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Abstract: Blow-up phenomena of solutions of a class of parabolic equations

for porous media with nonlocal source terms cross-coupled under Dirichlet and

Neumann boundary conditions. The differential inequality technique is used

to obtain the lower bounds on the blow up time of the equation set under two

different boundary conditions.
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§1 Introduction

In this paper, we study the lower bound of blow up time of solutions for nonlocal

cross-coupled porous media equation

ut = ∆um + up1
∫
vq1dx, (x, t) ∈ Ω× (0, t?), (1)

vt = ∆vn + vp2
∫
uq2dx, (x, t) ∈ Ω× (0, t?), (2)

set and continuous bounded initial values

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (3)

under Dirichlet boundary condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, t?), (4)

or Neumann boundary condition

∂um

∂υ
= lu,

∂vn

∂υ
= lv, (x, t) ∈ ∂Ω× (0, t?), (5)
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Where Ω ∈ R3 is a bounded region of ∂Ω with a smooth boundary, pi, qi > 0(i = 1, 2),

and satisfies that p1 + q1 > m > 1, p2 + q2 > n > 1, υ is the unit external normal vector

in the external normal direction of ∂Ω.

Equations (1)-(5) can be used to describe reaction-diffusion phenomena in many

fields such as fluid mechanics, population dynamics and bio-population mechanics etc.

There are many research achievements on the lower bound estimation of blow up time

for the solution of a single porous media equation, see literature [1-3]. Literature [1]

studies a single equation composed of (1) and (3) with Dirichlet boundary conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, t?),

They have obtained the lower bound of the blow up time of the solution which

t? ≥ C7[

∫
Ω
uα0 (p+ q − 1)dx]−C6 .

and homogeneous Neumann boundary conditions

∂u

∂υ
= 0, (x, t) ∈ ∂Ω× (0, t?),

the lower bound of the blow up time of the solution which

t? ≥
∫ ∞
η(0)

dξ

K5ξ
α+1
α +K6ξ

(α+1)(p+q−1)
α(p+q−1)−(p+q−m)

.

Literature [2] studies a single equation composed of (1) and (3) with Robin bound-

ary conditions
∂u

∂η
+ ku = 0, (x, t) ∈ ∂Ω× (0, t?),

they have obtained the lower bound of the blow up time of the solution which

t? ≥
∫ ∞
φ(0)

dη

ms|Ω|K4η
ms+s

ms+m−1 +ms|Ω|K5η
ms+s

n(m−1)(s+1)

.

Literature [3] studies a single equation composed of(1)with(3)and(5),the lower

bound of the blow up time of the solution which

t? ≥
∫ η(t)

η(0)

dξ

C1ξ + C2ξ
α(p+q−1)−(m−1)

α(p+q−1) + C2ξ
(α+1)
α + C3ξ

(α+1)(p+q−1)
α(p+q−1)−(p+q−m)

,

when l > 0 of(5). The lower bound of the blow up time of the solution which

t? ≥
∫ η(t)

η(0)

dξ

K1ξ
(α+1)
α + +K2ξ

(α+1)(p+q−1)
α(p+q−1)−(p+q−m)

,
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whenl < 0 of equation (5).

For the blow up phenomenon of the solutions to the equation set (1)-(5) of porous

media with nonlocal cross-coupling, only literature [4] studies the global existence of so-

lutions to the equation set (1)-(4) of porous media and sufficient conditions for blowing

up at finite time, in which, one of the sufficient conditions for the solution to blowing

up at finite time is that one of m < p1,n < p2 and q1q2 > (m− p1)(n− p2) holds.

