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Abstract: Blow-up phenomena of solutions of a class of parabolic equations
for porous media with nonlocal source terms cross-coupled under Dirichlet and
Neumann boundary conditions. The differential inequality technique is used
to obtain the lower bounds on the blow up time of the equation set under two
different boundary conditions.
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81 Introduction

In this paper, we study the lower bound of blow up time of solutions for nonlocal

cross-coupled porous media equation

up = Au™ + uP? /vqldﬂi, (x,t) € Q% (0,t%), (1)

N /u‘pdx, (,6) € Q x (0, ), ()
set and continuous bounded initial values
u(z,0) = up(z),v(x,0) = vo(z), =z€9Q, (3)
under Dirichlet boundary condition
u(z,t) =v(x,t) =0, (z,t) € 9Q x (0,t7), (4)
or Neumann boundary condition
ou™ ov"

_— = _— = *
50 lu, 50 lv, (z,t) € 09 x (0,t%), (5)
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Where 2 € R? is a bounded region of 9 with a smooth boundary, p;, ¢; > 0(i = 1,2),
and satisfies that p;1 +¢q1 > m > 1,p2 +g2 > n > 1, v is the unit external normal vector
in the external normal direction of 0f2.

Equations (1)-(5) can be used to describe reaction-diffusion phenomena in many
fields such as fluid mechanics, population dynamics and bio-population mechanics etc.
There are many research achievements on the lower bound estimation of blow up time
for the solution of a single porous media equation, see literature [1-3]. Literature [1]

studies a single equation composed of (1) and (3) with Dirichlet boundary conditions
u(z,t) =0, (x,t) € 9Q x (0,t%),
They have obtained the lower bound of the blow up time of the solution which
¢ > ol [ w3+ q—1)da]
and homogeneous Neumann boundary conditions

g%:m (z,1) € OQ x (0,t%),

the lower bound of the blow up time of the solution which

t* > * dg
— (0) at1 (a4+1)(p+g—1)
n Ks& o + Kg€olta-D—(pta—m)

Literature [2] studies a single equation composed of (1) and (3) with Robin bound-

ary conditions
—+ku=0, (xt)€dx(0,t),

they have obtained the lower bound of the blow up time of the solution which

oo
t* Z / ms+s dn __ms+s °
¢(0) mS’Q|K477mS+m_1 +mS‘Q|K5nn(m—1)(s+1)

Literature [3] studies a single equation composed of(1)with(3)and(5),the lower

bound of the blow up time of the solution which

* s n(t) d¢
2 n +q—1)—(m—1) (at1) (a+1)(p+q—1) ’

o
O C¢+Che a4 Cat + O arra—D—(pFa—m)

when [ > 0 of(5). The lower bound of the blow up time of the solution which

&5 n(t) d¢
- (a+1) (a+D(p+g—1) 7
10) K16 a + + Koyl olra—b—(rra—m)
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when! < 0 of equation (5).

For the blow up phenomenon of the solutions to the equation set (1)-(5) of porous
media with nonlocal cross-coupling, only literature [4] studies the global existence of so-
lutions to the equation set (1)-(4) of porous media and sufficient conditions for blowing
up at finite time, in which, one of the sufficient conditions for the solution to blowing
up at finite time is that one of m < p1,n < p2 and q1g2 > (m — p1)(n — p2) holds.

The same method and technique can be used to obtain equations (1)-(3) and (5)
to solve sufficient conditions for global existence and blow up at a finite time. However,
studies on the lower bound of blow up time for equation set (1)-(5) have not been
found. Blow-up at a finite time and lower bound of blowing up time of solution for the

following parabolic equations are studied in literature [5] when m=1,n=1.

w=Au+ki1(t)fi(v), x=(x1, - xN)€Qte(0,tY),
vy = Av+ ka(t) fo(u), xe€Q,te(0,t),

u(z,t) =v(z,t) =0, x€dte (0,t),

u(z,0) = up(z) > 0,v(x,0) =wvo(x) >0, z€l.

Literature [6] established Blow-up at a finite time and lower bound of blowing up
time of solution for the following parabolic equations when m=1,n=1, blowing up at a

finite time and lower bound of blowing up time of solution.

up = Au+ ky(t)uPv?, (x,t) € Q x (0,t*),
v = Av + ko (t)u"v®,  (z,t) € Q x (0,t%),
u(z,t) =v(x,t) =0, xedte (0,tF),
u(z,0) = ugp(z),v(z,0) = vo(z), z€Q,

The lower bound of blowing up time for solutions of other similar equations or
equation set is shown in the literature [7-10].

Inspired by literature [5-6], this paper studies the lower bound estimation of blow-
ing up time for the solutions of the porous media equation set (1)-(5) with non-local
source cross-coupling and m > 1,n > 1 with relevant formulas and some basic inequal-

ities in literature [10].

§2 Preliminary knowledge

This part introduces some important inequalities used in this paper.



