REFERENCES
Ahmed, W., Palmier, C., Atteia, O., Class, H. 2019. Multiphase
Simulation Model for Validating the Estimate of Light Non-Aqueous Phase
Liquids (LNAPL) Transmissivity Using Bail-Down Test. Arabian
Journal for Science and Engineering , 44 (6), 6099-6107.
American Society for Testing and Materials. 2002. Standard Test Method
for Density and Relative Density of Liquids by Digital Density Meter -ASTM D 4052 . West Conshohocken, PA.
American Society for Testing and Materials. 2004. Standard Test Method
for Interfacial Tension of Oil Against Water by the Ring Method -ASTM D 971 . West Conshohocken, PA.
American Society for Testing and Materials. 2008. Standard Test Method
for Kinematic Viscosity of Transparent and Opaque Liquids (and
Calculation of Dynamic Viscosity)- ASTM D 445 . West Conshohocken.
Aral, M. M., Liao, B. 2002. Effect of groundwater table fluctuations on
LNAPL thickness in monitoring wells. Environmental
Geology , 42 (2-3), 151-161.
Baciocchi, R., Berardi, S., Verginelli, I. 2010. Human health risk
assessment: Models for predicting the effective exposure duration of
on-site receptors exposed to contaminated groundwater. Journal of
hazardous materials , 181 (1-3), 226-233.
Bai, G., Brusseau, M. L., & Miller, R. M. 1997. Biosurfactant-enhanced
removal of residual hydrocarbon from soil. Journal of Contaminant
Hydrology , 25 (1-2), 157-170.
Beckett, G. D., Huntley, D. 2015. Lnapl transmissivity: a twisted
parameter. Groundwater Monitoring & Remediation , 35 (3),
20-24. Doi: https://doi.org/10.1111/gwmr.12116
Beyke, G., Fleming, D. 2005. In situ thermal remediation of DNAPL and
LNAPL using electrical resistance heating. Remediation Journal:
The Journal of Environmental Cleanup Costs, Technologies &
Techniques , 15 (3), 5-22.
Borden, R. C., and Kao, C. M., 1992. Evaluation of groundwater
extraction for remediation of petroleum-contaminated aquifers. Water
Environment Research, 64(1), 28-36. doi: dx.doi.org/10.2175/WER.64.1.5
Bordignon. R.; Teramoto, E.H.; Chang, K.H. 2015. Caracterização
isotópica de CO2 dissolvido em águas subterrâneas em
área contaminada por querosene de aviação, município de Paulínia, SP.
Águas Subterrâneas. 29(3): 301-314. doi:
dx.doi.org/10.14295/ras.v29i3.27979
Charbeneau, R. J., & Chiang, C. Y. 1995. Estimation of free‐hydrocarbon
recovery from dual‐pump systems. Groundwater , 33 (4),
627-634.
Charbeneau, R. J., Johns, R. T., Lake, L. W., McAdams, M. J. 2000.
Free‐Product Recovery of Petroleum Hydrocarbon
Liquids. Groundwater Monitoring & Remediation , 20 (3),
147-158.
Chatzis, I., Dullien, F. A. L., 1983. Dynamic immiscible displacement
mechanisms in pore doublets: heory versus experiment. Journal Colloid
Interface Science, 91 (1), 199-222. doi:10.1016/0021-9797(83)90326-0
Chesnaux, R. (2008). Analytical closed-form solutions for assessing
pumping cycles, times, and costs required for NAPL
remediation. Environmental Geology , 55 (7), 1381-1388. Doi:
https://doi.org/10.1007/s00254-007-1088-9
Coelho, C. A., Cardoso, D. H., & Firpo, M. A. 2016. Precipitation
diagnostics of an exceptionally dry event in São Paulo,
Brazil. Theoretical and Applied Climatology , 125 (3-4),
769-784.
Dekker, T. J., & Abriola, L. M. 2000. The influence of field-scale
heterogeneity on the surfactant-enhanced remediation of entrapped
nonaqueous phase liquids. Journal of Contaminant
Hydrology , 42 (2-4), 219-251.
Dudley, B. 2018. BP statistical review of world energy. BP
Statistical Review, London, UK, accessed Aug , 6 , 2018.
Eichert, J., McAlexander, B., Lyverse, M., Michalski, P., & Sihota, N.
2017. Spatial and temporal variation in natural source zone depletion
rates at a former oil refinery. Vadose Zone
Journal , 16 (10).
Falciglia, P. P., Giustra, M. G., & Vagliasindi, F. G. A. 2011.
Low-temperature thermal desorption of diesel polluted soil: influence of
temperature and soil texture on contaminant removal
kinetics. Journal of hazardous materials , 185 (1), 392-400.
