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Abstract
First, we study a new tip of unit speed associated curves in the E3 like a

normal-direction curve and normal-donor curve. Then we achieve qualifica-
tion for these curves. Moreover, we confer applications of normal-direction to
some special curves such as helix, slant helix, plane curve or normal-direction
(ND)-normal curves in E3. And, we show that slant helices and rectifying
curves might be assemble by using normal-direction curves.
MSC: 53A04.
Key words: Incorporated curve; normal-direction curve; normal-donor curve.
1. Introduction

In the curve theory of Euclidean space, the momentous question is achieve
a characterization in order to a regular curve. The specification may be
dedicated for a single curve or for a curve pair. Helix, slant helix, plane
curve, spherical curve, etc. are well-known instance of single special curves
[1,9,10,13,18] and these curves, exclusively the helices, are used in many ap-
plications [2,7,8,15]. Additionally, special curves can be defined by careful
Frenet planes. Providing the position vector of a curve always lies on its rec-
tifying, osculating or normal planes, then the curve is called rectifying curve,
osculating curve or normal curve, seriatim [4]. Exclusively, therein obtain a
basic correlation among rectifying curves and Darboux vectors, which trick
some momentous parts in mechanics, kinematics as well as in differential
geometry in describing the curves of constant motion [5,12].

Besides, special curve pairs are characterized by some relationships be-
tween their Frenet vectors or curvatures. Involute-evolute curves, Bertrand
curves, Mannheim curves are admitted sample of curve pairs and studious
by some mathematicians [3,11-13,16,17].

Hereabout, a new curve pair in the Euclidean 3-space E3 has been defined
by Choi and Kim [6]. They have considered an integral curve γ of a unit
vector field X defined in the Frenet basis of a Frenet curve α and they have
given the definitions and characterizations of principal-directional curve and
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principal-donor curve in E3.They have also given some applications of these
curves to some special curves.

In the current paper, we consider a new type of associated curve and
define a new curve pair such as normal-direction curve and normal-donor
curve in E3. We obtain some characterizations for these curves and show
that normal-direction curve is an evolute of normal-donor curve. Moreover,
we give some applications of normal-direction curve to some special curves
such as helix, slant helix or plane curve.
2. Preliminaries

This section includes a brief summary of space curves and definitions of
general helix and slant helix in the Euclidean 3-space E3.

A unit speed curve α : I → E3 is called a general helix if there is a
constant vector u, so that 〈T, u〉 = cos θ is constant along the curve, where
θ 6= π/2 and T (s) = α′(s) is unit tangent vector of α at s. The curvature
(or first curvature) of α is defined by κ(s) = ‖α′′(s)‖. Then, the curve α
is called Frenet curve, if κ(s) 6= 0, and the unit principal normal vector
N(s) of the curve α at s is given by α′′(s) = κ(s)N(s). The unit vector
B(s) = T (s) × N(s) is called the unit binormal vector of α at s. Then
{T,N,B} is called the Frenet frame of α. For the derivatives of the Frenet
frame, the following Frenet-Serret formulae hold:





T ′

N ′

B′



 =





0 κ 0
−κ 0 τ
0 −τ 0









T
N
B



 (1)

where τ(s) is the torsion (or second curvature) of α at s. It is well-known
that the curve α is a general helix if and only if τ

κ
(s) = constant [17]. If

both κ(s) 6= 0 and τ(s) are constants, we call α as a circular helix. A curve
α with κ(s) 6= 0 is called a slant helix if the principal normal lines of α
make a constant angle with a fixed direction. Also, a slant helix α in E3 is
characterized by the differential equation of its curvature κ and its torsion τ
given by

κ2

(κ2 + τ 2)3/2

(τ

κ

)′

= constant.

(See [11]).
Now, we give the definitions of some associated curves defined by Choi

and Kim [6]. Let I ⊂ R be an open interval. For a Frenet curve φ : I → E3,
consider a vector field X given by

χ(s) = ϑ(s)T(s)+ υ(s)N(s)+ ω(s)B(s), (2)
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where ϑ , υ and ω are arbitrary differentiable functions of s which is the arc
length parameter of φ. Let

ϑ2(s) + υ2(s) + ω2(s) = 1, (3)

holds. Then the definitions of χ-direction curve and χ-donor curve in E3 are
given as follows.
Definition 2.1. ([6]) Let φ be a Frenet curve in Euclidean 3-space E3 and
χ be a unit vector field satisfying the equations (2) and (3). The integral
curve δ : I → E3 of χ is called an χ-direction curve of φ. The curve φ whose
χ-direction curve is δ is called the φ-donor curve of δ in E3.
Definition 2.2. ([6]) An integral curve of principal normal vector N(s)
(resp. binormal vector B(s)) of φ in (2) is called the principal-direction
curve (resp. binormal-direction curve) of φ in E3.
Remark 2.1. ([6]) A principal-direction (resp. the binormal-direction)
curve is an integral curve of φ(s) with ϑ(s) = ω(s) = 0, υ(s) = 1 (resp.
ϑ(s) = υ(s) = 0, ω(s) = 1) for all s in (2).
3. Normal-direction curve and normal-donor curve in E3

