.190389.
Tang W, Page M, Fei Y J, Liu L C, Xu F, Cai X D, Yuan L Y, Wu Q S, Zhou
M Q. 2012b. Overexpression of AtbZIP60deltaC gene alleviates
salt-induced oxidative damage in transgenic cell cultures. Plant
Molecular Biology Reporter 30 (5): 1183-1195. DOI:
10.1007/s11105-012-0437-3.
Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. 2004.
Differential accumulation of flavonoids and hydroxycinnamates in leaves
of Ligustrum vulgare under excess light and drought stress. New
Phytologist 163 (3): 547-561. DOI:
10.1111/j.1469-8137.2004.01126.x.
Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi M L,
Massai R. 2006. Morpho-anatomical, physiological and biochemical
adjustments in response to root zone salinity stress and high solar
radiation in two Mediterranean evergreen shrubs, Myrtus communisand Pistacia lentiscus . New Phytologist 170 (4):
779-794. DOI: 10.1111/j.1469-8137.2006.01723.x.
Thomashow M F. 1998. Role of cold-responsive genes in plant freezing
tolerance. Plant Physiology 118 (1): 1-7. DOI:
10.1104/pp.118.1.1.
Treutter D. 2005. Significance of flavonoids in plant resistance and
enhancement of their biosynthesis. Plant Biology 7 (6):
581-591. DOI: 10.1055/s-2005-873009.
Treutter D. 2006. Significance of flavonoids in plant resistance: a
review. Environmental Chemistry Letters 4 (3): 147 -157. DOI:
10.1007/s10311-006-0068-8.
Tsugama D, Liu S, Takano T. 2016. The bZIP protein VIP1 is involved in
touch responses in Arabidopsis roots. Plant Physiology171 (2): 1355-1365. DOI: 10.1104/pp.16.00256.
Uchida K, Akashi T, Aoki T. 2015. Functional expression of cytochrome
P450 in Escherichia coli: An approach to functional analysis of
uncharacterized enzymes for flavonoid biosynthesis. Plant Biotechnology32 (3): 205-213. DOI: 10.5511/plantbiotechnology.15.0605a.
Uno Y, Furuhata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.
2000. Arabidopsis basic leucine zipper transcription factors
involved in an abscisic acid-dependent signal transduction pathway under
drought and high-salinity conditions. Proceedings of the National
Academy of Sciences of the USA 97 (21): 11632-11637. DOI:
10.1073/pnas.190309197.
Van Leene J, Blomme J, Kulkarni S R, Cannoot B, De Winne N, Eeckhout D,
Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx K
S, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D,
De Jaeger G. 2016. Functional Characterization of the Arabidopsistranscription factor bZIP29 reveals its role in leaf and root
development. Journal of Experimental Botany 67 (19): 5825-5840.
DOI: 10.1093/jxb/erw347.
Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K,
Mira-Rodado V, Chaban C. 2014. The interaction of the Arabidopsisresponse regulator ARR18 with bZIP63 mediates the regulation of PROLINE
DEHYDROGENASE expression. Molecular Plant 7 (10): 1560-1577.
DOI: 10.1093/mp/ssu074.
Verslues P E, Zhu J K. 2005. Before and beyond ABA: Upstream sensing and
internal signals that determine ABA accumulation and response under
abiotic stress. Biochemical Society Transactions 33 (Pt 2):
375-379. DOI: 10.1042/BST0330375.
Wang C L, Lu G Q, Hao Y Q, Guo H M, Guo Y, Zhao J, Cheng H M. 2017a.
ABP9, a maize bZIP transcription factor, enhances tolerance to salt and
drought in transgenic cotton. Planta 246 (3): 453-469. DOI:
10.1007/s00425-017-2704-x.
Wang J, Li Q, Mao X G, Li A, Jing R L. 2016a. Wheat Transcription Factor
TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.
International Journal of Biological Sciences 12 (2):
257-269.DOI: 10.7150/ijbs.13538.
Wang J Z, Zhou J X, Zhang B L, Vanitha J, Ramachandran S, Jiang S Y.
2011. Genome-wide Expansion and Expression Divergence of the Basic
Leucine Zipper Transcription Factors in Higher Plants with an Emphasis
on Sorghum . Journal of Integrative plant biology 53 (3):
212-231. DOI: 10.1111/j.1744-7909.2010.01017.x.
