REFERENCE
Abu Zahra H, Kuwamoto S, Uno T, Kanamaru K, Yamagata H. 2014. A cis-element responsible for cGMP in the promoter of the soybean chalcone synthase gene. Plant Physiology and Biochemistry 74 : 92-98. DOI: 10.1016/j.plaphy.2013.10.034.
Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196 : 67-76. DOI: 10.1016/j.plantsci.2012.07.014.
Agati G, Matteini P, Goti A, Tattini M. 2007. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist 174(1): 77-89. DOI: 10.1111/j.1469-8137.2007.01986.x.
Aguan K, Sugawara K, Suzuki N, Kusano T. 1991. Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant and Cell Physiology 32 (8): 1285-1289. DOI: 10.1093/oxfordjournals.pcp.a078207.
Aguan K, Sugawara K, Suzuki N, Kusano T. 1993. Low-temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Molecular and General Genetics 240 (1): 1-8. DOI: 10.1007/bf00276876.
Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. 2012. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology 158 (2): 1089-1102. DOI: 10.1104/pp.111.191205.
Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S. 1999. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant and Cell Physiology 40 (11): 1182-1186. DOI: 10.0000/PMID10635120.
Ali Z, Sarwat S S, Karim I, Rabia F, Jaskani M J, Khan A A. 2016. Functions of plant’s bZIP transcription factors. Pakistan Journal of Agricultural Sciences 53 (2): 303-314. DOI: 10.21162/PAKJAS/16.2043.
Amir Hossain M, Lee Y, Cho J I, Ahn C H, Lee S K, Jeon J S, Kang H, Lee C H, An G, Park P B. 2010. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Molecular Biology 72 (4-5): 557-566. DOI: 10.1007/s11103-009-9592-9.
An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017a. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture research 4 : 17023-17030. DOI: 10.1038/hortres.2017.56.
An J P, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017b. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. Journal of Plant Physiology218 : 275-281. DOI: 10.1016/j.jplph.2017.09.001.
Aoki T, Akashi T, Ayabe S. 2000. Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. Journal of Plant Research 113 : 475-488. DOI: 10.1007/pl00013958.
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. 2009. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research 37 : W202–W208. DOI: 10.1093/nar/gkp335.
Baloglu M C, Eldern V, Hajyzadeh M, Unver T. 2014. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE 9 (4): e96014. DOI: 10.1371/journal.pone.0096014.
Bray E A. 1997. Plant responses to water deficit. Trends in Plant Science 2 : 48-54. DOI: 10.1016/S1360-1385(97)82562-9.
Buer C S, Muday G K. 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response ofArabidopsis roots to gravity and light. The Plant Cell16 (5): 1191-1205. DOI: 10.1105/tpc.020313.
Cai W T, Yang Y L, Wang W W, Guo G Y, Liu W, Bi C L. 2018. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6 , decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiology and Biochemistry 124 : 100-111. DOI: 10.1016/j.plaphy.2018.01.008.
Casaretto J, Ho T H D. 2003. The transcription factors HvABI5 and HvVP1 are required for the ABA induction of gene expression in burley aleurone cells. Plant Cell 15 : 271-284. DOI: 10.1105/tpc.007096.
Chang Y, Nguyen B H, Xie Y J, Xiao B Z, Tang N, Zhu W L, Mou T M, Xiong L Z. 2017. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Frontiers in Plant Science8 : 1102. DOI: 10.3389/fpls.2017.01102.
Cheng C, Yun K Y, Ressom H W, Mohanty B, Bajic V B, Jia Y, Yun S J, de los Reyes B G. 2007. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8 :175. DOI: 10.1186/1471-2164-8-175.
Cheng L B, Li S Y, Hussain J, Xu X Y, Yin J J, Zhang Y, Chen X H, Li L J. 2013. Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nuciferaGaertn). Molecular Biology Reports 40 (6): 4033-4045. DOI: 10.1007/s11033-012-2481-3.
Chen H, Chen W, Zhou J L, He H, Chen L B, Chen H D, Deng X W. 2012. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science 193-194 : 8-17. DOI: 10.1016/j.plantsci.2012.05.003.
Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y. 2000. ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry275 (3): 1723-1730. DOI: 10.1074/jbc.275.3.1723.
Corrêa L G G, Riaño-Pachón D M, Schrago C G, dos Santos R V, Mueller-Roeber B, Vincentz M. 2008. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3 (8): e2944. DOI: 10.1371/journal.pone.0002944.
Dash M, Yordan Y S, Georgieva T, Tschaplinski T J, Yordanova E, Busov V. 2017. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. The Plant Journal: for cell and molecular biology 89 (4): 692-705. DOI: 10.1111/tpj.13413.
Debeaujon I, Léon-kloosterziel K M, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, andlongevity in Arabidopsis . Plant Physiology 122 (2): 403-414. DOI: doi:10.1104/pp.122.2.403.
de Vetten N C, Ferl R J. 1995. Characterization of a maize G-box binding factor that is induced by hypoxia. The Plant Journal: for cell and molecular biology 7 (4): 589-601. DOI: 10.1046/j.1365-313X.1995.7040589.x.
Dey A, Samanta M K, Gayen S, Sen S K, Maiti M K. 2016. Enhanced gene expression rather than natural polymorphism in coding sequence of theOsbZIP23 determines drought tolerance and yield improvement in rice genotypes. PLoS One 11 (3): e0150763. DOI: 10.1371/journal.pone.0150763.
Du H, Huang Y B, Tang Y X. 2010. Genetic and metabolic engineering of isoflavonoid biosynthesis. Applied microbiology and biotechnology86 (5): 1293-1312. DOI: 10.1007/s00253-010-2512-8.
Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X. 2012. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology 12 (106): 1-22. DOI: 10.1186/1471-2229-12-106.
Ellenberger T E, Brandl C J, Struhl K, Harrison S C. 1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71(7): 1223-1237. DOI: 10.1016/s0092-8674(05)80070-4.
Falcone Ferreyra M L, Rius S P, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science. 2012, 3 : 222. DOI: 10.3389/fpls.2012.00222.
Fan L X, Xu L, Wang Y, Tang M J, Liu L W. 2019. Genome- and Transcriptome-Wide Characterization of bZIP Gene Family Identifies Potential Members Involved in Abiotic Stress Response and Anthocyanin Biosynthesis in Radish (Raphanus sativus L.). International Journal of Molecular Sciences 20 (24): 6334. DOI: 10.3390/ijms20246334.
Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo S, Leone A, Inzé D. 2014. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. Molecular Plant 7 (5): 773-791. DOI: 10.1093/mp/ssu002.
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinosaki K, Yamaguchi-Shinosaki K. 2005. AREB1 is a transcription activator of novel ABRE- dependent ABA signaling that enhances drought stress tolerance in Arabidopsis . The Plant Cell17 (12): 3470-3488. DOI: 10.1105/tpc.105.035659.
Furihata T, Maruyama K, Fujita Y, Umczawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America 103 (6): 1988-1993. DOI: 10.1073/pnas.0505667103.
Gao S Q, Chen M, Xu Z S, Zhao C P, Li L C, Xu H J, Tang Y M, Zhao X, Ma Y Z. 2011. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology75 (6): 537-553. DOI: 10.1007/s11103-011-9738-4.
Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. 2009. How relevant are flavonoids as antioxidants in plants? Trends in Plant Science 14 (3): 125-132. DOI: 10.1016/j.tplants.2008.12.003.
Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. 2010. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology 167 (17): 1512-1520. DOI: 10.1016/j.jplph.2010.05.008.
Hsieh T H, Li C W, Su R C, Cheng C P, Sanjaya, Tsai Y C, Chan M T. 2010. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231 (6): 1459-1473. DOI: 10.1007/s00425-010-1147-4.
Huang C J, Zhou J H, Jie Y C, Xing H C, Zhong Y L, Yu W L, She W, Ma Y S, Liu Z H, Zhang Y. 2016. A ramie bZIP transcription factor BnbZIP2 is involved in drought, salt, and heavy metal stress response. DNA and Cell Biology 35 (12): 776-786. DOI: 10.1089/dna.2016.3251.
