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M.S. Bruzóna, M.L. Gandariasa, M. Torrisib, R. Tracinàb
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Abstract

In this paper we consider a class of chemotaxis models with two arbitrary consti-
tutive functions g(u) and f(v). After having performed a complete symmetry group
classification with respect to them the reduced systems are derived. By considering
g(u) of the logistic form wide classes of exact solutions are found.

1 Introduction

The phenomena concerned with the motion of bacteria and other unicellular organisms due
to chemical stimuli (in a chemical substrate) is called chemotaxis. These phenomena are
quite common in biology and depend on the essential characteristic of living organisms to
sense signals in the environment and to adapt their motion consequently. These signals allow
to approach the chemically favorable environments and to avoid the unfavorable ones.

In chemotaxis the chemical signals can come from external sources or they can be se-
creted by the organisms themselves. Chemotaxis can be either positive (chemoattraction)
when cells move to the chemical or negative (chemorepulsion) when cells move away from
the chemical. Keller and Segel in some remarkable papers [1, 2, 3], concerned with studies
about chemotactical features of the slime mold amoebae Dictyostelium discoideum and Es-

cherechia coli, considered a phenomenological model from which the existence and properties

1



of migrating bacterial bands can be deduced. Following [3] the equations of a reduced model
for a population of density u, with a chemoattractant of concentration v, could be written
as

ut = ∇ · (µ(v)∇u− uχ(v)∇v),

vt = Dv∇
2v − k(v)u, (1)

where k(v) is the rate of consumption of the substrate per cell, Dv is the diffusion constant
of the substrate while χ is called the chemotactic sensitivity, it shows how strong the cells
(species) react to the chemical. In general the sign of χ depends on the type of chemotaxis:
in case of chemoattraction its sign is positive, whereas in case of chemorepulsion its sign is
negative. The motility parameter µ takes the place of a diffusion coefficient and, in general,
it may be considered as a function of v.

Hillen and Painter on 2001 [4] modified system (1) as follows

ut = ∇ · (∇u− V (u, v)∇v) ,

vt = Dv∇
2v + h(u, v). (2)

In the first equation they put µ = 1 and rewritten uχ as a more general function V de-
pending on u and v. While, in the second equation, the function describing production
and degradation of the external stimulus has been generalized. In this way the population
density directly modulates its own sensitivity response. In particular in [4] they substituted
the chemotactic cross-diffusion V (u, v)∇v with the following uβ(u)χ(v)∇v to show global
existence of classical solutions.

The same authors in [5] used a probabilistic approach to arrive at the following equations

ut = Du∇
2u−∇ · (uχ(u, v)∇v) + g(u, v)

vt = Dv∇
2v + h(u, v) (3)

that are of the same form originally proposed by Patlak [6], and by Keller and Segel [2], to
whom have been added cell and chemical kinetics of the form g(u, v) and h(u, v) respectively.

In several biologically relevant processes, when the chemical substance is produced by
the individuals of the population, the function h of (3) satisfies the inequality hu > 0. So, as
in the classical Keller-Segel system, it is possible to consider a degradation of v and simplify
the term h(u, v) by the linear expression h(u, v) = h0u − h1v with h0 > 0, h1 > 0 that
without loss of generality we could normalize putting both equal to 1.

In [7] Negreanu and Tello considered a volume filling model with fast diffusion process
for the chemical substance with logistic growth term

ut = ∇2u− c∇ · (u(N − u)∇v) + λu(1− u),

∇2v = v − u, (4)

where c > 0 is a constant referred tho the chemotactic sensitivity, while as in [5] a threshold
value N > 0 is considered. The sign change of the chemotactic cross-diffusion term charac-
terizes the possibility of the system to evolve from positive to negative taxis or viceversa.
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Negreanu and Tello in that paper proved the existence of global bounded classical solu-
tions and analyzed the stability of the constant steady state u = 1, v = 1.

