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ABSTRACT. In this paper, by means of p-adic Volkenborn integrals we introduce and study two
different degenerate versions of the Bernoulli polynomials of second kind, namely the partially and
fully degenerate Bernoulli polynomials of the second kind and also their higher-order versions. We
derive several explicit expressions of those polynomials and various identities involving them.

1. INTRODUCTION AND PRELIMINARIES

In [1, 2], Carlitz studied degenerate versions of Bernoulli and Euler polynomials, namely the
degenerate Bernoulli and Euler polynomials and obtained some interesting arithmetic and com-
binatorial results. In recent years, various degenerate versions of many special polynomials and
numbers regained interests of some mathematicians and quite a few results have been discovered.
These include the degenerate Stirling numbers of the first and second kinds, degenerate central fac-
torial numbers of the second kind, degenerate Bernoulli numbers of the second kind, degenerate
Bernstein polynomials, degenerate Bell numbers and polynomials, degenerate central Bell numbers
and polynomials, degenerate complete Bell polynomials and numbers, degenerate Cauchy numbers,
and so on (see [3, 10, 13, 15, 19] and the references therein). Here we would like to mention that
the study of degenerate versions can be done not only for polynomials but also for transcendental
functions like gamma functions. For this, we let the reader refer to the paper [14].

The aim of this paper is to study two degenerate versions of Bernoulli polynomials of the second
kind, namely the partially and fully degenerate Bernoulli polynomials of the second kind and their
higher-order versions by using p-adic Volkenborn integrals. We derive several explicit expressions
for those polynomials, and identities involving them and some other special numbers and polyno-
mials. The possible applications of our results are discussed in the last section.

The paper is organized as follows. In this section, we recall what are needed in the rest of the
paper which include the p-adic Volkenborn integrals, the ordinary and higher-order Bernoulli poly-
nomials, the Bernoulli polynomials of the second kind, the degenerate exponential functions, the
Daehee numbers, the Stirling numbers of both kinds, the degenerate Stirling numbers of both kinds
and the degenerate Bernoulli polynomials. In Section 2, we define the partially degenerate Bernoulli
polynomials of the second kind and their higher-order versions by using p-adic Volkenborn inte-
grals. We derive several explicit expressions for those polynomials. Further, we obtain identities
involving those polynomials and some other polynomials including higher-order Bernoulli polyno-
mials, Daehee numbers, and the usual and degenerate Stirling numbers of both klinds. In Section
3, we define the fully degenerate Bernoulli polynomials of the second kind and their higher-order
versions by using p-adic Volkenborn integrals. We deduce several explicit expressions for those
polynomials. Moreover, we obtain identities involving those polynomials and some other special
numbers and polynomials. Here we observe that, for x = 0, both the partial degenerate Bernoulli
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2 Partially and fully degenerate Bernoulli polynomials of the second kind

poynomials of the second and the fully degenerate Bernoulli polynomials of the second kind be-
come the same degenerate Bernoulli numbers of the second kind.

Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic integers, the field of p-adic
rational numbers and the completion of an algebraic closure of Qp.
The p-adic norm | · |p is normalized as |p|p = 1

p . Let f be a Cp–valued uniformly differentiable
function on Zp. Then the p-adic invariant integral of f on Zp is defined by (see [7, 21])

(1) I0( f ) =
∫
Zp

f (x)dµ0(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ0(x+ pNZp) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x).

From (1), we note that (see [7, 9, 21, 23])

(2) I0( f1)− I0( f ) = f ′(0),

where f1(x) = f (x+1), f ′(0) = d
dx f (x)

∣∣
x=0.

By (2), we get (see [7, 21, 22])

(3)
∞

∑
n=0

∫
Zp

(x+ y)ndµ0(y)
tn

n!
=
∫
Zp

e(x+y)tdµ0(y) =
t

et −1
ext =

∞

∑
n=0

Bn(x)
tn

n!
,

where Bn(x) are Bernoulli polynomials.
When x = 0, Bn = Bn(0) are called the Bernoulli numbers.
For r ∈ N, we note that (see [7, 24])

∞

∑
n=0

∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · ·+ xr + x)ndµ0(x1)dµ0(x2) · · ·dµ0(xr)
tn

n!

=
∫
Zp

· · ·
∫
Zp

e(x1+x2+···+xr+x)tdµ0(x1)dµ0(x2) · · ·dµ0(xr) =

(
t

et −1

)r

ext =
∞

∑
n=0

B(r)
n (x)

tn

n!
,

(4)

where B(r)
n (x) are called the Bernoulli polynomials of order r.

When x = 0, B(r)
n = B(r)

n (0) are called the Bernoulli numbers of order r.
The Bernoulli polynomials of the second (also called the Cauchy polynomials) are defined by

(see [1, 8, 10, 12, 19])

(5)
t

log(1+ t)
(1+ t)x =

∞

∑
n=0

bn(x)
tn

n!
.

