References
  1. M. Yücesan, G. Kahraman, Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP, Energy Policy, 2019, 126,  343-351. Doi : https://doi.org/10.1016/j.enpol.2018.11.039
  2. I. Zidane, H. Zahloul, M. Hajjam, M. Abbadeni, Modeling and Analysis of the Slip Conditions in Hydrodynamic Lubrication, Arabian Journal for Science and Engineering, 2014, 39, 7199-7210. DOI 10.1007/s13369-014-1214-4
  3. R. Goraj, Theoretical study on a novel electromagnetically supported hydrodynamic bearing under static loads, Tribology International, 2018, 119, 775-785. Doi : https://doi.org/10.1016/j.triboint.2017.09.021
  4. L. Zoupas, M. Wodtke, C.I. Papadopoulos, M. Wasilczuk, Effect of manufacturing errors of the pad sliding surface on the performance of the hydrodynamic thrust bearing, Tribology International, 2019, 134, 211-220. Doi : https://doi.org/10.1016/j.triboint.2019.01.046
  5. B. Manser, I. Belaidi, A. Hamrani, S. Khelladi, F. Bakir, Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey, Comptes Rendus Mécanique, 2019, 347, 2, 141-165. Doi : https://doi.org/10.1016/j.crme.2018.11.002
  6. J.K. Paik, A.K., Thayamballi, J.M. Lee, Effect of initial deflection shape on the ultimate strength behavior of welded steel plates under biaxial compressive loads, J. Ship Res. 2004, 48, 1, 45–60.
  7. J.K., Paik, Ultimate Limit State Analysis and Design of Plated Structures, John Wiley & Sons, Chichester, UK, 2018
  8. G. Da-wei, S. Gui-jie, W. De-ye, Residual ultimate strength of hull structures with fracture and corrosion damage, Eng. Fail. Anal., 2012, 25, 316–328. Doi : https://doi.org/10.1016/j.engfailanal.2012.05.003
  9. Y. Hu, W. Cui, P.T., Pedersen, Maintained ship hull girder ultimate strength reliability considering corrosion and fatigue, Mar. Struct., 2004, 17, 2, 91–123. Doi : https://doi.org/10.1016/j.marstruc.2004.06.001
  10. J.K., Paik, Residual ultimate strength of steel plates with longitudinal fractures under axial compression–experiments, Ocean Eng., 2008, 35, 17, 1775–1783. Doi : https://doi.org/10.1016/j.oceaneng.2008.08.012
  11. R. Seifi, N. Khoda-yari, Experimental and numerical studies on buckling of fractureed thin-plates under full and partial compression edge loading, Thin-Walled Struct., 2011, 49, 12, 1504–1516. Doi :https://doi.org/10.1016/j.tws.2011.07.010
  12. J.K. Paik, Y.S. Kumar, J.M. Lee, Ultimate strength of fractureed plate elements under axial compression or tension, Thin-Walled Struct., 2005, 43, 2, 237–272.Doi : https://doi.org/10.1016/j.tws.2004.07.010
  13. A. Babazadeh, M.R. Khedmati, Ultimate strength of fractureed ship structural elements and systems: a review, Eng. Fail. Anal., 2018, 89, 242–257. Doi : https://doi.org/10.1016/j.engfailanal.2018.03.003
  14. R. Brighenti, Buckling of fractureed thin-plates under tension or compression, Thin-Walled Struct., 2005, 43, 2, 209–224.Doi : https://doi.org/10.1016/j.tws.2004.07.006
  15. J. Paik, A., Thayamballi, Ultimate strength of ageing ships, Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng. Marit. Environ., 2002, 216, 1, 57–77. Doi : https://doi.org/10.1243/147509002320382149
  16. P. Rycerz, A. Olver, A.Kadiric, Propagation of surface initiated rolling contact fatigue cracks in bearing steel. International Journal of Fatigue 97 (2017) 29–38 http://dx.doi.org/10.1016/j.ijfatigue.2016.12.004
  17. S. Maya-Johnson , A.J. Ramirez , A. Toro . Fatigue crack growth rate of two pearlitic rail steels. Engineering Fracture Mechanics 138 (2015) 63–72. http://dx.doi.org/10.1016/j.engfracmech.2015.03.023
  18. M.P. Valles , M.García, A.Pastor, Study of a torsion spring fracture, Eng. Fail. Anal., 2019, 98, 150–155. Doi : https://doi.org/10.1016/j.engfailanal.
  19. A. Rahbar-Ranji, A. Zarookian, Ultimate strength of stiffened plates with a transverse fracture under uniaxial compression, Ships Offshore Struct., 2015, 10, 4, 416–425. Doi : https://doi.org/10.1080/17445302.2014.942078
  20. Y. Prawoto, M. Ikeda, S.K. Manville, A. Nishikawa, Design and failure modes of automotive suspension springs, Eng. Fail. Anal., 2008, 15, 1155–1174 Doi : https://doi.org /10.1016/j.engfailanal.2007.11.003