By assuming
V (u, v)∇v := cu∇v

we get the following simplified Keller-Segel system

ut = uxx + cuvxx − cuxvx,

0 = vxx − βv + u, (5)

whose prperties have been studied in several papers see e.g.[8, 9, 10, 11, 12].
In particular in [9] and [10] Lie symmetries have been found and applied for construction

of exact solutions.
Here, taking into account [5, 9, 10], we restrict ourselves to the following set of the

constitutive relations

Du = Dv = 1, V (u, v) = c(N − u), g(u, v) = g(u), h(u; v) = −f(v) + u,

where f = f(v) and g = g(u) are non-negative smooth functions. So we are able to rewrite
(3) as

ut = ∇2u− c(∇ · ((N − u)∇v)) + g(u)

vt = ∇2v − f(v) + u, (6)

that in one space dimension reads:

ut = uxx − c(N − u)vxx + cuxvx + g(u)

vt = vxx − f(v) + u.
(7)

When growth effects in chemotaxis systems are considered to study the large time be-
havior, the growth term g in the first equation is defined by a logistic function and, after
normalization, g has the following expression

g(u) = u(1− u). (8)

In this paper we look for symmetries of system (7) whose knowledge allows to reduce the
system of PDEs into a system of ordinary differential equations (ODEs) and to find exact
solutions.

Lie group methods offer good tools as conservation laws, reductions, exact solutions,
essentially they give a systematic way to analyze differential equations.

The structure of the work is as follows. In Section 2 we look for the Lie symmetry
classification with respect to functions f(u), g(u) of system (7). We also derive,in Section
3 the reductions obtained from some Lie subalgebras admitted. In Section 4, by assuming
the function g(u) of the logistic type [16, 17, 18] together with some suitable specializations
of f(v), we find some exact solutions of system (7). For more general polynomial forms
of f(u) and g(u), in Section 5, solutions of the kink type and soliton type are carried out.
Conclusions are given in Section 6.

3



2 Lie symmetries

The search for solutions via classical Lie symmetries leads to the search for those that are
invariant with respect to the same one parameter Lie groups of invariant transformations
admitted by system (7). By following a well established procedure (for details the interested
reader can see well known monographs e. g. [13, 14, 15]) the first step consists in deter-
mining the infinitesimal components ξ(t, x, u, v), τ(t, x, u, v), η(t, x, u, v) and φ(t, x, u, v). of
transformation generator

v = ξ∂x + τ∂t + η∂u + φ∂v. (9)

Following the usual techniques, from the request invariance of system (7), by applying Lie
infinitesimal criterion, we get a system of equations (determining system) to determine the
infinitesimals components of v.

After a first simplification of this one, we get that

ξ =
1

2
τtx+ ω(t), τ = τ(t),

η = α(x, t)u+ β(x, t, v), φ = δ(x, t)

where τ(t), ω(t), α(t, x), β(x, t, v) and δ(x, t) must satisfy the following equations

βv c+ βv v = 0,

αx c u+ βx c+ 2 βv x = 0,

τt u+ αu− f τt − δ fv − δt + δxx + β = 0,
τt t x

2
+ ωt + c δx + 2αx = 0,

τt t x

2
+ ωt = 0,

c(αN + β) = 0,

α c uN − α c f N + c δxxN − α gu u− c δxx u+ β c u+ βv u− αxx u+

αt u− g τt − β gu + α g − β c f − βv f − βxx + βt = 0.

(10)

A further analysis allows to ascertain that

ξ =
k1 x

2
+ k3, τ = k1t+ k2, η = k1(N − u), φ = γ(t),

with k2, k3 arbitrary constants, while the function γ = γ(t) and the constant k1 are related
to the constitutive functions f = f(v), and g = g(u) by the following conditions

k1 N − f k1 − γt − fv γ = 0, k1 (guN − gu u+ 2 g) = 0. (11)

If f and g are arbitrary functions we obtain

ξ = k3, τ = k2, η = 0, φ = 0, (12)
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and the only symmetries admitted by (7) are defined by the group of space and time trans-
lations,

v1 = ∂x, v2 = ∂t,

and they constitute the principal Lie algebra LP of system (7). Moreover by discussing
the classifying system (11) we get additional extensions of the principal Lie algebra and a
classification with respect to the functions f and g.