More generally, for any r ∈N, the Bernoulli polynomials of the second kind of order r are given by

(6)
(

t
log(1+ t)

)r

(1+ t)x =
∞

∑
n=0

b(r)n (x)
tn

n!
.

It is well known that (see [7, 9, 20])

(7)
(

t
log(1+ t)

)r

(1+ t)x−1 =
∞

∑
n=0

B(n−r+1)
n (x)

tn

n!
.

From (5) and (7), we note that

bn = B(n)
n (1), (n≥ 0).

The degenerate exponential function is defined by (see [11, 14, 15])

(8) ex
λ
(t) = (1+λ t)

x
λ , eλ (t) = e1

λ
(t) = (1+λ t)

1
λ .
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Note that lim
λ→0

ex
λ
(t) = ext .

We note that (see [11, 14])

(9) ex
λ
(t) =

∞

∑
n=0

(x)n,λ

n!
tn,

where (x)0,λ = 1, (x)n,λ = x(x−λ ) · · ·
(
x− (n−1)λ

)
, (n≥ 1).

As is known, the Daehee numbers are defined by (see [5, 16, 17, 18])

(10)
∫
Zp

(1+ t)xdµ0(x) =
1
t

log(1+ t) =
∞

∑
n=0

Dn
tn

n!
.

The Stirling numbers of the first kind are defined as (see [3, 6, 10, 16, 23])

(11) (x)n =
n

∑
l=0

S1(n, l)xl, (n≥ 0),

where (x)0 = 1, (x)n = x(x−1) · · ·(x−n+1), (n≥ 1).

As an inversion formula of (11), the Stirling numbers of the second kind are defined by (see [15, 20])

(12) xn =
n

∑
l=0

S2(n, l)(x)l.

Recently, Kim considered the degenerate Stirling numbers of the second kind given by (see [10])

(13) (x)n,λ =
n

∑
l=0

S2,λ (n, l)(x)l, (n≥ 0).

In light of (11), the degenerate Stirling numbers of the first kind are defined as

(14) (x)n =
n

∑
l=0

S1,λ (n, l)(x)l,λ , (n≥ 0).

In [1, 2], Carlitz considered the degenerate Bernoulli polynomials given by

(15)
t

eλ (t)−1
ex

λ
(t) =

t

(1+λ t)
1
λ −1

(1+λ t)
x
λ =

∞

∑
n=0

βn,λ (x)
tn

n!
.

When x = 0, βn,λ = βn,λ (0) are called the degenerate Bernoulli numbers.

2. PARTIALLY DEGENERATE BERNOULLI POLYNOMIALS OF THE SECOND KIND

In this and next section, we assume that 0 6= λ ∈ Zp and t ∈ Cp with |t|p < p−
1

p−1 . Let logλ t be
the compositional inverse of eλ (t) satisfying

logλ (eλ (t)) = eλ

(
logλ (t)

)
= t.

From (8), we note that

(16) logλ (t) =
1
λ

(
tλ −1

)
.

By (16), we easily see that lim
λ→0

logλ (t) = log(t).

From (2) and (16), we can derive the following equation.

(17)
t

logλ (1+ t)
=

t
log(1+ t)

∫
Zp

(1+ t)λxdµ0(x).



4 Partially and fully degenerate Bernoulli polynomials of the second kind

Let us define the partially degenerate Bernoulli polynomials of the second kind as

(18)
t

logλ (1+ t)
(1+ t)x =

∞

∑
n=0

bn,λ (x)
tn

n!
.

Then, from (17), we see that

(19)
∞

∑
n=0

bn,λ (x)
tn

n!
=

t
log(1+ t)

∫
Zp

(1+ t)λy+xdµ0(y).

Note that lim
λ→0

bn,λ (x) = bn(x), (n≥ 0). For x = 0, bn,λ = bn,λ (0) are called the degenerate Bernoulli

numbers of the second kind.
First, from (18) we note that

∞

∑
n=0

bn,λ (x)
tn

n!
=

t
logλ (1+ t)

(1+ t)x(20)

=
∞

∑
m=0

bm,λ
tm

m!

∞

∑
l=0

(x)l
t l

l!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
bm,λ (x)n−m

tn

n!
.

Thus we get the next result by (20).

Theorem 1. For n≥ 0, we have

bn,λ (x) =
n

∑
m=0

(
n
m

)
bm,λ (x)n−m.

By (3), we get

t
log(1+ t)

∫
Zp

(1+ t)λy+xdµ0(y) =
t

log(1+ t)

∞

∑
m=0

λ m

m!
(

log(1+ t)
)m
∫
Zp

(
y+

x
λ

)mdµ0(y)(21)

=
∞

∑
l=0

bl
t l

l!

∞

∑
m=0

λ
mBm

( x
λ

) ∞

∑
k=m

S1(k,m)
tk

k!