Wang L, Cao H L, Qian W J, Yao L N, Hao X Y, Li N N, Yang Y J, Wang X C.
2017b. Identification of a novel bZIP transcription factor inCamellia sinensis as a negative regulator of freezing tolerance
in transgenic Arabidopsis . Annals of Botany 119 (7):
1195-1209. DOI: 10.1093/aob/mcx011.
Wang Y C, Gao C Q, Liang Y N, Wang C, Yang C P, Liu G F. 2010. A novelbZIP gene from Tamarix hispida mediates physiological
responses to salt stress in tobacco plants. Journal of Plant Physiology167 (3): 222-230. DOI: 10.1016/j.jplph.2009.09.008.
Wang W B, Qiu X P, Yang Y X, Kim H S, Jia X Y, Yu H, Kwak S S. 2019.
Sweetpotato bZIP Transcription Factor IbABF4 Confers Tolerance to
Multiple Abiotic Stresses. Frontiers in Plant Science 10 : 630.
DOI: 10.3389/fpls.2019.00630.
Wang Z H, Cheng K, Wan L Y, Yan L Y, Jiang H F, Liu S Y, Lei Y, Liao B
S. 2015. Genome-wide analysis of the basic leucine zipper (bZIP)
transcription factor gene family in six legume genomes. BMC Genomics16 : 1053. DOI: 10.1186/s12864-015-2258-x.
Wang Z, Su G X, Li M, Ke Q B, Kim S Y, Li H B, Huang J, Xu B C, Deng X
P, Kwak S S. 2016b. Overexpressing Arabidopsis ABF3increases tolerance to multiple abiotic stresses and reduces leaf size
in alfalfa . Plant Physiology and Biochemistry 109 :
199-208. DOI: 10.1016/j.plaphy.2016.09.020.
Watkins J M, Hechler P J, Muday G K. 2014. Ethylene-Induced flavonol
accumulation in guard cells suppresses reactive oxygen species and
moderates stomatal aperture. Plant Physiology 164 (4):
1707-1717. DOI: 10.1104/pp.113.233528.
Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X J, Xie D X.
2012. Genome-wide analysis of bZIP -encoding genes in maize. DNA
Research 19 (6): 463-476. DOI: 10.1093/dnares/dss026.
Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. 2008. Characterization ofOsbZIP23 as a key player of the basic leucine zipper
transcription factor family for conferring abscisic acid sensitivity and
salinity and drought tolerance in rice. Plant Physiology 148(4): 1938-1952. DOI: 10.1104/pp.108.128199.
Xu D B, Gao S Q, Ma Y Z, Xu Z S, Zhao C P, Tang Y M, Li X Y, Li L C,
Chen Y F, Chen M . 2014. ABI-like transcription factor geneTaABL1 from wheat improves multiple abiotic stress tolerances in
transgenic plants. Functional & Integrative Genomics14 :717–730. DOI: 10.1007/s10142-014-0394-z.
Yamasaki H, Sakihama Y, Ikehara N. 1997. Flavonoid-peroxidase reaction
as a detoxification mechanism of plant cells against
H2O2. Plant Physiology and Biochemistry115 (4): 1405-1412. DOI: 10.1104/pp.115.4.1405.
Yang O, Popova O V, Süthoff U, Lüking I, Dietz K J, Golldack D. 2009.
The Arabidopsis basic leucine zipper transcription factor
AtbZIP24 regulates complex transcriptional networks involved in abiotic
stress resistance. Gene 436 (1-2): 45-55. DOI:
10.1016/j.gene.2009.02.010.
Yang Y G, Lv W T, Li M J, Wang B, Sun D M, Deng X. 2013. Maize
Membrane-Bound Transcription Factor Zmbzip17 is a Key Regulator in the
Cross-Talk of ER Quality Control and ABA Signaling. Plant and Cell
Physiology 54 (12): 2020-2033. DOI: 10.1093/pcp/pct142.
Yan J H, Wang B, Jiang Y N, Cheng L J, Wu T L. 2014. GmFNSII-controlled
soybean flavone metabolism responds to abiotic stresses and regulates
plant salt tolerance. Plant and Cell Physiology 55 (1): 74-86.
DOI: 10.1093/pcp/pct159.
Yoon M K, Shin J, Choi G, Choi B S. 2006. Intrinsically unstructured
N-terminal domain of bZIP transcription factor HY5. Proteins-Structure
Function and Bioinformatics 65 (4): 856-866. DOI:
10.1002/prot.21089.
