References
Alzueta, I., Abeledo, L. G., Mignone, C. M., & Miralles, D. J. (2012).
Differences between wheat and barley in leaf and tillering coordination
under contrasting nitrogen and sulfur conditions. European Journal
of Agronomy, 41 , 92-102.
Araki, H., Hamada, A., Hossain, M. A., & Takahashi, T. (2012).
Waterlogging at jointing and/or after anthesis in wheat induces early
leaf senescence and impairs grain filling. Field Crops Research,
137 , 27-36. doi:10.1016/j.fcr.2012.09.006
Arisnabarreta, S., & Miralles, D. J. (2006). Yield responsiveness in
two- and six-rowed barley grown in contrasting nitrogen environments.Journal of Agronomy and Crop Science, 192 (3), 178-185.
doi:10.1111/j.1439-037X.2006.00203.x
Armstrong, W. (1979). Aeration in higher plants. Advances in
Botanical Research, 7 , 225–332.
Armstrong, W., Brandle, R., & Jackson, M. B. (1994). Mechanisms of
flood tolerance in plants. Acta Botanica Neerlandica, 43 (4),
307-358.
Baethgen, W. E., Christianson, C. B., & Lamothe, A. G. (1995).
Nitrogen-fertilizer effects on growth, grain-yield, and yield components
of malting barley. Field Crops Research, 43 (2-3), 87-99.
doi:10.1016/0378-4290(95)00034-n
Broughton, S., Zhou, G. F., Teakle, N. L., Matsuda, R., Zhou, M. X.,
O’Leary, R. A., . . . Li, C. D. (2015). Waterlogging tolerance is
associated with root porosity in barley (Hordeum vulgare L.).Molecular Breeding, 35 (1). doi:10.1007/s11032-015-0243-3
Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., &
Meinke, H. (2017). The impact of extreme climatic events on
pasture-based dairy systems: a review. Crop & Pasture Science,
68 (12), 1158-1169. doi:10.1071/cp16394
Cossani, C. M., Slafer, G. A., & Savin, R. (2009). Yield and biomass in
wheat and barley under a range of conditions in a Mediterranean site.Field Crops Research, 112 (2-3), 205-213.
doi:10.1016/j.fcr.2009.03.003
Davies, D. D. (1980). Anaerobic metabolism and the production of organic
acids. In: Davies DD (ed) The biochemistry of plants, Vol. 2. Academic
Press, NY, USA. pp 581-611.
de San Celedonio, R. P., Abeledo, L. G., Brihet, J. M., & Miralles, D.
J. (2016). Waterlogging Affects Leaf and Tillering Dynamics in Wheat and
Barley. Journal of Agronomy and Crop Science, 202 (5), 409-420.
doi:10.1111/jac.12151
de San Celedonio, R. P., Abeledo, L. G., & Miralles, D. J. (2014).
Identifying the critical period for waterlogging on yield and its
components in wheat and barley. Plant and Soil, 378 (1-2),
265-277. doi:10.1007/s11104-014-2028-6
de San Celedonio, R. P., Abeledo, L. G., & Miralles, D. J. (2018).
Physiological traits associated with reductions in grain number in wheat
and barley under waterlogging. Plant and Soil, 429 (1-2), 469-481.
doi:10.1007/s11104-018-3708-4
Drew, M. C. (1997). Oxygen deficiency and root metabolism: Injury and
acclimation under hypoxia and anoxia. Annual Review of Plant
Physiology and Plant Molecular Biology, 48 , 223-250.
doi:10.1146/annurev.arplant.48.1.223
García del Moral, M. B., & García del Moral, L. F. (1995). Tiller
production and survival in relation to grain yield in winter and spring
barley. Field Crops Research, 44 (2-3), 85-93.
doi:10.1016/0378-4290(95)00072-0
Gibbs, J., & Greenway, H. (2003). Mechanisms of anoxia tolerance in
plants. I. Growth, survival and anaerobic catabolism. Functional
Plant Biology, 30 (1), 1-47. doi:10.1071/pp98095
Harrison, M. T., Cullen, B. R., & Armstrong, D. (2017). Management
options for dairy farms under climate change: Effects of
intensification, adaptation and simplification on pastures, milk
production and profitability. Agricultural Systems, 155 , 19-32.
doi:10.1016/j.agsy.2017.04.003
Harrison, M. T., Cullen, B. R., & Rawnsley, R. P. (2016). Modelling the
sensitivity of agricultural systems to climate change and extreme
climatic events. Agricultural Systems, 148 , 135-148.
doi:10.1016/j.agsy.2016.07.006
Harrison, M. T., Evans, J. R., Dove, H., & Moore, A. D. (2011a).