=
∞

∑
l=0

bl
t l

l!

∞

∑
k=0

k

∑
m=0

λ
mBm

( x
λ

)
S1(k,m)

tk

k!

=
∞

∑
n=0

( n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mBm
( x

λ

)
S1(k,m)bn−k

)
tn

n!

Therefore, we obtain the following theorem.

Theorem 2. For n≥ 0, we have

bn,λ (x) =
n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mS1(k,m)bn−kBm
( x

λ

)
.

In particular, we have

bn,λ =
n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mS1(k,m)bn−kBm.
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From (9), we note that

1
t

(
eλ (t)−1

)
ex

λ
(t) =

∞

∑
l=0

(1)l+1,λ

l +1
t l

l!

∞

∑
m=0

(x)m,λ
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(1)l+1,λ

l +1
(x)n−l,λ

)
tn

n!
.

(22)

By (14), we get

(23)
1
k!
(

logλ (1+ t)
)k

=
∞

∑
n=k

S1,λ (n,k)
tn

n!
.

Thus, by replacing t by logλ (1+ t) in (22), we get

t
logλ (1+ t)

(1+ t)x =
∞

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
(x)m−l,λ

1
m!

(logλ (1+ t))m(24)

=
∞

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
(x)m−l,λ

∞

∑
n=m

S1,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
(x)m−l,λ S1,λ (n,m)

)
tn

n!
.

Therefore, by (18) and (24), we obtain the following theorem

Theorem 3. For n≥ 0, we have

bn,λ (x) =
n

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
(x)m−l,λ S1,λ (n,m).

In particular, we have

bn,λ =
n

∑
m=0

(1)m+1,λ

m+1
S1,λ (n,m).

From (17), we note that∫
Zp

(1+ t)λy+xdµ0(y) =
log(1+ t)

t
t

logλ (1+ t)
(1+ t)x =

∞

∑
l=0

Dl

l!
t l

∞

∑
m=0

bm,λ (x)
tm

m!

=
∞

∑
n=0

( n

∑
m=0

(
n
m

)
bm,λ (x)Dn−m

)
tn

n!
.(25)

On the other hand,

(26)
∫
Zp

(1+ t)λy+xdµ0(y) =
∞

∑
n=0

∫
Zp

(
λy+ x

n

)
dµ0(y)tn.

Therefore, by (25) and (26), we obtain the following theorem.

Theorem 4. For n≥ 0, we have∫
Zp

(
λy+ x

n

)
dµ0(y) =

1
n!

n

∑
m=0

(
n
m

)
bm,λ (x)Dn−m.

In particular, we have ∫
Zp

(
λy
n

)
dµ0(y) =

1
n!

n

∑
m=0

(
n
m

)
bm,λ Dn−m.



6 Partially and fully degenerate Bernoulli polynomials of the second kind

By replacing t by eλ (t)−1 in (18), we get

eλ (t)−1
t

ex
λ
(t) =

∞

∑
m=0

bm,λ (x)
1

m!
(
eλ (t)−1

)m(27)

=
∞

∑
m=0

bm,λ (x)
∞

∑
n=m

S2,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

S2,λ (n,m)bm,λ (x)
)

tn

n!
.

On the other hand, by (20), we get

(28)
1
t

(
eλ (t)−1

)
ex

λ
(t) =

∞

∑
n=0

( n

∑
l=0

(
n
l

)
(1)l+1,λ

l +1
(x)n−l,λ

)
tn

n!
.

Therefore, by (27) and (28), we obtain the following theorem.

Theorem 5. For n≥ 0, we have
n

∑
m=0

S2,λ (n,m)bm,λ (x) =
n

∑
l=0

(
n
l

)
(1)l+1,λ

l +1
(x)n−l,λ .

In particular, we have
n

∑
m=0

S2,λ (n,m)bm,λ =
1

n+1
(1)n+1,λ .

By replacing t by logλ (1+ t) in (15), we get

logλ (1+ t)
t

(1+ t)x =
∞

∑
m=0

βm,λ (x)
1

m!
(

logλ (1+ t)
)m(29)

=
∞

∑
n=0

( n

∑
m=0

βm,λ (x)S1,λ (n,m)

)
tn

n!
.

We observe that
logλ (1+ t)

t
=

1
λ t

∞

∑
m=1

λ
m 1

m!
(

log(1+ t)
)m

=
1
λ t

∞

∑
m=1

λ
m

∞

∑
n=m

S1(n,m)
tn

n!
(30)

=
1
λ t

∞

∑
n=1

( n

∑
m=1

λ
mS1(n,m)

)
tn

n!
=

∞

∑
n=0

1
n+1

( n+1

∑
m=1

λ
m−1S1(n+1,m)

)
tn

n!
.