Huang X S,Liu J H,Chen X J. 2010. Overexpression of PtrABFgene, a bZIP transcription factor isolated from Poncirus trifoliate , enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biology 10 (1): 230. DOI: 10.1186/1471-2229-10-230.
Hurst H C. 1994. Transcription factors. 1: bZIP proteins. Protein profile 2 (2): 101-168. DOI: http://dx.doi.org/.
Hwang I, Jung H J, Park J I, Yang T J, Nou I S. 2014. Transcriptome analysis of newly classified bZIP transcription factors ofBrassica rapa in cold stress response. Genomics 104 (3): 194-202. DOI: 10.1016/j.ygeno.2014.07.008.
Ito K, Kusano T, Tsutsumi K I. 1999. A cold-inducible bZIP protein gene in radish root regulated by calcium- and cycloheximide-mediated signals. Plant Science 142 : 57-65. DOI: 10.1016/S0168-9452(98)00250-7.
Izawa T, Foster R, Chua N H. 1993. Plant bZIP protein DNA binding specificity. Journal of Molecular Biology230 (4): 1131-1144. DOI: 10.1006/jmbi.1993.1230.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. 2002. bZIP transcription factors in Arabidopsis . Trends Plant Science 7 (3): 106-111. DOI: 10.1016/S1360-1385(01)02223-3.
Jiang Y N, Wang B, Li H, Yao L M, Wu T L. 2010. Flavonoid production is effectively regulated by RNA1 interference of two flavone synthase genes from Glycine max . Journal of Plant Biology 53 (6): 425-432. DOI: 10.1007/s12374-010-9132-9.
Ji X Y, Liu G F, Liu Y H, Zheng L, Nie X G, Wang Y C. 2013. The bZIP protein from Tamarix hispida , ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenicArabidopsis . BMC Plant Biology 13 (1): 151. DOI: 10.1186/1471-2229-13-151.
Joo J S, Lee Y H, Song S I. 2019. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta 249(5): 1521-1533. DOI: 10.1007/s00425-019-03104-7.
Kaminaka H, Nake C, Epple P, Dittgen J, Schütze K, Chaban C, Holt B F, Merkle T, Schäfer E, Harter K, Dangl J L. 2006. bZIP10-LSD1antagonism modulates basal defense and cell death in Arabidopsisfollowing infection. The EMBO Journal 25 (18): 4400-4411. DOI: 10.1038/sj.emboj.7601312.
Kim S, Kang J Y, Cho D L, Park J H, Kim S Y. 2004. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal: for cell and molecular biology 40 (1): 75-87. DOI: 10.1111/j.1365-313x.2004.02192.x.
Kobayashi F, Maeta E, Terashima A, Takumi S. 2008. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiologia Plantarum 134 (1):74-86. DOI: 10.1111/j.1399-3054.2008.01107.x.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33 (7): 1870-1874. DOI: 10.1093/molbev/msw054.
Lakra N, Nutan K K, Das P, Anwar K, Singla-Pareek S L, Pareek A. 2015. A nuclear-localized histone-gene binding protein from rice (OsHBP1b ) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology 176 : 36-46. DOI: 10.1016/j.jplph.2014.11.005.
Lam P Y, Zhu F Y, Chan W L, Liu H, Lo C. 2014. Cytochrome P450 93G1 is a flavone synthase II that channels flavanones to the biosynthesis of tricin O-linked conjugates in rice. Plant Physiology 165 (3): 1315-1327. DOI: 10.1104/pp.114.239723.
Landschulz W H, Johnson P F, McKnight S L. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240 (4860): 1759-1764. DOI: 10.1126/science.3289117.
Lee B J, Park C J, Kim S K, Kim K J, Paek K H. 2006a. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region ofpathogenesis-related protein 1 promoter. Biochemical and Biophysical Research Communications 344 (1): 55-62. DOI: 10.1016/j.bbrc.2006.03.153.
Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. 2006b. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224 (5): 1209-1225. DOI: 10.2307/23389543.