Dual-purpose cereals: can the relative influences of management and
environment on crop recovery and grain yield be dissected? Crop &
Pasture Science, 62 (11), 930-946. doi:10.1071/cp11066
Harrison, M. T., Evans, J. R., Dove, H., & Moore, A. D. (2011b).
Recovery dynamics of rainfed winter wheat after livestock grazing 1.
Growth rates, grain yields, soil water use and water-use efficiency.Crop & Pasture Science, 62 (11), 947-959. doi:10.1071/cp11234
Herzog, M., Striker, G. G., Colmer, T. D., & Pedersen, O. (2016).
Mechanisms of waterlogging tolerance in wheat - a review of root and
shoot physiology. Plant Cell and Environment, 39 (5), 1068-1086.
doi:10.1111/pce.12676
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki,
D., Watanabe, S., . . . Kanae, S. (2013). Global flood risk under
climate change. Nature Climate Change, 3 (9), 816-821.
doi:10.1038/nclimate1911
Hossain, M. A., Araki, H., & Takahashi, T. (2011). Poor grain filling
induced by waterlogging is similar to that in abnormal early ripening in
wheat in Western Japan. Field Crops Research, 123 (2), 100-108.
doi:10.1016/j.fcr.2011.05.005
Huang, X., Shabala, S., Shabala, L., Rengel, Z., Wu, X., Zhang, G., &
Zhou, M. (2015). Linking waterlogging tolerance with Mn2+ toxicity: a
case study for barley. Plant Biology, 17 (1), 26-33.
doi:10.1111/plb.12188
Kamran, M., Ahmad, S., Ahmad, I., Hussain, I., Meng, X., Zhang, X., &
Han, Q. (2020). Paclobutrazol Application Favors Yield Improvement of
Maize Under Semiarid Regions by Delaying Leaf Senescence and Regulating
Photosynthetic Capacity and Antioxidant System During Grain-Filling
Stage. Agronomy, 10 , 187.
Kreuzwieser, J., & Rennenberg, H. (2014). Molecular and physiological
responses of trees to waterlogging stress. Plant Cell and
Environment, 37 (10), 2245-2259. doi:10.1111/pce.12310
Li, H. B., Vaillancourt, R., Mendham, N., & Zhou, M. X. (2008).
Comparative mapping of quantitative trait loci associated with
waterlogging tolerance in barley (Hordeum vulgare L.). BMC
Genomics, 9 . doi:10.1186/1471-2164-9-401
Liu, K., Harrison, M. T., Hunt, J., Angessa, T. T., Meinke, H., Li, C.,
. . . Zhou, M. (2020 ). Identifying optimal sowing and flowering periods
for barley in Australia: a modelling approach. Agricultural and
Forest Meteorology, 282-283 , 107871.
Manik, S. M. N., Pengilley, G., Dean, G., Field, B., Shabala, S., &
Zhou, M. X. (2019). Soil and Crop Management Practices to Minimize the
Impact of Waterlogging on Crop Productivity. Frontiers in Plant
Science, 10 . doi:10.3389/fpls.2019.00140
Masoni, A., Pampana, S., & Arduini, I. (2016). Barley Response to
Waterlogging Duration at Tillering. Crop Science, 56 (5),
2722-2730. doi:10.2135/cropsci2016.02.0106
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004).
Reactive oxygen gene network of plants. Trends in plant science,
9 (10), 490-498.
Pan, R., He, D. L., Xu, L., Zhou, M. X., Li, C. D., Wu, C., . . . Zhang,
W. Y. (2019). Proteomic analysis reveals response of differential wheat
(Triticum aestivum L.) genotypes to oxygen deficiency stress. BMC
Genomics, 20 . doi:10.1186/s12864-018-5405-3
Pang, J. Y., Cuin, T., Shabala, L., Zhou, M. X., Mendham, N., &
Shabala, S. (2007). Effect of secondary metabolites associated with
anaerobic soil conditions on ion fluxes and electrophysiology in barley
roots. Plant Physiology, 145 (1), 266-276.
doi:10.1104/pp.107.102624
Pang, J. Y., Zhou, M. X., Mendham, N., & Shabala, S. (2004). Growth and
physiological responses of six barley genotypes to waterlogging and
subsequent recovery. Australian Journal of Agricultural Research,
55 (8), 895-906. doi:10.1071/ar03097
Robertson, D., Zhang, H. P., Palta, J. A., Colmer, T., & Turner, N. C.