From (30), we obtain

logλ (1+ t)
t

(1+ t)x =
∞

∑
m=0

1
m+1

(m+1

∑
k=1

λ
k−1S1(m+1,k)

)
tm

m!

∞

∑
l=0

(x)l
t l

l!
(31)

=
∞

∑
n=0

n

∑
m=0

1
m+1

(
n
m

)(m+1

∑
k=1

λ
k−1S1(m+1,k)

)
(x)n−m

tn

n!
.

Therefore, by (29) and (31), we obtain the following theorem.

Theorem 6. For n≥ 0, we have
n

∑
m=0

1
m+1

(
n
m

)m+1

∑
k=1

λ
k−1S1(m+1,k)(x)n−m =

n

∑
m=0

βm,λ (x)S1,λ (n,m).
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In particular, we have

1
n+1

n+1

∑
k=1

λ
k−1S1(n+1,k) =

n

∑
m=0

βm,λ S1,λ (n,m).

From (21), we note that

tk

k!
=

∞

∑
m=k

S1,λ (m,k)
1

m!
(
eλ (t)−1

)m

=
∞

∑
m=k

S1,λ (m,k)
∞

∑
n=m

S2,λ (n,m)
tn

n!
(32)

=
∞

∑
n=k

( n

∑
m=k

S1,λ (m,k)S2,λ (n,m)

)
tn

n!
, (k ≥ 0).

By comparing the coefficients on both sides of (29), we obtain the following theorem.

Theorem 7. For k ≥ 0, we have
n

∑
m=k

S1,λ (m,k)S2,λ (n,m) =

{
1, if n = k,
0, if n > k.

For r ∈ N, we define the partially degenerate Bernoulli polynomials of the second kind of order
r by the following multiple p-adic integrals on Zp:

(33)
(

t
log(1+ t)

)r ∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+x2+···+xr)+xdµ0(x1)dµ0(x2) · · ·dµ0(xr)

=

(
t

logλ (1+ t)

)r

(1+ t)x =
∞

∑
n=0

b(r)n,λ (x)
tn

n!
.

For x = 0, b(r)n,λ = b(r)n,λ (0) are called the degenerate Bernoulli numbers of the second kind of order r.
On the other hand, (33) is also equal to

(34)
(

t
log(1+ t)

)r ∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+x2+···+xr)+xdµ0(x1)dµ0(x2) · · ·dµ0(xr)

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
m=0

λ
mB(r)

m
( x

λ

) 1
m!
(

log(1+ t)
)m

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
m=0

λ
mB(r)

m
( x

λ

) ∞

∑
k=m

S1(k,m)
tk

k!

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
k=0

k

∑
m=0

λ
mB(r)

m
( x

λ

)
S1(k,m)

tk

k!

=
∞

∑
n=0

( n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mB(r)
m
( x

λ

)
S1(k,m)B(n−k−r+1)

n−k (1)
)

tn

n!

Therefore, by (30) and (31), we obtain the following theorem.

Theorem 8. For n≥ 0, we have

b(r)n,λ (x) =
n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mB(r)
m
( x

λ

)
S1(k,m)B(n−k−r+1)

n−k (1).
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In particular, we have

b(r)n,λ =
n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mB(r)
m S1(k,m)B(n−k−r+1)

n−k (1).

By replacing t by eλ (t)−1 in (30), we get
∞

∑
m=0

b(r)m,λ (x)
1

m!
(
eλ (t)−1

)m
=

r!
tr

1
r!
(
eλ (t)−1

)rex
λ
(t)

=
r!
tr

∞

∑
n=0

S2,λ (n+ r,r)
tn+r

(n+ r)!
ex

λ
(t)

=
∞

∑
m=0

S2,λ (m+ r,r)(m+r
r

) tm

m!

∞

∑
l=0

(x)l,λ
t l

l!
(35)

=
∞

∑
n=0

n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)(x)n−m,λ
tn

n!
.

On the other hand,
∞

∑
m=0

b(r)m,λ (x)
1

m!
(
eλ (t)−1

)m
=

∞

∑
n=0

( n

∑
m=0

b(r)m,λ (x)S2,λ (n,m)

)
tn

n!
.(36)

From (32) and (33), we obtain the following theorem.

Theorem 9. For n≥ 0, and r ∈ N, we have
n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)(x)n−m,λ =
n

∑
m=0

b(r)m,λ (x)S2,λ (n,m).

In particular, we have

S2,λ (n+ r,r) =
(

n+ r
r

) n

∑
m=0

b(r)m,λ S2,λ (n,m).

From (13), we note that

(37)
1
k!
(
eλ (t)−1

)k
=

∞

∑
n=k

S2,λ (n,k)
tn

n!
, (k ≥ 0).