Lian J P, Lu X C, Yin N W, Ma L J, Lu J, Liu X, Li J N, Lu J, Lei B, Wang R, Chai Y R. 2017. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition inBrassica napus . Plant Science 254 : 32-47. DOI: 10.1016/j.plantsci.2016.10.012.
Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. 2008. Soybean GmbZIP44 , GmbZIP62 andGmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis . Planta 228 (2): 225-240. DOI: 10.1007/s00425-008-0731-3.
Li D Y, Fu F Y, Zhang H J, Song F M. 2015. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomic 16 (771): 60-78. DOI: 10.1186/s12864-015-1990-6.
Li J S, Wang X M. Zhang Y L, Jia H L, Bi Y R. 2011. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. Planta 234 (4): 709-722. DOI: 10.1007/s00425-011-1439-3.
Li J Y, Ou-Lee T M, Raba R, Amundson R G, Last R L. 1993.Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell 5 (2): 171-179. DOI: 10.2307/3869583.
Lim C W, Baek W, Lee S C. 2018. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. The Plant Journal: for cell and molecular biology96 (2): 452-467. DOI: 10.1111/tpj.14046.
Liu C J, Huhman D, Sumner L W, Dixon R A. 2003. Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes fromMedicago truncatula . The Plant Journal: for cell and molecular biology 36 (4): 471-484. DOI: 10.1046/j.1365-313X.2003.01893.x.
Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P. 2014a. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology 84 (12): 19-36. DOI: 10.1007/s11103-013-0115-3.
Liu C T, Ou S J, Mao B G, Tang J Y, Wang W, Wang H R, Cao S Y, Schlappi M R, Zhao B R, Xiao G Y, Wang X P, Chu C C. 2018. Early selection ofbZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications 9 (1): 3302. DOI: 10.1038/s41467-018-05753-w.
Liu C T, Schläppi M R, Mao B R, Wang W, Wang A J, Chu C C. 2019a. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnology Journal 17 (9): 1834-1849. DOI: 10.1111/pbi.13104.
Liu C T, Wu Y B, Wang X P. 2012. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235 (6): 1157-1169. DOI: 10.1007/s00425-011-1564-z.
Liu J X, Srivastava R, Che P, Howell S H. 2007. Salt stress inArabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. The Plant Journal: for cell and molecular biology 51 (5): 897-909. DOI: 10.1111/j.1365-313x.2007.03195.x.
Liu J X, Srivastava R, Howell S H. 2008. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant, cell and Environment 31 (12): 1735-1743. DOI: 10.1111/j.1365-3040.2008.01873.x.
Liu J Y, Chen N N, Chen F, Cai B, Dal Santo S, Tornielli G B, Pezzotti M, Cheng Z M. 2014b. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera ). BMC Genomics 15 (281): 1-18. DOI: 10.1186/1471-2164-15-281.
Liu J Y, Chu J J, Ma C J, Jiang Y T, Ma Y C, Xiong J S, Cheng Z M. 2019b. Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis . Plant Cell Report 38 (5): 587-596. DOI: 10.1007/s00299-019-02389-y.
Li Y Y,Meng D,Li M J,Cheng L L. 2016. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica ). Tree Genetics and Genomes 12 (82): 1-17. DOI: 10.1007/s11295-016-1043-6.
Lu G J, Gao C X, Zheng X N, Han B. 2009. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta229 (3): 605-615. DOI: 10.1007/s00425-008-0857-3.
Lu Y H, Lam H M, Pi E X, Zhan Q L, Tsai S N, Wang C M, Kwan Y W, Ngai S M. 2013. Comparative metabolomics in Glycine max andGlycine soja under salt stress to reveal the phenotypes of their offspring. Journal of Agricultural and Food Chemistry 61 (36): 8711-8721. DOI: 10.1021/jf405681k.
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany 67 (11): 3509-3522. DOI: 10.1093/jxb/erw181.
Matousek J, Kocabek T, Patzak J, Stehlík J, Füssy Z, Krofta K, Heyerick A, Roldán-Ruiz I, Maloukh L, De Keukeleire D. 2010. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in Hop (Humulus lupulus L.). Journal of Agricultural and Food Chemistry58 (2): 902-912. DOI: 10.1021/jf9043106.