In this section, we will give definitions of normal-direction curve and nor-
mal donor curve in E3. We obtain some theorems and results characterizing
these curves. First, we give the following definition.
Definition 3.1. Let α be a Frenet curve in E3 and X be a unit vector field
lying on the normal plane of α and defined by

X(s) = v(s)N(s) + w(s)B(s), v(s) 6= 0, w(s) 6= 0, (4)

and satisfying that the vectors X ′(s) and T (s) are linearly dependent. The
integral curve γ : I → E3 of X(s) is called a normal-direction curve of α.
The curve α whose normal -direction curve is γ is called the normal-donor
curve in E3.

The Frenet frame is a rotation-minimizing with respect to the principal
normal N [9]. If we consider a new frame given by {T,X,M} where M =
T × X , we have that this new frame is rotation-minimizing with respect to
T , i.e., the unit vector X belongs to a rotation-minimizing frame.

Since, X(s) is a unit vector and γ : I → E3 is an integral curve of X(s),
without loss of generality we can take s as the arc length parameter of γ and
we can give the following characterizations in the view of these information.
Theorem 3.1. Let α : I → E3 be a Frenet curve and an integral curve
of X(s) = v(s)N(s) + w(s)B(s) be the curve γ : I → E3. Then, γ is a
normal-direction curve of α if and only if the following equalities hold,

v(s) = sin

(
∫

τds

)

6= 0, w(s) = cos

(
∫

τds

)

6= 0. (5)
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Proof: Since γ is a normal-direction curve of α, from Definition 3.1, we have

X(s) = v(s)N(s) + w(s)B(s), (6)

and
v2(s) + w2(s) = 1. (7)

Differentiating (6) with respect to s and by using the Frenet formulas, it
follows

X ′(s) = −vκT + (v′ − wτ)N + (w′ + vτ)B. (8)

Since we have that X ′ and T are linearly dependent. Then from (8) we can
write







−vκ 6= 0,
v′ − wτ = 0,
w′ + vτ = 0.

(9)

The solutions of second and third differential equations are

v(s) = sin

(
∫

τds

)

6= 0, w(s) = cos

(
∫

τds

)

6= 0,

respectively, which completes the proof.
Theorem 3.2. Let α : I → E3 be a Frenet curve. If γ is the normal-direction
curve of α, then γ is a space evolute of α.
Proof: Since γ is an integral curve of X , we have γ′ = X . Denote the Frenet
frame of γ by
{

T̄ , N̄ , B̄
}

. Differentiating γ′ = X with respect to s and by using Frenet
formulas we get

X ′ = T̄ ′ = κ̄N̄ . (10)

Furthermore, we know that X ′ and T are linearly dependent. Then from
(10) we get N̄ and T are linearly dependent, i.e, γ is a space evolute of α.
Theorem 3.3. Let α : I → E3 be a Frenet curve. If γ is the normal
direction curve of α, then the curvature κ̄ and the torsion τ̄ of γ are given
as follows,

κ̄ = κ

∣

∣

∣

∣

sin

(
∫

τds

)
∣

∣

∣

∣

, τ̄ = κ cos

(
∫

τds

)

. (11)

Proof: From (8), (9) and (10), we have

κ̄N̄ = −vκT. (12)

By considering (12) and (5) we obtain

κ̄N̄ = −κ sin

(
∫

τds

)

T, (13)
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which gives us

κ̄ = κ

∣

∣

∣

∣

sin

(
∫

τds

)
∣

∣

∣

∣

. (14)

Moreover, from (13) and (14), we can write

N̄ = T. (15)

Then, we have

B̄ = T̄ × N̄ = cos

(
∫

τds

)

N − sin

(
∫

τds

)

B. (16)

Differentiating (16) with respect to s gives

B̄′ = −κ cos

(
∫

τds

)

T. (17)

Since τ̄ = −
〈

B̄′, N̄
〉

= −
〈

B̄′, T
〉

, from (17) it follows

τ̄ = κ cos

(
∫

τds

)

, (18)

that finishes the proof.
Corollary 3.1. Letγ be a normal-direction curve of the curve α. Then the
relationships between the Frenet frames of curves are given as follows,

X = T̄ = sin

(
∫

τds

)

N+cos

(
∫

τds

)

B, N̄ = T, B̄ = cos

(
∫

τds

)

N−sin

(
∫

τds

)

B.