Farr, A. M., Houghtalen, R. J., and McWhorter, D. B., 1990. Volume
estimation of light nonaqueous phase liquids in porous media.Groundwater , 28(1), 48-56. doi:
10.1111/j.1745-6584.1990.tb02228.x
Garg, S., Newell, C. J., Kulkarni, P. R., King, D. C., Adamson, D. T.,
Renno, M. I., & Sale, T. 2017. Overview of natural source zone
depletion: processes, controlling factors, and composition
change. Groundwater Monitoring & Remediation , 37 (3),
62-81.
Gatsios, E., García-Rincón, J., Rayner, J. L., McLaughlan, R. G., &
Davis, G. B. 2018. LNAPL transmissivity as a remediation metric in
complex sites under water table fluctuations. Journal of
Environmental Management , 215 , 40-48.
Ghosh, J., & Tick, G. R. 2013. A pore scale investigation of crude oil
distribution and removal from homogeneous porous media during
surfactant-induced remediation. Journal of Contaminant
Hydrology , 155 , 20-30.
Hegele, P. R., & Mumford, K. G. 2014. Gas production and transport
during bench-scale electrical resistance heating of water and
trichloroethene. Journal of Contaminant Hydrology , 165 ,
24-36.
Harwell, J. H., Sabatini, D. A., & Knox, R. C. 1999. Surfactants for
ground water remediation. Colloids and Surfaces A: Physicochemical
and Engineering Aspects , 151 (1-2), 255-268.
Hernández-Espriú, A., Martínez-Santos, P., Sánchez-León, E., & Marín,
L. E. 2012. Free-product plume distribution and recovery modeling
prediction in a diesel-contaminated volcanic aquifer. Physics and
Chemistry of the Earth, Parts A/B/C , 37 , 43-51.
Huntley, D., Hawk, R. N., and Corley, H. P., 1994. Nonaqueous Phase
Hydrocarbon in a Fine‐Grained Sandstone: 1. Comparison Between Measured
and Predicted Saturations and Mobility. Groundwater , 32(4),
626-634. doi: 10.1111/j.1745-6584.1994.tb00898.x
Huntley, D. 2000. Analytic determination of hydrocarbon transmissivity
from baildown tests. Groundwater , 38 (1), 46-52.
Huntley, D., Beckett, G. D. 2002. Persistence of LNAPL sources:
relationship between risk reduction and LNAPL recovery. Journal of
Contaminant Hydrology , 59 (1-2), 3-26. Doi:
https://doi.org/10.1016/S0169-7722(02)00073-6
ITRC. 2009. Evaluating Natural Source Zone Depletion at Sites with
LNAPL. LNAPL‐1 . Washington, DC: Interstate Technology and Regulatory
Council.
Jawitz, J. W., Annable, M. D., Rao, P. S. C., & Rhue, R. D. 1998. Field
implementation of a Winsor type I surfactant/alcohol mixture for in situ
solubilization of a complex LNAPL as a single-phase
microemulsion. Environmental Science & Technology , 32 (4),
523-530.
Jawitz, J. W., Dai, D., Rao, P. S. C., Annable, M. D., & Rhue, R. D.
2003. Rate-limited solubilization of multicomponent nonaqueous-phase
liquids by flushing with cosolvents and surfactants: modeling data from
laboratory and field experiments. Environmental science &
technology , 37 (9), 1983-1991.
Jeong, J., and Charbeneau, R. J., 2014. An analytical model for
predicting LNAPL distribution and recovery from multi-layered soils.Journal of Contaminant Hydrology , 156, 52-61. doi:
10.1016/j.jconhyd.2013.09.008
Johnson, P. C., Kemblowski, M. W., Colthart, J. D. 1990. Quantitative
analysis for the cleanup of hydrocarbon‐contaminated soils by in‐situ
soil venting. Groundwater , 28 (3), 413-429.
Johnson, P., Lundegard, P., & Liu, Z. 2006. Source zone natural
attenuation at petroleum hydrocarbon spill sites—I: Site‐specific
assessment approach. Groundwater Monitoring &
Remediation , 26 (4), 82-92.
Johnston, C. D., & Adamski, M. 2005, August. Relationship between
initial and residual LNAPL saturation for different soil types.
In Proceedings of the 2005 Petroleum Hydrocarbons and Organic
Chemicals in Groundwater®: Prevention, Assessment, and
Remediation Conference (pp. 29-42). Assessment
approach. Groundwater Monitoring & Remediation , 26 (4),
82-92.