Thus, by (37), we get(
eλ (t)−1

)r

tr ex
λ
(t) =

∞

∑
n=0

n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)(x)n−m,λ
tn

n!
(38)

By replacing t by logλ (1+ t), we get(
t

logλ (1+ t)

)r

(1+ t)x

=
∞

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S2,λ (k+ r,r)(x)m−k,λ
1

m!
(logλ (1+ t))m(39)

=
∞

∑
n=0

( n

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S2,λ (k+ r,r)S1,λ (n,m)(x)m−k,λ

)
tn

n!
.

Therefore, by (33) and (39), we obtain the following theorem.
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Theorem 10. For n≥ 0, we have

b(r)n,λ (x) =
n

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S2,λ (k+ r,r)S1,λ (n,m)(x)m−k,λ .

In particular, we have

b(r)n,λ =
n

∑
m=0

S2,λ (m+ r,r)(m+r
r

) S1,λ (n,m).

By (14), we get

(40)
1
k!
(

logλ (1+ t)
)k

=
∞

∑
n=k

S1,λ (n,k)
tn

n!
, (k ≥ 0).

Thus, by (40), we have(
logλ (1+ t)

t

)r

(1+ t)x =
∞

∑
m=0

S1,λ (m+ r,r)(m+r
r

) tm

m!

∞

∑
l=0

(x)l
t l

l!
(41)

=
∞

∑
n=0

n

∑
m=0

(n
m

)(m+r
r

)S1,λ (m+ r,r)(x)n−m,λ
tn

n!
.

By replacing t by eλ (t)−1 in (41), we get(
t

eλ (t)−1

)r

ex
λ
(t) =

∞

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S1,λ (k+ r,r)(x)m−k,λ
1

m!
(
eλ (t)−1

)m(42)

=
∞

∑
n=0

( n

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S1,λ (k+ r,r)S2,λ (n,m)(x)m−k,λ

)
tn

n!
.

As is well known, the degenerate Bernoulli polynomials of order r are defined by

(43)
(

t
eλ (t)−1

)r

ex
λ
(t) =

∞

∑
n=0

β
(r)
n,λ (x)

tn

n!
, (see [1,2]).

Therefore, by (40) and (41), we obtain the following theorem.

Theorem 11. For n≥ 0, we have

β
(r)
n,λ (x) =

n

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S1,λ (k+ r,r)S2,λ (n,m)(x)m−k,λ .

In particular, we have

β
(r)
n,λ =

n

∑
m=0

S1,λ (m+ r,r)(m+r
r

) S2,λ (n,m).

From (30), we note that∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+···+xr)+xdµ0(x1) · · ·dµ0(xr)(44)

=

(
log(1+ t)

t

)r( t
logλ (1+ t)

)r

(1+ t)x =
∞

∑
l=0

S1(l + r,r)(l+r
r

) t l

l!

∞

∑
m=0

b(r)m,λ (x)
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)b(r)n−l,λ (x)
)

tn

n!

Thus, by (42), we obtain the following theorem.
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Theorem 12. For n≥ 0, we have∫
Zp

· · ·
∫
Zp

(
λ (x1 + · · ·+ xr)+ x

n

)
dµ0(x1) · · ·dµ0(xr) =

1
n!

n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)b(r)n−l,λ (x).

In particular, we have∫
Zp

· · ·
∫
Zp

(
λ (x1 + · · ·+ xr)

n

)
dµ0(x1) · · ·dµ0(xr) =

1
n!

n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)b(r)n−l,λ .

Observe from (30) with λ = 1 that b(r)n,1(x) = (x)n, b(r)n,1 = δn,0.
Now, let us take λ = 1 in Theorem 12. Then we have, for n≥ 0,

(45)
∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · ·+ xr + x)n dµ0(x1) · · ·dµ0(xr) =
n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)(x)n−l,

(46)
∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · ·+ xr)n dµ0(x1) · · ·dµ0(xr) =
S1(n+ r,r)(n+r

r

) .

On the other hand,∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)n dµ0(x1) · · ·dµ0(xr)

=
n

∑
l=0

S1(n, l)
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)ldµ0(x) · · ·dµr(x)(47)

=
n

∑
l=0

S1(n, l)B
(r)
l (x).

Thus, by (45), (46) and (47), for n≥ 0 we get

(48)
n

∑
l=0

S1(n, l)B
(r)
l (x) =

n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)(x)n−l,

(49)
n

∑
l=0

S1(n, l)B
(r)
l =

S1(n+ r,r)(n+r
r

) .

By replacing t by logλ (1+ t) in (41), we get(
1
t

logλ (1+ t)
)r

(1+ t)x =
∞

∑
m=0

β
(r)
m,λ (x)

1
m!
(

logλ (1+ t)
)m(50)

=
∞

∑
n=0

( n

∑
m=0

β
(r)
m,λ (x)S1,λ (n,m)

)
tn

n!
.

Therefore, by (39) and (46), we obtain the following theorem.