Proof: The proof is clear from Theorem 3.3.
Theorem 3.4. Let γ be a normal-direction curve of α with curvature κ̄ and
torsion τ̄ . Then curvature κ and torsion τ of α are given by

κ =
√
κ̄2 + τ̄ 2, τ =

τ̄ 2

κ̄2 + τ̄ 2

( κ̄

τ̄

)

′

.

Proof: From (14) and (18), we easily get

κ =
√
κ̄2 + τ̄ 2. (19)

Substituting (19) into (14) and (18), it follows

∣

∣

∣

∣

sin

(
∫

τds

)
∣

∣

∣

∣

=
κ̄√

κ̄2 + τ̄ 2
, (20)
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cos

(
∫

τds

)

=
τ̄√

κ̄2 + τ̄ 2
, (21)

respectively. Differentiating (20) with respect to s, we have

τ cos

(
∫

τds

)

=
τ̄(κ̄′τ̄ − κ̄ τ̄ ′)

(κ̄2 + τ̄ 2)3/2
. (22)

From (21) and (22), it follows

τ =
κ̄′ τ̄ − κ̄ τ̄ ′

κ̄2 + τ̄ 2
,

or equivalently,

τ =
τ̄ 2

κ̄2 + τ̄ 2

( κ̄

τ̄

)

′

. (23)

Theorem 3.4 leads us to give the following corollary whose proof is clear.
Corollary 3.2. Let γ with the curvature κ̄ and the torsion τ̄ be a normal-
direction curve of α. Then

τ

κ
= − κ̄2

(κ̄2 + τ̄ 2)3/2

( τ̄

κ̄

)

′

, (24)

is satisfied, where κ and τ are curvature and torsion of α, respectively.
4. Applications of normal-direction curves

In this section, we focus on relations between normal-direction curves and
some special curves such as general helix, slant helix, plane curve or rectifying
curve in E3.
4.1. General helices, slant helices and plane curves

Considering Corollary 3.2, we have the following theorems which gives a
way to construct the examples of slant helices by using general helices.
Theorem 4.1. Let α : I → E3 be a Frenet curve in E3and γ be a normal-
direction curve of α. Then the followings are equivalent,
i) A Frenet curve α is a general helix in E3.
ii) α is a normal-donor curve of a slant helix.
iii) A normal-direction curve of α is a slant helix.
Theorem 4.2. Let α : I → E3 be a Frenet curve in E3and γ be a normal-
direction curve of α. Then the followings are equivalent,
i) A Frenet curve α is a plane curve in E3.
ii) α is a normal-donor curve of a general helix.

iii) A normal-direction curve of α is a general helix.
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Example 4.1. Let consider the general helix given by the parametriza-

tion α(s) =
(

cos s√
2
, sin s√

2
, s√

2

)

in E3 (Fig. 1). The Frenet vectors and

curvatures of α are obtained as follows,

T (s) =

(

− 1√
2
sin

s√
2
,

1√
2
cos

s√
2
,

1√
2

)

,

N(s) =

(

− cos
s√
2
, sin

s√
2
, 0

)

,

B(s) =

(

1√
2
sin

s√
2
, − 1√

2
cos

s√
2
,

1√
2

)

,

κ = τ =
1

2
.

Then we have X(s) = (x1(s), x2(s), x3(s)) where

x1(s) = − sin
(

s
2
+ c

)

cos s√
2
+ 1√

2
cos

(

s
2
+ c

)

sin s√
2
,

x2(s) = sin
(

s
2
+ c

)

sin s√
2
− 1√

2
cos

(

s
2
+ c

)

cos s√
2
,

x3(s) =
1√
2
cos

(

s
2
+ c

)

.

and c is integration constant. Now, we can construct a slant helix γ which
is also a normal-direction curve of α (Fig. 2):

γ =

∫ s

0

γ′(s)ds =

∫ s

0

X(s)ds = (γ1(s), γ2(s), γ3(s)) ,

where

γ1(s) =
∫ s

0

[

− sin
(

s
2
+ c

)

cos s√
2
+ 1√

2
cos

(

s
2
+ c

)

sin s√
2

]

ds,

γ2(s) =
∫ s

0

[

sin
(

s
2
+ c

)

sin s√
2
− 1√

2
cos

(

s
2
+ c

)

cos s√
2

]

ds,

γ3(s) =
∫ s

0
1√
2
cos

(

s
2
+ c

)

ds.
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Fig. 1. General helix α. Fig. 2. Slant helix γ constructed by α.
4.2. ND-normal Curves

In this subsection we define normal-direction (ND)-normal curves in E3

and give the relationships between normal-direction curves and ND-normal
curves.

A space curve whose position vector always lies in its normal plane is
called normal curve [5]. Moreover, if the Frenet frame and curvatures of a
space curve are given by {T,N,B} and κ, τ , respectively, then the vector
D̃(s) = τ

κ
(s)T (s) +B(s) is called modified Darboux vector of the curve [11].