The picture of the results is summarized in Table 1.
By considering the invariance generators listed in Table 2 and following the well known

procedures we find the corresponding similarity variables and the structure of the invariant
solutions so that we write the corresponding ODE reduced systems.

i f g vi
3 vi

4

1 arbitrary arbitrary
2 α arbitrary ∂v
3 α v + f0, α 6= 0 arbitrary exp(−α t) ∂v
4 α k (N − u)2 x∂x + 2t∂t + 2(N − u)∂u + 2(N − α) t∂v ∂v

5 N + α exp(β v), k(N − u)2 x∂x + 2t∂t + 2(N − u)∂u −
2

β
∂v

Table 1: Symmetry classification for system (7) with c 6= 0. Here k, α, β, f0 are constitutive
constants. Of course in this table appear only the extensions of LP

i vi z u v

1 λv1 + µv2 µx− λt H(z) F (z)

2 λv1 + µv2 + v2
3 µx− λt H(z) x

λ
+ F (z)

3 λv1 + µv2 + v3
3 µx− λt H(z) F (z)− e−α t

αµ

4 v4
3

x√
t

H(z)
t

+N F (z) + (N − α) t

5 v5
3

x√
t

H(z)
t

+N F (z)− ln t
β

Table 2: Similarity variables and similarity solutions
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i ODE’i

1 H ′ λ− c µ2 F ′′N + µ2H ′′ + c µ2 F ′ H ′ + c µ2 F ′′ H + g = 0
f − F ′ λ−H − µ2 F ′′ = 0.

2 H ′ λ+ c µH′

λ
− c µ2 F ′′ N + µ2 H ′′ + c µ2 F ′H ′ + c µ2 F ′′ H + g = 0,

−F ′ λ−H − µ2 F ′′ + α = 0.

3 H ′ λ− c µ2 F ′′N + µ2H ′′ + c µ2 F ′ H ′ + c µ2 F ′′ H + g = 0,
−F ′ λ−H − µ2 F ′′ + αF + f0 = 0.

4 2H ′′ + 2 c F ′ H ′ + z H ′ + 2 k H2 + 2 c F ′′ H + 2H = 0,
2H + 2F ′′ + z F ′ = 0.

5 2H ′′ + 2 c F ′ H ′ + z H ′ + 2 k H2 + 2 c F ′′ H + 2H = 0,
2 β H + 2 β F ′′ + β z F ′ − 2αβ eβ F + 2 = 0.

Table 3: System of ODEs

3 Reduced Systems

The form of the invariant solutions admitted by system (7) is derived from their invariance
conditions

v[u, v]T = 0 (13)

where T denotes the transposed of the vector row [u, v]. By specializing (13) to the case of
the principal Lie algebra that is for v = λ∂x + µ∂t we get the following PDE system

λux + µut = 0 (14)

λvx + µvt = 0 (15)

from where we derive the invariant solutions

u(t, x) = H(z),

v(t, x) = F (z),
(16)
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with the similarity variable z = µx − λt. Substituting (16) into (7) we obtain the system
ODE’1 of the Table 3 for the search of solution of the traveling wave type

H ′ λ− c µ2 F ′′ N + µ2H ′′ + c µ2 F ′ H ′ + c µ2 F ′′H + g = 0,

f − F ′ λ−H − µ2 F ′′ = 0,
(17)

where, of course, f and g are arbitrary functions.
In the following sections we focuse our attention only on the search for some special cases.
Solutions and analyses of additional cases will be considered in further researches.

4 Exact solutions with g(u) of the logistic form.

4.1 Case 1

Here we consider the ODE system (17) derived by reducing system (7) and specializing the
constitutive functions g(u) and f(v) as:

g(u) = u(1− u), f(v) = v, (18)

that is by assuming the growth term of the first equation to be of logistic type. On the basis
of these specializations the system (17) reads

H ′ λ− c µ2 F ′′N + µ2 H ′′ + c µ2 F ′H ′ + c µ2 F ′′ H +H(1−H) = 0,

F − F ′ λ−H − µ2 F ′′ = 0.
(19)

It is a simple matter to verify that in the case N < 1 an exact solution of the system
(19) has the form