Theorem 13. For n≥ 0, we have
n

∑
m=0

(n
m

)(m+r
r

)S1,λ (m+ r,r)(x)n−m,λ =
n

∑
m=0

β
(r)
m,λ (x)S1,λ (n,m).

In particular, we have

S1,λ (n+ r,r) =
(

n+ r
r

) n

∑
m=0

β
(r)
m,λ S1,λ (n,m).
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3. FULLY DEGENERATE BERNOULLI POLYNOMIALS OF THE SECOND KIND

Let us define the fully degenerate Bernoulli polynomials of the second kind as

(51)
t

logλ (1+ t)
ex logλ (1+t) =

∞

∑
n=0

bn,λ (x)
tn

n!
.

Then, from (17), we see that

(52)
∞

∑
n=0

bn,λ (x)
tn

n!
=

t
log(1+ t)

∫
Zp

(1+ t)λydµ0(y)ex logλ (1+t).

Note that lim
λ→0

bn,λ (x) = bn(x), (n ≥ 0). We note that bn,λ = bn,λ (0) are the degenerate Bernoulli

numbers of the second kind.
We note here that

(53) ex logλ (1+t) =
∞

∑
n=0

n

∑
k=0

S1,λ (n,k)x
k tn

n!
.

Here, recalling (14), one should compare (53) with the following:

(54) ex log(1+t) = (1+ t)x =
∞

∑
n=0

(x)n
tn

n!
=

∞

∑
n=0

n

∑
k=0

S1,λ (n,k)(x)k,λ
tn

n!
.

From (51) and (53), we note that
∞

∑
n=0

bn,λ (x)
tn

n!
=

∞

∑
l=0

bl,λ
t l

l!

∞

∑
m=0

m

∑
k=0

S1,λ (m,k)xk tm

m!
(55)

=
∞

∑
n=0

n

∑
m=0

m

∑
k=0

(
n
m

)
bn−m,λ S1,λ (m,k)xk tn

n!

=
∞

∑
n=0

n

∑
k=0

n

∑
m=k

(
n
m

)
bn−m,λ S1,λ (m,k)xk tn

n!

Thus we get the next result by (56).

Theorem 14. For n≥ 0, we have

bn,λ (x) =
n

∑
k=0

n

∑
m=k

(
n
m

)
bn−m,λ S1,λ (m,k)xk.

By Theorem 2 and (53), we get
t

logλ (1+ t)
ex logλ (1+t)(56)

=
∞

∑
m=0

( m

∑
k=0

k

∑
i=0

(
m
k

)
λ

iBiS1(k, i)bm−k

)
tm

m!

∞

∑
l=0

( l

∑
j=0

S1,λ (l, j)x j
)

t l

l!

=
∞

∑
n=0

( n

∑
m=0

m

∑
k=0

k

∑
i=0

n−m

∑
j=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ (n−m, j)λ iBibm−kx j

)
tn

n!

=
∞

∑
n=0

( n

∑
j=0

n− j

∑
m=0

m

∑
k=0

k

∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ (n−m, j)λ iBibm−kx j

)
tn

n!
.

Therefore, we obtain the following theorem.
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Theorem 15. For n≥ 0, we have

bn,λ (x) =
n

∑
j=0

( n− j

∑
m=0

m

∑
k=0

k

∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ (n−m, j)λ iBibm−k

)
x j.

From (9), we note that

1
t

(
eλ (t)−1

)
ext =

∞

∑
l=0

(1)l+1,λ

l +1
t l

l!

∞

∑
m=0

xm tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(1)l+1,λ

l +1
xn−l

)
tn

n!
.

(57)

Thus, by replacing t by logλ (1+ t) in (57) and making use of (23), we get

t
logλ (1+ t)

ex logλ (1+t) =
∞

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
xm−l 1

m!
(logλ (1+ t))m(58)

=
∞

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
xm−l

∞

∑
n=m

S1,λ (n,m)
tn

n!

=
∞

∑
n=0

( n

∑
m=0

m

∑
l=0

(
m
l

)
(1)l+1,λ

l +1
xm−lS1,λ (n,m)

)
tn

n!

=
∞

∑
n=0

( n

∑
l=0

n

∑
m=l

(
m
l

)
(1)m−l+1,λ

m− l +1
S1,λ (n,m)xl

)
tn

n!
.

Therefore, by (51) and (58), we obtain the following theorem

Theorem 16. For n≥ 0, we have

bn,λ (x) =
n

∑
l=0

n

∑
m=l

(
m
l

)
(1)m−l+1,λ

m− l +1
S1,λ (n,m)xl.

From (17), we note that∫
Zp

(1+ t)λydµ0(y)ex logλ (1+t) =
log(1+ t)

t
t

logλ (1+ t)
ex logλ (1+t)

=
∞

∑
l=0

Dl

l!
t l

∞

∑
m=0

bm,λ (x)
tm

m!