(2009). Waterlogging affects the growth, development of tillers, and
yield of wheat through a severe, but transient, N deficiency. Crop
& Pasture Science, 60 (6), 578-586. doi:10.1071/cp08440
Romina, P., Abeledo, L. G., Mantese, A. I., & Miralles, D. J. (2017).
Differential root and shoot biomass recovery in wheat and barley with
transient waterlogging during preflowering. Plant and Soil,
417 (1-2), 481-498.
Schnyder, H. (1993). The role of carbohydrate storage and redistribution
in the source sink relations of wheat and barley during grain
filling—a review. New Phytologist, 123 , 233–245.
Setter, T. L., Ellis, M., Laureles, E. V., Ella, E. S., Senadhira, D.,
Mishra, S. B., . . . Datta, S. (1997). Physiology and genetics of
submergence tolerance in rice. Annals of Botany, 79 , 67-77.
Setter, T. L., & Waters, I. (2003). Review of prospects for germplasm
improvement for waterlogging tolerance in wheat, barley and oats.Plant and Soil, 253 (1), 1-34. doi:10.1023/a:1024573305997
Statista. (2020).
https://www.statista.com/statistics/271973/world-barley-production-since-2008/.
van der Moezel, P. G., Pearce-Pinto, G. V., & Bell, D. T. (1991).
Screening for salt and waterlogging tolerance in Eucalyptus and
Melaleuca species. Forest Ecology and Management, 40 (1-2), 27-37.
Wollenweber, B., Porter, J. R., & Schellberg, J. (2003). Lack of
interaction between extreme high-temperature events at vegetative and
reproductive growth stages in wheat. Journal of Agronomy and Crop
Science, 189 (3), 142-150. doi:10.1046/j.1439-037X.2003.00025.x
Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for
the growth stages of cereals. Weed Research, 14 , 415-421.
Zhang, X. C., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P.,
Hayes, D., . . . Zhou, M. X. (2015). Waterlogging tolerance in barley is
associated with faster aerenchyma formation in adventitious roots.Plant and Soil, 394 (1-2), 355-372. doi:10.1007/s11104-015-2536-z
Zhang, X. C., Shabala, S., Koutoulis, A., Shabala, L., & Zhou, M. X.
(2017). Meta-analysis of major QTL for abiotic stress tolerance in
barley and implications for barley breeding. Planta, 245 (2),
283-295. doi:10.1007/s00425-016-2605-4
Zhang, X. C., Zhou, G. F., Shabala, S., Koutoulis, A., Shabala, L.,
Johnson, P., . . . Zhou, M. X. (2016). Identification of aerenchyma
formation-related QTL in barley that can be effective in breeding for
waterlogging tolerance. Theoretical and Applied Genetics, 129 (6),
1167-1177. doi:10.1007/s00122-016-2693-3
Zhou, M. X. (2009). Barley production and consumption. In Genetics and
improvement of barley malt quality (pp. 1-17). Springer, Berlin,
Heidelberg.
Zhou, M. X. (2010). Improvement of plant waterlogging tolerance. In
Waterlogging signalling and tolerance in plants (pp. 267-285). Springer,
Berlin, Heidelberg.
Zhou, M. X., Johnson, P., Zhou, G. F., Li, C. D., & Lance, R. (2012).
Quantitative Trait Loci for Waterlogging Tolerance in a Barley Cross of
Franklin x YuYaoXiangTian Erleng and the Relationship Between
Waterlogging and Salinity Tolerance. Crop Science, 52 (5),
2082-2088. doi:10.2135/cropsci2012.01.0008
Zhou, M. X., Li, H. B., & Mendham, N. J. (2007). Combining ability of
waterlogging tolerance in barley. Crop Science, 47 (1), 278-284.
doi:10.2135/cropsci2006.02.0065
Table 1 . Barley cultivars used in the study, year of release,
pedigree and commercialising organisation.