Kaluarachchi, J. J. 1996. Effect of subsurface heterogeneity on
free-product recovery from unconfined aquifers. Journal of
contaminant hydrology , 22 (1-2), 19-37.
Kemblowski, M. W., and Chiang, C. Y., 1990. Hydrocarbon thickness
fluctuations in monitoring wells. Groundwater , 28(2), 244-252.
doi: 10.1111/j.1745-6584.1990.tb02252.x
Khalladi, R., Benhabiles, O., Bentahar, F., & Moulai-Mostefa, N. 2009.
Surfactant remediation of diesel fuel polluted soil. Journal of
Hazardous Materials , 164 (2-3), 1179-1184.
Kuo, T., Chen, Y., Lin, C., & Chen, J. 2016. Oil recovery from a
fluctuating water table. Petroleum Science and
Technology , 34 (17-18), 1562-1567.
Kulkarni, P. R., McHugh, T. E., Newell, C. J., & Garg, S. 2015.
Evaluation of Source-Zone Attenuation at LUFT Sites with Mobile
LNAPL. Soil and Sediment Contamination: An International
Journal , 24 (8), 917-929.
Lari, K. S., Rayner, J. L., & Davis, G. B. 2018. Towards characterizing
LNAPL remediation endpoints. Journal of Environmental
Management , 224 , 97-105.
Lari, K. S., Davis, G. B., Rayner, J. L., Bastow, T. P., & Puzon, G. J.
2019. Natural source zone depletion of LNAPL: A critical review
supporting modelling approaches. Water research .
Lee, D. H., Cody, R. D., & Hoyle, E. L. 2001. Laboratory evaluation of
the use of surfactants for ground water remediation and the potential
for recycling them. Groundwater Monitoring &
Remediation , 21 (1), 49-57.
Lenhard, R. J., and Parker, J. C., 1990. Estimation of free hydrocarbon
volume from fluid levels in monitoring wells. Ground Water, 28(1),
57-67. doi: 10.1111/j.1745-6584.1990.tb02229.x
Lenhard, R. J., Sookhak Lari, K., Rayner, J. L., & Davis, G. B. 2018.
Evaluating an analytical model to predict subsurface LNAPL distributions
and transmissivity from current and historic fluid levels in groundwater
wells: comparing results to numerical simulations. Groundwater
Monitoring & Remediation , 38 (1), 75-84.
Li, J. B., Huang, G. H., Chakma, A., & Zeng, G. M. 2003. Numerical
simulation of dual-phase vacuum extraction to remove nonaqueous phase
liquids in subsurface. Practice Periodical of Hazardous, Toxic,
and Radioactive Waste Management , 7 (2), 106-113.
MacDonald, J. A., Kavanaugh, M. C. 1994. Restoring contaminated
groundwater: an achievable goal?. Environmental Science &
Technology , 28 (8), 362A-368A. Doi:
https://doi.org/10.1021/es00057a001
McCoy, K., Zimbron, J., Sale, T., & Lyverse, M. 2015. Measurement of
natural losses of LNAPL using CO2
traps. Groundwater , 53 (4), 658-667.
McCray, J. E., Tick, G. R., Jawitz, J. W., Gierke, J. S., Brusseau, M.
L., Falta, R. W., … & Wood, A. L. 2011. Remediation of NAPL source
zones: Lessons learned from field studies at Hill and Dover
AFB. Groundwater , 49 (5), 727-744.
McGuire, T. M., McDade, J. M., & Newell, C. J. 2006. Performance of
DNAPL source depletion technologies at 59 chlorinated solvent‐impacted
sites. Groundwater Monitoring & Remediation , 26 (1),
73-84.
Mercer, J. W. 1990. Basics of pump-and-treat ground-water
remediation technology . Robert S. Kerr Environmental Research
Laboratory, Office of Research and Development, US Environmental
Protection Agency.
Newell, C. J., & Adamson, D. T. 2005. Planning‐level source decay
models to evaluate impact of source depletion on remediation time
frame. Remediation Journal: The Journal of Environmental Cleanup
Costs, Technologies & Techniques , 15 (4), 27-47.
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. 2019. Remediation
of soil and water contaminated with petroleum hydrocarbon: A
review. Environmental Technology & Innovation . Doi:
https://doi.org/10.1016/j.eti.2019.100526
Palmier, C., Dodt, M., Atteia, O. 2016. Comparison of Oil Transmissivity
Methods Using Bail‐Down Test Data. Groundwater Monitoring &
Remediation , 36 (3), 73-83.
Peters, C. A., Knightes, C. D., & Brown, D. G. 1999. Long-term
composition dynamics of PAH-containing NAPLs and implications for risk
assessment. Environmental Science & Technology , 33 (24),
4499-4507.