=
∞

∑
n=0

( n

∑
m=0

(
n
m

)
bm,λ (x)Dn−m

)
tn

n!
.(59)

On the other hand, from (53) we have∫
Zp

(1+ t)λydµ0(y)ex logλ (1+t) =
∞

∑
m=0

∫
Zp

(λy)m dµ0(y)
tm

m!

∞

∑
l=0

l

∑
k=0

S1,λ (l,k)x
k t l

l!

=
∞

∑
n=0

n

∑
l=0

l

∑
k=0

(
n
l

)
S1,λ (l,k)

∫
Zp

(λy)n−l dµ0(y)xk tn

n!

=
∞

∑
n=0

n

∑
k=0

n

∑
l=k

(
n
l

)
S1,λ (l,k)

∫
Zp

(λy)n−l dµ0(y)xk tn

n!
.(60)

Therefore, by (59) and (60), we obtain the following theorem.
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Theorem 17. For n≥ 0, we have
n

∑
m=0

(
n
m

)
bm,λ (x)Dn−m =

n

∑
k=0

n

∑
l=k

(
n
l

)
S1,λ (l,k)

∫
Zp

(λy)n−l dµ0(y)xk.

By replacing t by eλ (t)−1 in (51), we get

eλ (t)−1
t

ext =
∞

∑
m=0

bm,λ (x)
1

m!
(
eλ (t)−1

)m(61)

=
∞

∑
n=0

( n

∑
m=0

S2,λ (n,m)bm,λ (x)
)

tn

n!
.

Therefore, by (57) and (61), we obtain the following theorem.

Theorem 18. For n≥ 0, we have
n

∑
m=0

S2,λ (n,m)bm,λ (x) =
n

∑
l=0

(
n
l

)
(1)l+1,λ

l +1
xn−l.

For r ∈N, we define the fully degenerate Bernoulli polynomials of the second kind of order r by
the following multiple p-adic integrals on Zp:

(62)
(

t
log(1+ t)

)r ∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+x2+···+xr)dµ0(x1)dµ0(x2) · · ·dµ0(xr)ex logλ (1+t)

=

(
t

logλ (1+ t)

)r

ex logλ (1+t) =
∞

∑
n=0

b(r)
n,λ (x)

tn

n!
.

Note here that b(r)n,λ = b(r)
n,λ (0) are the degenerate Bernoulli numbers of the second of order r.

On the other hand, we have

(63)
(

t
log(1+ t)

)r ∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+x2+···+xr)dµ0(x1)dµ0(x2) · · ·dµ0(xr)

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
m=0

λ
mB(r)

m
1

m!
(

log(1+ t)
)m

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
m=0

λ
mB(r)

m

∞

∑
k=m

S1(k,m)
tk

k!

=
∞

∑
l=0

B(l−r+1)
l (1)

t l

l!

∞

∑
k=0

k

∑
m=0

λ
mB(r)

m S1(k,m)
tk

k!

=
∞

∑
n=0

( n

∑
k=0

k

∑
m=0

(
n
k

)
λ

mB(r)
m S1(k,m)B(n−k−r+1)

n−k (1)
)

tn

n!

Therefore, by (53), (62) and (63), we obtain the following theorem.

Theorem 19. For n≥ 0, we have

b(r)
n,λ (x) =

n

∑
j=0

n− j

∑
m=0

m

∑
k=0

k

∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ (n−m, j)λ iB(r)

i B(m−k−r+1)
m−k (1)x j.
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By replacing t by eλ (t)−1 in (62), we get

∞

∑
m=0

b(r)
m,λ (x)

1
m!
(
eλ (t)−1

)m
=

r!
tr

1
r!
(
eλ (t)−1

)rext

=
∞

∑
m=0

S2,λ (m+ r,r)(m+r
r

) tm

m!

∞

∑
l=0

xl t l

l!
(64)

=
∞

∑
n=0

n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)xn−m tn

n!
.

On the other hand,

∞

∑
m=0

b(r)
m,λ (x)

1
m!
(
eλ (t)−1

)m
=

∞

∑
n=0

( n

∑
m=0

b(r)
m,λ (x)S2,λ (n,m)

)
tn

n!
.(65)

From (64) and (65), we obtain the following theorem.

Theorem 20. For n≥ 0, and r ∈ N, we have

n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)xn−m =
n

∑
m=0

S2,λ (n,m)b(r)
m,λ (x).

From (13), we note that

(66)
1
k!
(
eλ (t)−1

)k
=

∞

∑
n=k

S2,λ (n,k)
tn

n!
, (k ≥ 0).

Thus, by (66), we get (
eλ (t)−1

)r

tr ext =
∞

∑
n=0

n

∑
m=0

(n
m

)(m+r
r

)S2,λ (m+ r,r)xn−m tn

n!
(67)

By replacing t by logλ (1+ t), we get(
t

logλ (1+ t)

)r

ex logλ (1+t)

=
∞

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S2,λ (k+ r,r)xm−k 1
m!