The same method and technique can be used to obtain equations (1)-(3) and (5)

to solve sufficient conditions for global existence and blow up at a finite time. However,

studies on the lower bound of blow up time for equation set (1)-(5) have not been

found. Blow-up at a finite time and lower bound of blowing up time of solution for the

following parabolic equations are studied in literature [5] when m=1,n=1.

ut = ∆u+ k1(t)f1(v), x = (x1, · · ·, xN ) ∈ Ω, t ∈ (0, t?),

vt = ∆v + k2(t)f2(u), x ∈ Ω, t ∈ (0, t?),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, t?),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

Literature [6] established Blow-up at a finite time and lower bound of blowing up

time of solution for the following parabolic equations when m=1,n=1, blowing up at a

finite time and lower bound of blowing up time of solution.

ut = ∆u+ k1(t)upvq, (x, t) ∈ Ω× (0, t?),

vt = ∆v + k2(t)urvs, (x, t) ∈ Ω× (0, t?),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, t?),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

The lower bound of blowing up time for solutions of other similar equations or

equation set is shown in the literature [7-10].

Inspired by literature [5-6], this paper studies the lower bound estimation of blow-

ing up time for the solutions of the porous media equation set (1)-(5) with non-local

source cross-coupling and m > 1, n > 1 with relevant formulas and some basic inequal-

ities in literature [10].

§2 Preliminary knowledge

This part introduces some important inequalities used in this paper.
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Lemma 1: (Hölder inequality) Let 1 < p, q < ∞, 1
p + 1

q = 1, if u ∈ Lp(Ω), v ∈
Lq(Ω), then ∫

Ω
|uv|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Lemma 2: (Young inequality) �1 < p, q <∞, 1
p + 1

q = 1,K

ab ≤ ap

p
+
bq

q
, (a, b > 0).

Lemma 3: (Membrane inequality)

λ

∫
Ω
ω2dx ≤

∫
Ω
|∇ω|2dx,

where λ is the first eigenvalue of ∆ω + λω = 0, ω > 0 x ∈ Ω, ω = 0 x ∈ ∂Ω.

Lemma 4[10]: let Ω be the bounded star region in RN ,andN ≥ 2, then∫
∂Ω
unds ≤ N

ρ0

∫
Ω
undx+

nd

ρ0

∫
Ω
un−1|∇u|dx.

Lemma 5: (Special Young inequality) let γbe an arbitrary constant, and 0 <

x < 1,then

axby = (γa)x(
b

y
1−x

γ
x

1−x
)1−x ≤ γxa+ (1− x)γ

x
1−x b

y
1−x , (a, b > 0).

§3 Lower bound of blowing up time under Dirichlet boundary

conditions

The lower bound of blowing up time for solutions of equations under Dirichlet

boundary conditions is discussed below.

Theorem 1: Defines auxiliary functions

J(t) =

∫
Ω

(uk + vk)dx, (6)

for k > max{1, qi,m−1, n−1, 2pi+3qi−2}. If (u, v) is a non-negative classical solution

of equation set (1) − (5) and blow up occurs in the sense of measure J(t) at time t?,

then the lower bound of t? is ∫ ∞
J(0)

dη

H1ηc1 +H2η
,

where J(0) =
∫

Ω(u0 + v0)dx, The normal number H1, H2, c1 is given in the following

proof.

Proof of theorem 1:
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J
′
(t) = k

∫
Ω u

k−1utdx+ k
∫

Ω v
k−1vtdx

= k
∫

Ω u
k−1∆umdx+ k

∫
Ω u

k−1up1
∫

Ω v
q1dxdx+

k
∫

Ω v
k−1∆vndx+ k

∫
Ω v

k−1vp2
∫

Ω u
q2dxdx

= −mk(k − 1)
∫
Ω u

k+m−3|∇u|2dx+ k
∫
∂Ω u

k−1 ∂um

∂υ ds+ k
∫

Ω u
k+p1−1dx

∫
Ω v

q1dx

−nk(k − 1)
∫
Ω v

k+n−3|∇v|2dx+ k
∫
∂Ω v

k−1 ∂vn

∂υ ds+ k
∫

Ω v
k+p2−1dx

∫
Ω u

q2dx

= − 4mk(k−1)
(k+m−1)2

∫
Ω |∇u

k+m−1
2 |2dx+ k

∫
∂Ω u

k−1 ∂um

∂υ ds+ k
∫

Ω u
k+p1−1dx

∫
Ω v

q1dx

− 4nk(k−1)
(k+n−1)2

∫
Ω |∇u

k+n−1
2 |2dx+ k

∫
∂Ω v

k−1 ∂vn

∂υ ds+ k
∫

Ω v
k+p2−1dx

∫
Ω u

q2dx. (7)