Ramsburg, C. A., Pennell, K. D., Abriola, L. M., Daniels, G., Drummond,
C. D., Gamache, M., … & Yavaraski, T. P. (2005). Pilot-scale
demonstration of surfactant-enhanced PCE solubilization at the Bachman
Road site. 2. System operation and evaluation. Environmental
science & technology , 39 (6), 1791-1801.
Saenton, S., Illangasekare, T. H., Soga, K., & Saba, T. A. 2002.
Effects of source zone heterogeneity on surfactant-enhanced NAPL
dissolution and resulting remediation end-points. Journal of
Contaminant Hydrology , 59 (1-2), 27-44.
Saenton, S., & Illangasekare, T. H. (2013). Effects of incomplete
remediation of NAPL-contaminated aquifers: experimental and numerical
modeling investigations. Applied Water Science , 3 (2),
401-414.
Sleep, B. E., Sehayek, L., & Chien, C. C. 2000. A modeling and
experimental study of light nonaqueous phase liquid (LNAPL) accumulation
in wells and LNAPL recovery from wells. Water Resources
Research , 36 (12), 3535-3545.
Steffy, D. A., Johnston, C. D., & Barry, D. A. 1998. Numerical
simulations and long-column tests of LNAPL displacement and trapping by
a fluctuating water table. Journal of Soil
contamination , 7 (3), 325-356.
St. Germain, R., and T. Martin, 2008. North American Environmental Field
Conference & Exposition - LIF Workshop Slides, Tampa, FL.
https://clu-in.org/download/char/lif/Dakota-Technologies-LIF-Workshop.pdf
Steffy, D. A., Johnston, C., & Barry, D. A. 1995. A field study of the
vertical immiscible displacement of LNAPL associated with a fluctuating
water table. In Groundwater Quality: Remediation and
Protection (No. ECOL-CONF-1995-001). International Association of
Hydrological Sciences.
Steffy, D. A., Johnston, C. D., & Barry. D. A. 1998. Numerical
simulations and long-column tests of LNAPL displacement and trapping by
a fluctuating water table. Journal of Soil
contamination . 7 (3). 325-356.
Suthersan, S., Killenbeck, E., Potter, S., Divine, C., & LeFrancois, M.
2015a. Resurgence of pump and treat solutions: Directed groundwater
recirculation. Groundwater Monitoring &
Remediation , 35 (2), 23-29.
Suthersan, S., Koons, B., & Schnobrich, M. 2015b. Contemporary
management of sites with petroleum LNAPL presence. Groundwater
Monitoring & Remediation , 35 (1), 23-29. Doi:
doi.org/10.1111/gwmr.12099
Teramoto, E. H., & Chang, H. K. 2017. Field data and numerical
simulation of btex concentration trends under water table fluctuations:
Example of a jet fuel-contaminated site in Brazil. Journal of
Contaminant Hydrology , 198 , 37-47.
Teramoto, E. H., & Chang, H. K. (2018). Métodos WTF e simulação
numérica de fluxo para estimativa de recarga–exemplo Aquífero Rio Claro
em Paulínia/SP. Águas Subterrâneas , 32 (2), 173-180.
Thornton, S. F., Tobin, K., & Smith, J. W. (2013). Comparison of
constant and transient‐source zones on simulated contaminant plume
evolution in groundwater: Implications for hydrogeological risk
assessment. Groundwater Monitoring & Remediation , 33 (3),
78-91.
Tomlinson, D. W., Rivett, M. O., Wealthall, G. P., & Sweeney, R. E.
(2017). Understanding complex LNAPL sites: Illustrated handbook of LNAPL
transport and fate in the subsurface. Journal of Environmental
Management , 204 , 748-756.
Waddill, D. W., & Parker, J. C. 1997. Simulated recovery of light,
nonaqueous phase liquid from unconfined heterogeneous
aquifers. Groundwater , 35 (6), 938-947.
Wang, W., Kuo, T., Chen, Y., Fan, K., Liang, H., & Chen, J. 2014.
Effect of precipitation on LNAPL recovery performance: An integration of
laboratory and field results. Journal of Petroleum Science and
Engineering , 116 , 1-7.
West, C. C., & Harwell, J. H. 1992. Surfactants and subsurface
remediation. Environmental Science & Technology , 26 (12),
2324-2330.
Zhao, C., Mumford, K. G., & Kueper, B. H. (2014). Laboratory study of
non-aqueous phase liquid and water co-boiling during thermal
treatment. Journal of Contaminant Hydrology , 164 , 49-58.