McKhann H I, Hirsch A M. 1994. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Molecular Biology 24 (5): 767-777. DOI: 10.1007/BF00029858.
Mellway R D, Tran L T, Prouse M B, Campbell M M, Constabel C P. 2009. The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiology 150 (2): 924-941. DOI: 10.1104/pp.109.139071.
Mola J, Grotewold E, Koesa R. 1998. How genes paintflowers and seeds. Trends in Plant Science 3 (6): 212-217. DOI: 10.1016/S1360-1385(98)01242-4.
Mukherjee K, Choudhury A R, Gupta B, Gupta S, Sengupta D N. 2006. An ABRE-binding factor,OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biology 6 (1):1-14. DOI: 10.1186/1471-2229-6-18.
Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist 167 (3): 645-663. DOI: 10.1111/j.1469-8137.2005.01487.x.
Nakagawa H, Ohmiya K and Hattori T. 1996. A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. The Plant Journal9 (2): 217-227. DOI: 10.1046/j.1365-313X.1996.09020217.x.
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses inArabidopsis and grasses. Plant Physiology 149 (1): 88-95. DOI: 10.1104/pp.108.129791.
Nijhawan A, Jain M, Tyagi A K, Khurana J P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology 146 (2): 333-350. DOI: 10.1104/pp.107.11282.
Pandey A S, Sharma E, Jain N, Singh B, Burman N, Khurana J P. 2018. A rice bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when over-expressed in Arabidopsis . Journal of Plant Biochemistry and Biotechnology 27 (4): 393-400. DOI: 10.1007/s13562-018-0448-8.
Pan Y L, Hu X, Li C Y, Xu X, Su C G, Li J H, Song H Y, Zhang X G, Pan Y. 2017. SlbZIP38 , a tomato bZIP family gene downregulated by abscisic acid,is a negative regulator of drought and salt stress tolerance. Genes 8 (12): 402. DOI: 10.3390/genes8120402.
Pé rez-Rodriguez P, Riañ o-Pachon D M, Corrê a L G, Rensing S A, Kersten B, Mueller-Roeber B. 2010. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research 38(Database issue): D822-827. DOI: 10.1093/nar/gkp805.
Pi E X, Qu L Q, Hu J W, Huang Y Y, Qiu L J, Lu H F, Jiang B, Liu C, Peng T T, Zhao Y, Wang H Z, Tsai S N, Ngai S M, Du L Q. 2016. Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Molecular and Cellular Proteomics 15 (1): 266-288. DOI: 10.1074/mcp.M115.051961.
Pi E X, Xu J, Li H H, Fan W, Zhu C M, Zhang T Y, Jiang J C, He L T, Lu H F, Wang H Z, Poovaiah B W, Du L Q. 2019. Enhanced salt tolerance of rhizobia-inoculated soybean correlates with decreased phosphorylation of the transcription factor GmMYB183 and altered flavonoid biosynthesis. Molecular & Cellular Proteomics 18 (11): 2225-2243. DOI: 10.1074/mcp.RA119.001704.
Pi E X, Zhu C M, Fan W, Huang Y Y, Qu L Q, Li Y Y, Zhao Q Y, Ding F, Qiu L J, Wang H Z, Poovaiah B W, Du L Q. 2018. Quantitative phosphoproteomic and metabolomic analyses reveal GmMYB173 optimizes flavonoid metabolism in soybean under salt stress. Molecular and Cellular Proteomics17 (6): 1209-1224. DOI: 10.1074/mcp.RA117.000417.
Pourabed E, Golmohamadi F G, Monfared P S, Razavi S M, Shobbar Z S. 2015. Basic Leucine Zipper Family in Barley: Genome-Wide Characterization of Members and Expression Analysis. Molecular Biotechnology 57 (1): 12-26. DOI: 10.1007/s12033-014-9797-2.
Pourcel L, Routaboul J M, Cheynier V, Lepiniec L, Debeaujon I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12 (1): 29-36. DOI: 10.1016/j.tplants.2006.11.006.