When the equations take Dirichlet boundary conditions of equation (3) , equation

(7) becomes

J
′
(t) = [− 4mk(k−1)

(k+m−1)2

∫
Ω |∇u

k+m−1
2 |2dx+ k

∫
Ω u

k+p1−1dx
∫

Ω v
q1dx]

+[− 4nk(k−1)
(k+n−1)2

∫
Ω |∇v

k+n−1
2 |2dx+ k

∫
Ω v

k+p2−1dx
∫

Ω u
q2dx]

= J
′
1(t)+J

′
2(t). (8)

where

J
′
1(t) = [a1

∫
Ω
|∇uα|2dx+ k

∫
Ω
uk+p1−1dx

∫
Ω
vq1dx],

J
′
2(t) = [b1

∫
Ω
|∇vβ|2dx+ k

∫
Ω
vk+p2−1dx

∫
Ω
uq2dx]

a1 = − 4mk(k − 1)

(k +m− 1)2
, b1 = − 4nk(k − 1)

(k + n− 1)2
, α =

k +m− 1

2
, β =

k + n− 1

2
.

First, lemma 1 is used to estimate the second term of J
′
1(t) in equation (8), and

it is obtained that ∫
Ω
uk+p1−1dx ≤ (

∫
Ω

(uk+p1−1)
k

k−q1 dx)
k−q1
k |Ω|

q1
k ,

∫
Ω
vq1dx ≤ (

∫
Ω

(vq1)
k
q1 dx)

q1
k |Ω|

k−q1
k ,∫

Ω
uk+p1−1dx

∫
Ω
vq1dx ≤ (

∫
Ω

(uk+p1−1)
k

k−q1 dx)
k−q1
k (

∫
Ω

(vq1)
k
q1 dx)

q1
k |Ω|,

according to lemma 2 and equation above, it is obtained that∫
Ω
uk+p1−1dx

∫
Ω
vq1dx ≤ |Ω|(k − q1)

k

∫
Ω
u
k(k+p1−1)

k−q1 dx+
|Ω|q1

k

∫
Ω
vkdx. (9)

Second, lemma 1 is used to estimate the first term on the right side of equation(9),

and it is obtained that

∫
Ω
u
k(k+p1−1)

k−q1 dx =

∫
Ω
uαu

k(k+p1−1)

k−q1
−α
dx ≤ (

∫
Ω
u4αdx)

1
4 (

∫
Ω
u

2[
2k(k+p1−1)

k−q1
−(k+m−1)]

3 dx)
3
4 ,

(10)
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from the second term on the right side of inequality sign of(10) and lemma 1, we can

know

∫
Ω
u

2[
2k(k+p1−1)

k−q1
−(k+m−1)]

3 dx ≤ (

∫
Ω
ukdx)

2[1+
2(p1+q1−1)

k−q1
−m−1

k
]

3 dx|Ω|
2[ 12−

2(p1+q1−1)
k−q1

+m−1
k

]

3 ,

(11)

from the first term on the right side of inequality sign of(10) and lemma 1, we can know∫
Ω
u4αdx =

∫
Ω
uαu3αdx ≤ (

∫
Ω
u2αdx)

1
2 (

∫
Ω

(uα)6dx)
1
2 , (12)

using the following Sobolev inequality[11]

(

∫
Ω
|φ|γ1dx)

1
γ1 ≤ C(

∫
Ω
|∇φ|γ2dx)

1
γ2

where γ1 = 6, γ2 = 2, C = 4
1
3 3−

1
2π−

2
3 ,the second term of equation (12) can be simplified

to

(

∫
Ω

(uα)6dx)
1
2 ≤ C3(

∫
Ω
|∇uα|2dx)

3
2 , (13)

by synthesizing equations (12) and (13), we have∫
Ω
u4αdx ≤ C3(

∫
Ω
u2αdx)

1
2 (

∫
Ω
|∇uα|2dx)