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K,
Yamaguchi-Shinozaki K. 2015. Four Arabidopsis AREB/ABF
transcription factors function predominantly in gene expression
downstream of SnRK2 kinases in abscisic acid signalling in response to
osmotic stress. Plant Cell and Environment 38 (1): 35-49. DOI:
10.1111/pce.12351.
Zhang C Y, Li C, Liu J, Lv Y D, Yu C S, Li H Y, Zhao T, Liu B. 2017a.
The OsABF1 transcription factor improves drought tolerance by activating
the transcription of COR413-TM1 in rice. Journal of Experimental Botany68 (16): 4695-4707. DOI: 10.1093/jxb/erx260.
Zhang F Y, Fu X Q, Lv Z Y, Lu X, Shen Q, Zhang L, Zhu M M, Wang G F, Sun
X F, Liao Z H, Tang K X. 2015a. A basic leucine zipper transcription
factor, AabZIP1, connects abscisic acid signaling with artemisinin
biosynthesis in Artemisia annua . Molecular Plant 8 (1):
163-175. DOI: 10.1016/j.molp.2014.12.004.
Zhang L N, Zhang L C, Xia C, Gao L F, Hao C Y, Zhao G Y, Jia J Z, Kong X
Y. 2017b. A Novel Wheat C-bZIP Gene, TabZIP14-B , Participates in
Salt and Freezing Tolerance in Transgenic Plants. Frontiers in Plant
Science 8 : 710. DOI: 10.3389/fpls.2017.00710.
Zhang L N, Zhang L , Xia C, Zhao G Y, Liu J, Jia J Z, Kong X Y. 2015b. A
novel wheat bZIP transcription factor, TabZIP60, confers multiple
abiotic stress tolerances in transgenic Arabidopsis . Physiologia
Plantarum 153 (4): 538-554. DOI: 10.1111/ppl.12261.
Zhang M, Liu Y H, Shi, H, Guo M L, Chai M N, He Q, Yan M K, Cao D, Zhao
L H, Cai H Y, Qin Y. 2018. Evolutionary and expression analyses of
soybean basic leucine zipper transcription factor family. BMC Genomics19 (1): 159. DOI: 10.1186/s12864-018-4511-6.
Zhang X, Wang L, Meng H, Wen H T, Fan Y, Zhao J. 2011a. Maize ABP9
enhances tolerance to multiple stresses in transgenic Arabidopsisby modulating ABA signaling and cellular levels of reactive oxygen
species. Plant Molecular Biology 75 (4-5): 365-378. DOI:
10.1007/s11103-011-9732-x.
Zhang Y Q, Zheng S, Liu Z J, Wang L G, Bi Y R. 2011b. Both HY5 and HYH
are necessary regulators for low temperature-induced anthocyanin
accumulation in Arabidopsis seedlings. Journal of Plant
Physiology 168 (4): 367-374. DOI: 10.1016/j.jplph.2010.07.025.
Zhao B Y, Hu Y F, Li J J, Yao X, Liu K D. 2016. BnaABF2, a bZIP
transcription factor from rapeseed (Brassica napus L.), enhances
drought and salt tolerance in transgenic Arabidopsis . Botanical
Studies 57 (1): 12. DOI: 10.1186/s40529-016-0127-9.
Zhu J K. 2002. Salt and drought stress signal transduction in plants.
Annual Review of plant biology 53 : 247-273. DOI:
10.1146/annurev.arplant.53.091401.143329.
Zong W, Tang N, Yang J, Peng L, Ma S Q, Xu Y, Li G L, Xiong L Z. 2016.
Feedback regulation of ABA signaling and biosynthesis by a bZIP
transcription factor targets drought-resistance-related genes. Plant
Physiology 171 (4): 2810-2825. DOI: 10.1104/pp.16.00469.
Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. 2008. A bZIP transcription
factor, OsABI5, is involved in rice fertility and stress tolerance.
Plant Molecular Biology 66 (6): 675-683. DOI:
10.1007/s11103-008-9298-4.
Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. 2007. Characterization of
alternative splicing products of bZIP transcription factors OsABI5.
Biochemical and Biophysical Research Communications 360 (2):
307-313. DOI: 10.1016/j.bbrc.2007.05.226.