Qiu D Y, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z, Wang S P. 2008. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Molecular Plant 1 (3): 538-551. DOI: 10.1093/mp/ssn012.
Rai A, Umashankar S, Rai M, Kiat L B, Bing J A, Swarup S. 2016. Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in Arabidopsis . Plant Physiology 171(4): 2499-2515. DOI: 10.1104/pp.16.00421.
Rice-Evans C A, Miller N J. 2010. ChemInform Abstract: Structure-antioxidant activityrela-tionships of flavonoids and isoflavonoids. ChemInform 29 (19). DOI: 10.1002/chin.199819287.
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. 2000. Arabidopsistranscription factors genome-wide comparative analysis among eukaryotes. Science 290 (5499): 2105-2110. DOI: 10.1126/science.290.5499.2105.
Rozema J, Flowers T. 2008. Crops for a salinized world. Science322 (5907): 1478-1480. DOI: 10.1126/science.1168572.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution4 (4): 406-425. DOI: 10.1093/oxfordjournals.molbev.a040454.
Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. 2004. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDHgene in Arabidopsis . Plant and Cell Physiology 45 (3): 309-317. DOI: 10.1093/pcp/pch036.
Schütze K, Harter K, Chaban C. 2008. Post-translational regulation of plant bZIP factors. Trends In Plant Science 13 (5): 247-255. DOI: 10.1016/j.tplants.2008.03.002.
Shaikhali J, Norén L, de Dios Barajas-López J, Srivastava V, König J, Sauer U H, Wingsle G, Dietz K J, Strand Å. 2012. Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis . Journal of Biological Chemistry 287 (33): 27510-27525. DOI: 10.1074/jbc.M112.361394.
Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R and Kusano T. 2005. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiology 46 (10): 1623-1634. DOI: 10.1093/pcp/pci178.
Shinozaki K, Yamaguchi-Shinozaki K. 1996. Molecular responses to drought and cold stress. Current Opinion in Biotechnology 7 (2): 161-167. DOI: 10.1016/B978-0-444-82884-2.50013-3.
Shinozaki K, Yamaguchi -Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany58 (2): 221-227. DOI: 10.1093/jxb/erl164.
Shi Y T, Ding Y L, Yang S H. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science 23 (7): 623-637. DOI: 10.1016/j.tplants.2018.04.002.
Sornaraj P, Luang S, Lopato S, Hrmova M. 2016. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta 1860 (1 Pt A): 46-56. DOI: 10.1016/j.bbagen.2015.10.014.
Stanković B, Vian A, Henry-Vian C, Davies E. 2000. Molecular cloing and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA binding protein. Planta 212 (1): 60-66. DOI: 10.1007/s004250000362.
Sun X L, Li Y, Cai H, Bai X, Ji W, Ji Z J, Zhu Y M. 2011.Arabidopsis bZIP1 transcription factor binding to ABRE cis-element regulates abscisic acid signal transduction. Acta Agronomica Sinica 37 (4): 612-619. DOI: 10.1016/s1875-2780(11)60016-3.
Tang N, Zhang H, Li X H, Xiao J H, Xiong L Z. 2012a. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology 158 (4): 1755-1768. DOI: 10.1104/pp.111.190389.
Tang W, Page M, Fei Y J, Liu L C, Xu F, Cai X D, Yuan L Y, Wu Q S, Zhou M Q. 2012b. Overexpression of AtbZIP60deltaC gene alleviates salt-induced oxidative damage in transgenic cell cultures. Plant Molecular Biology Reporter 30 (5): 1183-1195. DOI: 10.1007/s11105-012-0437-3.
Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. 2004. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist 163 (3): 547-561. DOI: 10.1111/j.1469-8137.2004.01126.x.
Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi M L, Massai R. 2006. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communisand Pistacia lentiscus . New Phytologist 170 (4): 779-794. DOI: 10.1111/j.1469-8137.2006.01723.x.
Thomashow M F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiology 118 (1): 1-7. DOI: 10.1104/pp.118.1.1.
Treutter D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology 7 (6): 581-591. DOI: 10.1055/s-2005-873009.
Treutter D. 2006. Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters 4 (3): 147 -157. DOI: 10.1007/s10311-006-0068-8.