3
2 ,

(

∫
Ω
u4αdx)

1
4 ≤ C

3
4 (

∫
Ω
u2αdx)

1
8 (

∫
Ω
|∇uα|2dx)

3
8 , (14)

based on lemma 3, equation (14) becomes

(

∫
Ω
u4αdx)

1
4 ≤ C

3
4λ−

1
8 (

∫
Ω
|∇uα|2dx)

1
2 . (15)

Combining equations (11) and (15), equation (10) becomes∫
Ω
u
k(k+p1−1)

k−q1 dx ≤ a2(

∫
Ω
|∇uα|2dx)

1
2 (

∫
Ω
ukdx)e1 , (16)

where a2 = C
3
4λ−

1
8 |Ω|

2[ 12−
2(p1+q1−1)

k−q1
+m−1

k
]

3 , e1 =
2[1+

2(p1+q1−1)

k−q1
−m−1

k
]

3 .

By synthesizing equations (9)-(16),J
′
1(t) of equation (8) becomes

J
′
1(t) ≤ a1

∫
Ω
|∇uα|2dx+ a2(k − q1)(θ1[

∫
Ω
|∇uα|2dx]

1
2 θ−1

1 [(

∫
Ω
ukdx)2e1 ]

1
2 ) + q1

∫
Ω
vkdx,

(17)

we use the fundamental inequality

aqbp ≤ qa+ pb (a, b > 0, p, q ≥ 0, p+ q = 1),
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equation (17) becomes

J
′
1(t) ≤ (a1+

a2(k − q1)θ1

2
)

∫
Ω
|∇uα|2dx+

a2(k − q1)θ−1
1

2
(

∫
Ω
ukdx)2e1+q1

∫
Ω
vkdx. (18)

The same derivation method is used to estimate the J
′
2(t) term in equation (8),

J
′
2(t) ≤ (b1 +

b2(k − q2)θ2

2
)

∫
Ω
|∇vβ|2dx+

b2(k − q2)θ−1
2

2
(

∫
Ω
vkdx)2g1 +q2

∫
Ω
ukdx, (19)

where b2 = C
3
4λ−

1
8 |Ω|

2[ 12−
2(p2+q2−1)

k−q2
+n−1

k
]

3 , g1 =
2[1+

2(p2+q2−1)

k−q1
−n−1

k
]

3 .

In order to deal with the gradient terms in (18)and (19),set θ1 = − 2a1
a2(k−q1) , θ2 =

− 2b1
b2(k−q2) .

Finally, by synthesizing equations (18) and (19), we obtain

J
′
(t) ≤ −a

2
2(k − q1)2

4a1
(

∫
Ω
ukdx)2e1 − b22(k − q2)2

4b1
(

∫
Ω
vkdx)2g1 + q1

∫
Ω
vkdx+ q2

∫
Ω
ukdx,

(20)

take H1 = −a22(k−q1)2

4a1
− b22(k−q2)2

4b1
, H2 = q1 + q2, c1 = max{2e1, 2g1} > 1, equation (19)

becomes

J
′
(t) ≤ H1J

c(t) +H2J(t), (21)

integrating (21) from 0 to t?, we obtain

t? ≥
∫ ∞
J(0)

dη

H1ηc1 +H2η
. (22)

§4 Lower bound of blowing up time under Neumann boundary

conditions

The lower bound of blowing up time for solutions of equations under Neumann

boundary conditions is discussed below.

3.1 when l > 0

Theorem 2: Define the same measure as (6) and the same condition as k.

If(u, v)is a non-negative classical solution to the equation set (1) with (2) and (4),

then the lower bound of t? is∫ ∞
J(0)

dη

H1ηc1 +H3ηc2 + (H2 +H4)η
.

where J(0) =
∫

Ω(u0 + v0)dx,The normal number H1, H2, H3, H4, c1, c2 is given in the

following proof.
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Proof of theorem 2:

The lemma 4 is used to estimate two boundary terms in equation (7), then∫
∂Ω
uk−1∂u

m

∂υ
ds = l

∫
Ω
ukds ≤ 3l

ρ0

∫
Ω
ukdx+

kd

ρ0

∫
∂Ω
uk−1|∇u|dx, (23)

where ρ0 = min
∂Ω

(x · n) > 0,d = max
∂Ω
|x|.