Let now α be a Frenet curve with Frenet frame {T,N,B} and γ a normal-
direction curve of α. The curve γ is called normal-direction normal curve (or
ND-normal curve) of α, if the position vector of γ always lies on the normal
plane of its normal-donor curve α.

The definition of ND-normal curve allows us to write the following equal-
ity,

γ(s) = m(s)N(s) + n(s)B(s), (25)

where m(s), n(s) are non-zero differentiable functions of s. Since γ is
normal-direction curve of α, from Corollary 3.1, we have

{

N = sin
(∫

τds
)

T̄ + cos
(∫

τds
)

B̄,
B = cos

(∫

τds
)

T̄ − sin
(∫

τds
)

B̄.
(26)

Substituting (26) in (25) gives

γ(s) =

[

m sin

(
∫

τds

)

+ n cos

(
∫

τds

)]

T̄+

[

m cos

(
∫

τds

)

− n sin

(
∫

τds

)]

B̄.

(27)
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Writing
{

ρ(s) = m sin
(∫

τds
)

+ n cos
(∫

τds
)

,
σ(s) = m cos

(∫

τds
)

− n sin
(∫

τds
)

,
(28)

in (27) and differentiating the obtained equality we obtain

T̄ = ρ′T̄ + (ρκ̄− στ̄)N̄ + σ′B̄. (29)

Then we have

σ = a = constant, ρ = s + b =
τ̄

κ̄
a, (30)

where a, b are non-zero integration constants. From (30), it follows that

γ(s) = a
( τ̄

κ̄
T̄ + B̄

)

(s) = a ˜̄D(s), (31)

where ˜̄D is the modified Darboux vector of γ.
Now we can give the followings which characterize ND-normal curves.

Theorem 4.3. Let α : I → E3 be a Frenet curve in E3and γ be a normal-
direction curve of α. If γ is a ND-normal curve in E3, then we have the
followings,
i) γ is a rectifying curve in E3 whose curvatures satisfy τ̄

κ̄
= s+b

a
where a, b

are non-zero constants .
ii) The position vector and modified Darboux vector ˜̄D of γ are linearly de-
pendent.

Theorem 4.3 gives a way to construct a rectifying curve by using normal-
donor curve as follows:
Corollary 4.1. Let α : I → E3 be a Frenet curve in E3and γ a ND-normal
curve of α in E3. Then the position vector of γ is obtained as follows,

γ(s) =

[

(s+ b) sin

(
∫

τds

)

+ a cos

(
∫

τds

)]

N(s)+

[

(s+ b) cos

(
∫

τds

)

− a sin

(
∫

τds

)]

B

(32)
where a, b are non-zero integration constants.
Proof. The proof is clear from (25), (28) and (30).
Example 4.2. Let consider the general helix given by the parametrization

α(s) =
(√

1 + s2, s, ln(s+
√
1 + s2)

)

,

and drawn in Fig. 3. Frenet vectors and curvatures of the curve are

T (s) =
1√

2
√
1 + s2

(

s,
√
1 + s2, 1

)

,
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N(s) =
1√

1 + s2
(1, 0,−s) ,

B(s) =
1√

2
√
1 + s2

(

−s,
√
1 + s2,−1

)

,

κ = τ =
1 + s2

2
,

respectively. Then from Corollary 4.1, a ND-normal curve γ is obtained as
follows,

γ(s) =
(

1√
1+s2

[

(s+ b) sin
(

s
2
+ s3

6
+ c

)

+ a cos
(

s
2
+ s3

6
+ c

)]

− s√
2(1+s2)

[

(s+ b) cos
(

s
2
+ s3

6
+ c

)

− a sin
(

s
2
+ s3

6
+ c

)]

,

− 1√
2

[

(s+ b) cos
(

s
2
+ s3

6
+ c

)

− a sin
(

s
2
+ s3

6
+ c

)]

,

− s√
1+s2

[

(s+ b) sin
(

s
2
+ s3

6
+ c

)

+ a cos
(

s
2
+ s3

6
+ c

)]

− 1√
2(1+s2)

[

(s+ b) cos
(

s
2
+ s3

6
+ c

)

− a sin
(

s
2
+ s3

6
+ c

)]

)

which is also a rectifying curve in the view of Theroem 4.3 and drawn in
Figures 4,5,6 by choosing a = b = 1, c = 0.

Fig. 3. General helix α. Fig 4. ND-normal curve γ for −π ≤ s ≤ π.
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Fig 5. ND-normal curve γ for −3π
2

≤ s ≤ 3π
2
. Fig 6. ND-normal curve γ

for −2π ≤ s ≤ 2π.
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