H = 1− b0
(N − 1)

2
eb1z, (20)

F = 1 + b0e
b1z (21)

with b0, b1 6= 0 arbitrary constants and

z = ±x

√

1−N

4b21c
+

1−N − 2c(N + 1)

4b1c
t. (22)

Then for the system (7) we get

u(t, x) = 1− b0
N − 1

2
e
b1

(

±x

√

1−N

4b21c
+

1−N−2c(N+1)
4b1c

t

)

, (23)

v(t, x) = 1 + b0e
b1

(

±x

√

1−N

4b21c
+

1−N−2c(N+1)
4b1c

t

)

. (24)
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Figure 1: The solution u(t, 1) given by (23) with b0 = 1, b1 = 1, c = 1, λ = 1, µ = 1.

In Fig.1 we show the density u(t, 1) given by (23) for different values of N .
Taking into account that with these forms of f and g we fall in the case 3 of Table 1,

we can use the infinitesimal generator v = λv1 + µv2 + v3

3
. Moreover we observe that the

corresponding reduced system is the same of system (19) then, by using the same solution
(20), (21), going back to the original variables for system (7) we get

u(t, x) = 1− b0
N − 1)

2
e
b1

(

±x

√

1−N

4b21c
+

1−N−2c(N+1)
4b1c

t

)

, (25)

v(t, x) = 1 + b0e
b1

(

±x

√

1−N

4b21c
+

1−N−2c(N+1)
4b1c

t

)

−
e−t

√

1−N
4b21c

. (26)

4.2 Case 2.

Here, taking into account [5], [19], we consider g(u) of the following generalized logistic form

g(u) = g0 u(1− u2), (27)

and

f(v) = α = const. (28)

We fall in the case 2 (Table 1), and we use the infinitesimal generator v = λv1 + µv2 + v3

2
.

From where we get the invariant solutions

u(x, t) = H(z),

v(x, t) = F (z) +
x

λ
,

(29)

with the similarity variable z = µx− λt.
The reduced system is written in Table 3 (case 2) and, by setting g0 = 3c

N
it is possible

to verify that a solution is

H(z) = h1e
−λz

2µ2 , (30)

F (z) =
2h2

1µ
2

λ2N
e

−λz

µ2 +
4µ2h1

λ2
e
− λz

2µ2 +
(12cµ2 − 4cN2µ2 − 2cNµ− λ2N)z + 2f0λcNµ2

2cNλµ2
.(31)
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that for the system (7) becomes

u(t, x) = h1e
−λ(µx−λt)

2µ2 (32)

v(t, x) =
2h2

1µ
2

λ2N
e

−λ(µx−λt)

µ2 +
4µ2h1

λ2
e
−λ(µx−λt)

2µ2 +

(12cµ2 − 4cN2µ2 − 2cNµ− λ2N)(µx− λt) + 2f0λcNµ2

2cNλµ2
+

x

λ
. (33)

5 Special travelling wave solutions

We consider solutions for system (17) of the following form

H(z) = b1 tanh
s z + b2,

F (z) = b3 tanh
r z + b4, (34)

where bi, (i = 1, ..4) are constants with b1 6= 0, b3 6= 0, that for system (7) read as

u(t, x) = b1 tanh
s(µx− λt) + b2, (35)

v(t, x) = b3 tanh
r(µx− λt) + b4. (36)

By choosing f and g in some more general polynomial forms it is a simple matter to verify
that the system (17) admits solutions of the form (34).

In the following we consider special solutions of the kink type and soliton type by assum-
ing, respectively, r = s = 1 and r = s = 2.