Tsugama D, Liu S, Takano T. 2016. The bZIP protein VIP1 is involved in touch responses in Arabidopsis roots. Plant Physiology171 (2): 1355-1365. DOI: 10.1104/pp.16.00256.
Uchida K, Akashi T, Aoki T. 2015. Functional expression of cytochrome P450 in Escherichia coli: An approach to functional analysis of uncharacterized enzymes for flavonoid biosynthesis. Plant Biotechnology32 (3): 205-213. DOI: 10.5511/plantbiotechnology.15.0605a.
Uno Y, Furuhata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the USA 97 (21): 11632-11637. DOI: 10.1073/pnas.190309197.
Van Leene J, Blomme J, Kulkarni S R, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx K S, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. 2016. Functional Characterization of the Arabidopsistranscription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany 67 (19): 5825-5840. DOI: 10.1093/jxb/erw347.
Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K, Mira-Rodado V, Chaban C. 2014. The interaction of the Arabidopsisresponse regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression. Molecular Plant 7 (10): 1560-1577. DOI: 10.1093/mp/ssu074.
Verslues P E, Zhu J K. 2005. Before and beyond ABA: Upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions 33 (Pt 2): 375-379. DOI: 10.1042/BST0330375.
Wang C L, Lu G Q, Hao Y Q, Guo H M, Guo Y, Zhao J, Cheng H M. 2017a. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246 (3): 453-469. DOI: 10.1007/s00425-017-2704-x.
Wang J, Li Q, Mao X G, Li A, Jing R L. 2016a. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis. International Journal of Biological Sciences 12 (2): 257-269.DOI: 10.7150/ijbs.13538.
Wang J Z, Zhou J X, Zhang B L, Vanitha J, Ramachandran S, Jiang S Y. 2011. Genome-wide Expansion and Expression Divergence of the Basic Leucine Zipper Transcription Factors in Higher Plants with an Emphasis on Sorghum . Journal of Integrative plant biology 53 (3): 212-231. DOI: 10.1111/j.1744-7909.2010.01017.x.
Wang L, Cao H L, Qian W J, Yao L N, Hao X Y, Li N N, Yang Y J, Wang X C. 2017b. Identification of a novel bZIP transcription factor inCamellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis . Annals of Botany 119 (7): 1195-1209. DOI: 10.1093/aob/mcx011.
Wang Y C, Gao C Q, Liang Y N, Wang C, Yang C P, Liu G F. 2010. A novelbZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. Journal of Plant Physiology167 (3): 222-230. DOI: 10.1016/j.jplph.2009.09.008.
Wang W B, Qiu X P, Yang Y X, Kim H S, Jia X Y, Yu H, Kwak S S. 2019. Sweetpotato bZIP Transcription Factor IbABF4 Confers Tolerance to Multiple Abiotic Stresses. Frontiers in Plant Science 10 : 630. DOI: 10.3389/fpls.2019.00630.
Wang Z H, Cheng K, Wan L Y, Yan L Y, Jiang H F, Liu S Y, Lei Y, Liao B S. 2015. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics16 : 1053. DOI: 10.1186/s12864-015-2258-x.
Wang Z, Su G X, Li M, Ke Q B, Kim S Y, Li H B, Huang J, Xu B C, Deng X P, Kwak S S. 2016b. Overexpressing Arabidopsis ABF3increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa . Plant Physiology and Biochemistry 109 : 199-208. DOI: 10.1016/j.plaphy.2016.09.020.
Watkins J M, Hechler P J, Muday G K. 2014. Ethylene-Induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiology 164 (4): 1707-1717. DOI: 10.1104/pp.113.233528.
Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X J, Xie D X. 2012. Genome-wide analysis of bZIP -encoding genes in maize. DNA Research 19 (6): 463-476. DOI: 10.1093/dnares/dss026.
Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. 2008. Characterization ofOsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148(4): 1938-1952. DOI: 10.1104/pp.108.128199.