From the second term on the right side of equation(23) and lemma 1 and lemma

5, we can know∫
Ω u

k−1|∇u|dx ≤ (
∫
Ω u

k+m−3|∇u|2dx)
1
2 (
∫

Ω u
k−(m−1)dx)

1
2

≤ r1
2 (

∫
Ω u

k+m−3|∇u|2dx) + 1
2r1

∫
Ω u

k−(m−1)dx

= −2mkr1(k−1)
(k+m−1)2

∫
Ω |∇u

k+m−1
2 |2dx+ 1

2r1

∫
Ω u

k−(m−1)dx, (24)

where r1 is an arbitrary constant.

The lemma 1 is used to estimate the second term on the right side of equation(24)

, we have ∫
Ω
uk−(m−1)dx ≤ (

∫
Ω
ukdx)

k−(m−1)
k |Ω|

m−1
k . (25)

Substituting (24) and (25) into equation (23),we get∫
∂Ω
uk−1∂u

m

∂υ
ds ≤ 3l

ρ0

∫
Ω
ukdx− a3

∫
Ω
|∇uα|2dx+ a4(

∫
Ω
ukdx)e2 , (26)

where a3 = 2mkr1(k−1)
(k+m−1)2

, a4 = kd
2r1ρ0

|Ω|
m−1
k , e2 = k−(m−1)

k .

Similarly, another boundary term in equation (7) is estimated as follows∫
∂Ω
vk−1∂u

m

∂υ
ds ≤ 3l

ρ0

∫
Ω
vkdx− b3

∫
Ω
|∇uβ|2dx+ b4(

∫
Ω
vkdx)g2 , (27)

where b3 = −2nkr2(k−1)
(k+n−1)2

, b4 = kd
2r2ρ0

|Ω|
n−1
k , g2 = k−(n−1)

k , r2 is an arbitrary constant.

Substituting (21), (26) and (27) into equation (7), we get

J
′
1(t) ≤ (a1 − a3 + a2(k−q1)θ3

2 )
∫
Ω |∇uα|2dx+ (b1 − b3 + b2(k−q2)θ4

2 )
∫

Ω |∇vβ|2dx
+a4(

∫
Ω u

kdx)e2 + a5(
∫
Ω u

kdx)2e1 + ( 3l
ρ0

+ q2)
∫

Ω u
kdx

+b4(
∫

Ω v
kdx)g2 + b5(

∫
Ω v

kdx)2g1 + ( 3l
ρ0

+ q1)
∫

Ω v
kdx. (28)

-

a5 = −a
2
2(k − q1)2

4a1
, b5 = −b

2
2(k − q2)2

4b1
,

a1 − a3 +
a2(k − q1)θ3

2
= 0, b1 − b3 +

b2(k − q2)θ4

2
= 0,
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H1 = a5 + b5, H2 = q1 + q2, H3 = a4 + b4, H4 =
3l

ρ0
,

c1 = max{2e1, 2g1} > 1, c2 = max{e1, g1} > 0,

equation (28) becomes

J
′
(t) ≤ H1J

c1(t) +H3J
c2(t) + (H2 +H4)J(t), (29)

integrating (29) from 0 to t? we obtain

t? ≥
∫ ∞
J(0)

dη

H1ηc1 +H3ηc2 + (H2 +H4)η
,

whereJ(0) =
∫

Ω(u0 + v0)dx.

3.2 When l ≤ 0

If l ≤ 0,then∂u
m

∂υ ≤ 0, ∂v
n

∂υ ≤ 0,according to equation (7),we obtain

J
′
(t) ≤ J ′1(t) + J

′
2(t), (30)

that is, the same measure relation is obtained with equation (8). Therefore, when l ≤ 0,

the lower bound of blow up time of the equation set (1)with(2)and(4) is consistent with

that of equation (22).
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