5.1 Solutions of the kink type

For r = s = 1, specializing f and g in the form

g(u) = j0 + j1u+ j2u
2 + j3u

3 + j4u
4, (37)

f(v) = k3v
3 + k2v

2 + k1v + k0, (38)
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with the following constraints between the constitutive constants

j0 =
(b2 − b1) (b1 + b2) (b

2
1λ+ b21b3 µ

2c+ 2 b2 b1 µ
2 − b22b3 µ

2c− 2 b2 cµ
2N b3)

b31
,

j1 = 2
3 b32b3 µ

2c− 3 b21cµ
2b3 b2 − b21cµ

2N b3 + 3 b22cµ
2N b3 + b31µ

2 − 3 b22b1 µ
2 − b2 b

2
1λ

b31
,

j2 =
6 b2 b1 µ

2 + 4 b21b3 µ
2c+ b21λ− 12 b22b3 µ

2c− 6 b2 cµ
2N b3

b31
,

j3 = −2
µ2 (b1 − 5 cb3 b2 − cN b3)

b31
,

j4 = −3
b3 µ

2c

b31
,

k0 = −
−b33λ− 2 b4 µ

2b23 − b23b2 + 2 b34µ
2 + b24b3 λ+ b4 b3 b1

b23
,

k1 =
−2µ2b23 + b3 b1 + 6 b24µ

2 + 2 b4 b3 λ

b23
,

k2 = −
b3 λ+ 6 b4 µ

2

b23
,

k3 = 2
µ2

b23
,

(39)

we obtain the solution

H(z) = b1 tanh z + b2, (40)

F (z) = b3 tanh z + b4, (41)

and for system (7) we have the kink solution

u(t, x) = b1 tanh(µx− λt) + b2, (42)

v(t, x) = b3 tanh(µx− λt) + b4. (43)

In Fig.2 we show the density u given by (42) for different values of x.

5.2 Solutions of the soliton type

For r = s = 2, specializing f and g in the form

g(u) = g0 + g1u+ g2u
2 + g3u

3 + g4

(

u

b1
−

b2

b1

)
3
2

+ g5

(

u

b1
−

b2

b1

)
1
2

, (44)

f(v) = c0 + c1v + c2v
2 + c3

(

v

b3
−

b4

b3

)
3
2

+ c4

(

v

b3
−

b4

b3

)
1
2

, (45)
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Figure 2: The kink solution u given by (42) with b1 = 1, b2 = 2, λ = 1, µ = 1.

with

g0 =
2 (b2 + b1)µ

2
(

3b2b3cN + b1b3cN + 2b2
2b3c+ 2b1b2b3c− 3b1b2 − b1

2
)

b1
2 ,

g1 = −
2µ2

(

6b2b3cN + 4b1b3cN + 9b2
2b3c+ 12b1b2b3c+ 3b1

2b3c− 6b1b2 − 4b1
2
)

b1
2 ,

g2 =
2µ2 (3b3cN + 12b2b3c+ 8b1b3c− 3b1)

b1
2 ,

g3 = −
10b3cµ

2

b1
2 ,

g4 = 2λb1,
g5 = −2λb1,

c0 =

(

(6b3 + 12) b4
2 +

(

8b3
2 + 8b3

)

b4 + 2b3
3
)

µ2 − b1b4 + b2b3
2

b3
2 ,

c1 = −
12b4µ

2

b3
− 8µ2 +

b1

b3
,

c2 =
6µ2

b3
,

c3 = −2λb3,

(46)

we obtain a solution

H(z) = b1 tanh
2 z + b2, (47)

F (z) = b3 tanh
2 z + b4 (48)

and for the system (7) we have the soliton solution

u(t, x) = b1 tanh
2(µx− λt) + b2, (49)

v(t, x) = b3 tanh
2(µx− λt) + b4. (50)

In Fig.3 we show the density u given by (49) for different values of x.
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Figure 3: The solution u(t, x) given by (49) with b1 = −1, b2 = 0, λ = 1, µ = 1.

6 Conclusions

In this short paper a wide class of generalized chemotaxis systems, characterized by suit-
able constitutive relations, has been considered. In the growth term of the first equa-
tion an arbitrary function g(u) appears while in the second equation assuming function
h(u, v) = −f(v)+u we introduce an arbitrary positive function f(v). The complete symme-
try classification has been performed with respect to the arbitrary functions g(u) and f(v).
Once obtained reduced systems we focuse our attention in forms of g(u) of the logistic type.
Wide classes of solutions have been derived. Finally, by choosing g(u) and f(v) of a more
general polynomial form, solutions of the kink type and of the soliton type are shown.
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