Xu D B, Gao S Q, Ma Y Z, Xu Z S, Zhao C P, Tang Y M, Li X Y, Li L C, Chen Y F, Chen M . 2014. ABI-like transcription factor geneTaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Functional & Integrative Genomics14 :717–730. DOI: 10.1007/s10142-014-0394-z.
Yamasaki H, Sakihama Y, Ikehara N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiology and Biochemistry115 (4): 1405-1412. DOI: 10.1104/pp.115.4.1405.
Yang O, Popova O V, Süthoff U, Lüking I, Dietz K J, Golldack D. 2009. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436 (1-2): 45-55. DOI: 10.1016/j.gene.2009.02.010.
Yang Y G, Lv W T, Li M J, Wang B, Sun D M, Deng X. 2013. Maize Membrane-Bound Transcription Factor Zmbzip17 is a Key Regulator in the Cross-Talk of ER Quality Control and ABA Signaling. Plant and Cell Physiology 54 (12): 2020-2033. DOI: 10.1093/pcp/pct142.
Yan J H, Wang B, Jiang Y N, Cheng L J, Wu T L. 2014. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant and Cell Physiology 55 (1): 74-86. DOI: 10.1093/pcp/pct159.
Yoon M K, Shin J, Choi G, Choi B S. 2006. Intrinsically unstructured N-terminal domain of bZIP transcription factor HY5. Proteins-Structure Function and Bioinformatics 65 (4): 856-866. DOI: 10.1002/prot.21089.
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell and Environment 38 (1): 35-49. DOI: 10.1111/pce.12351.
Zhang C Y, Li C, Liu J, Lv Y D, Yu C S, Li H Y, Zhao T, Liu B. 2017a. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. Journal of Experimental Botany68 (16): 4695-4707. DOI: 10.1093/jxb/erx260.
Zhang F Y, Fu X Q, Lv Z Y, Lu X, Shen Q, Zhang L, Zhu M M, Wang G F, Sun X F, Liao Z H, Tang K X. 2015a. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua . Molecular Plant 8 (1): 163-175. DOI: 10.1016/j.molp.2014.12.004.
Zhang L N, Zhang L C, Xia C, Gao L F, Hao C Y, Zhao G Y, Jia J Z, Kong X Y. 2017b. A Novel Wheat C-bZIP Gene, TabZIP14-B , Participates in Salt and Freezing Tolerance in Transgenic Plants. Frontiers in Plant Science 8 : 710. DOI: 10.3389/fpls.2017.00710.
Zhang L N, Zhang L , Xia C, Zhao G Y, Liu J, Jia J Z, Kong X Y. 2015b. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis . Physiologia Plantarum 153 (4): 538-554. DOI: 10.1111/ppl.12261.
Zhang M, Liu Y H, Shi, H, Guo M L, Chai M N, He Q, Yan M K, Cao D, Zhao L H, Cai H Y, Qin Y. 2018. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family. BMC Genomics19 (1): 159. DOI: 10.1186/s12864-018-4511-6.
Zhang X, Wang L, Meng H, Wen H T, Fan Y, Zhao J. 2011a. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsisby modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology 75 (4-5): 365-378. DOI: 10.1007/s11103-011-9732-x.
Zhang Y Q, Zheng S, Liu Z J, Wang L G, Bi Y R. 2011b. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. Journal of Plant Physiology 168 (4): 367-374. DOI: 10.1016/j.jplph.2010.07.025.
Zhao B Y, Hu Y F, Li J J, Yao X, Liu K D. 2016. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis . Botanical Studies 57 (1): 12. DOI: 10.1186/s40529-016-0127-9.
Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of plant biology 53 : 247-273. DOI: 10.1146/annurev.arplant.53.091401.143329.
Zong W, Tang N, Yang J, Peng L, Ma S Q, Xu Y, Li G L, Xiong L Z. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171 (4): 2810-2825. DOI: 10.1104/pp.16.00469.
Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. 2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology 66 (6): 675-683. DOI: 10.1007/s11103-008-9298-4.
Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. 2007. Characterization of alternative splicing products of bZIP transcription factors OsABI5. Biochemical and Biophysical Research Communications 360 (2): 307-313. DOI: 10.1016/j.bbrc.2007.05.226.