(logλ (1+ t))m(68)

=
∞

∑
n=0

n

∑
m=0

m

∑
k=0

(m
k

)(k+r
r

)S2,λ (k+ r,r)S1,λ (n,m)xm−k tn

n!
.

=
∞

∑
n=0

( n

∑
k=0

n

∑
m=k

(m
k

)(m−k+r
r

)S2,λ (m− k+ r,r)S1,λ (n,m)xk
)

tn

n!
.

Therefore, by (62) and (68), we obtain the following theorem.

Theorem 21. For n≥ 0, we have

b(r)
n,λ (x) =

n

∑
k=0

n

∑
m=k

(m
k

)(m−k+r
r

)S2,λ (m− k+ r,r)S1,λ (n,m)xk.
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From (62), we note that∫
Zp

· · ·
∫
Zp

(1+ t)λ (x1+···+xr)dµ0(x1) · · ·dµ0(xr)ex logλ (1+t)(69)

=

(
log(1+ t)

t

)r( t
logλ (1+ t)

)r

ex logλ (1+t)

=
∞

∑
l=0

S1(l + r,r)(l+r
r

) t l

l!

∞

∑
m=0

b(r)
m,λ (x)

tm

m!

=
∞

∑
n=0

( n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)b(r)
n−l,λ (x)

)
tn

n!

On the other hand, (69) is also equal to
∞

∑
m=0

∫
Zp

· · ·
∫
Zp

(λ (x1 + · · ·+ xr))mdµ0(x1) · · ·dµ0(xr)
tm

m!

∞

∑
l=0

l

∑
k=0

S1,λ (l,k)x
k t l

l!

=
∞

∑
n=0

n

∑
m=0

n−m

∑
k=0

(
n
m

)
S1,λ (n−m,k)xk

∫
Zp

· · ·
∫
Zp

(λ (x1 + · · ·+ xr))mdµ0(x1) · · ·dµ0(xr)
tn

n!
(70)

Thus, by (69) and (70), we obtain the following theorem.

Theorem 22. For n≥ 0, we have
n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)b(r)
n−l,λ (x)

=
n

∑
m=0

n−m

∑
k=0

(
n
m

)
S1,λ (n−m,k)xk

∫
Zp

· · ·
∫
Zp

(λ (x1 + · · ·+ xr))mdµ0(x1) · · ·dµ0(xr).

Observe from (62) with λ = 1 that b(r)
n,1(x) = xn, b(r)n,1 = b(r)

n,1(0) = δn,0.
Now, let us take λ = 1 in Theorem 22. Then we have, for n≥ 0,

n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)xn−l(71)

=
n

∑
m=0

n−m

∑
k=0

(
n
m

)
S1,1(n−m,k)xk

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)mdµ0(x1) · · ·dµ0(xr).

In addition, we have∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)m dµ0(x1) · · ·dµ0(xr)(72)

=
m

∑
l=0

S1(m, l)
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)
ldµ0(x) · · ·dµr(x)

=
m

∑
l=0

S1(m, l)B(r)
l .

Thus, by (71) and (72), for n≥ 0 we get the following theorem.

Theorem 23.
n

∑
l=0

(n
l

)(l+r
r

)S1(l + r,r)xn−l =
n

∑
m=0

n−m

∑
k=0

m

∑
l=0

(
n
m

)
S1,1(n−m,k)S1(m, l)B(r)

l xk
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4. CONCLUSION

In this paper, we defined the partially and fully degenerate Bernoulli polynomials of the second
kind and their higher-order versions by means of Volkenborn p-adic integrals. We derived several
explicit expressions of those polynomials, and identities involving them and some other special
numbers and polynomials.

Next, we would like to mention three possible applications of our results. The first one is their
possible applications to probability theory. Indeed, in [15] we demonstrated that both the degenerate
Stirling polynomials of the second and the r-truncated degenerate Stirling polynomials of the second
kind appear in certain expressions of the probability distributions of appropriate random variables.
The second one is their possible applications to differential equations from which some useful
identities follow. For example, in [8] an infinite family of nonlinear differential equations, having
the generating function of the degenerate Bernoulli numbers of the second as a solution, were
derived. As a result, it was possible to derive an identity involving the ordinary and higher-order
degenerate Bernoulli numbers of the second kind and generalized harmonic numbers (see also [4]).
The third one is their possible applications to identities of symmetry. For instance, in [13] we
obtained many symmetric identities in three variables related to degenerate Euler polynomials and
alternating generalized falling factorial sums. Each of these possible applications of the special
polynomials considered in this paper requires considerable amount of work and hence needs to
appear in the form of separate papers.

Finally, as one of our future projects, we will continue to study various degenerate versions of
special polynomials and numbers, and investigate their possible applications to physics, science and
engineering as well as to mathematics.
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