Lemma 1: (Holder inequality) Let 1 < p,q < oo, % + % =1,ifu e LP(Q),v €
L1(92), then
| uvld <l ol oo

Lemma 2: (Young inequality) W1l <p,q< oo, % + % =100

P B
abga—+—, (a,b>0).
p q

Lemma 3: (Membrane inequality)

)\/dea:S/ |Vw|?dz,
Q Q

where A is the first eigenvalue of Aw + Adw =0,w >0z € Q,w =02z € 0.
Lemma 419 let Q be the bounded star region in RY ,andN > 2, then

N
/ u"ds < —/ u"dx—knd/ u" " Vulda.
oN Lo JQ Po JQ

Lemma 5: (Special Young inequality) let ybe an arbitrary constant, and 0 <
x < 1,then

Yy

@V = (y) (7)< qwa+ (1= TEE, (a,b>0)
'ylfz
83 Lower bound of blowing up time under Dirichlet boundary

conditions

The lower bound of blowing up time for solutions of equations under Dirichlet
boundary conditions is discussed below.

Theorem 1: Defines auxiliary functions

I(t) = /Q (W + oM d, (6)

for k > max{1,q;,m—1,n—1,2p;+3¢; —2}. If (u, v) is a non-negative classical solution
of equation set (1) — (5) and blow up occurs in the sense of measure J(t) at time ¢*,

then the lower bound of t* is
Vo i
J(0) Hint + Han’
where J(0) = [o(u® + v°)dz, The normal number Hi, Ho,c; is given in the following

proof.

Proof of theorem 1:



J(t) =k [ou* ude + k [ 0P opda
=k [quFTtAumdr + k [ uF Pt [ v deda+
k [o Pt Avdr + k [ vF 1P [ u®drda
= —mk(k — 1) [ uFTm 3| Vu?dz + k [ uF 12 ds + k [ uF P de [ v d
—nk(k — 1) [ooF 3|V 2da + k [yq 0" 9 ds + k o v TPl [ u®da
%]Q Va5~ 1]2dx+kf89 uFT U s + | [ ub P e [ vP da
|2d:c+ k [0 08" 18” ds + k [o o727 [ u®dz.  (7)

4nk(k—1) fQ |Vu
When the equations take Dirichlet boundary condltlons of equation (3) , equation

(k+n 1)2

(7) becomes

’ m 1 _
J(t) =[- %[Q|Vu 3 1de+kfguk+p1 Lda [o, v dz]
+[— ng Vv 2dx + k [q Uk+p2_1d{£f9 u2dx]
= Ji(t)+ J5(t). (8)
where
T(t) = [al/ﬂ\Vua|2d:z—l—k:/guk*pl’ld:z/qu“dx],
To(t) = [bn / Vol Pde + k / WPl / u® da]
Q Q Q
a__4mk:(k—1) _ Ank(k-1) a_k—l—m—lﬁ_k‘—l-n—l
YT krm -2 k+n—102° 2 P

First, lemma 1 is used to estimate the second term of .J;(¢) in equation (8), and

it is obtained that

/ Uk+p1_1d$ < (/ (uk+p1—1)ﬁdx) k—klﬂ
Q Q

k—qq

k
/v‘hdx < (/ (0™)ar da) B0 7
Q Q
[t [ e < ([ @i man [ o))t
Q Q Q Q

according to lemma 2 and equation above, it is obtained that

Ql(k — k(k+p; —1) Q
/uk+prldx/ vidr < M/ u k—pr111 d;z;-|-||ql/ vPdz. 9)
0 Q k 0 ko Ja

Second, lemma 1 is used to estimate the first term on the right side of equation(9),

and it is obtained that

pliilass S RNNPNEY)

k(k+p1—1) k(k+P1*1)7a 4 1 k—q 3
/ u ko dr = / uu  F-a dzx < (/ u O‘dx)4(/ u 3 dx)%,
Q Q Q Q




from the second term on the right side of inequality sign of(10) and lemma 1, we can
know

2k(k+p1—1) 2(p1+a1—1) m-—1 1 2(p1+a1-1) -1
A= —(k+m—1)] 214 =P - 2% =) mel

/ U 3 dz < (/ ukd:ﬂ) 3 dx|Q| 3 ,
Q Q
(11)

from the first term on the right side of inequality sign of(10) and lemma 1, we can know

/Qu‘ladx:/guau?’ada: < (/Q u2ad:1:)%(/g( )6d:c)% (12)

(11]

using the following Sobolev inequality
1
([Jorman s < o [ [vopedn

Q Q

where v1 = 6,7 =2,C = 45373773 ,2the second term of equation (12) can be simplified

to
3

(/Q( )odz)3 < C /yvua| dz)}, (13)
by synthesizing equations (12) and (13), we have
/ utdr < 03(/ u2°‘d1‘)%(/ ]Vuo‘|2dm)%,
Q Q Q
(/Q u4adac)i < C%(/Q uQad:c)é / |Vu| dm)é (14)

based on lemma 3, equation (14) becomes

(/ 4adxi§
Q

Combining equations (11) and (15), equation (10) becomes

»MCAJ

%/|vua| dz)3. (15)

k(ktp; —1) 2 1 k
/u F=ar dx < ag(/ |Vu®| dm)2(/ u'dx)°t, (16)
Q Q Q
2(p1+ 1), m—1
s 21— 2 et o
where as = C1A~ \Q| 3 ;€1 = 3

By synthesizing equations (9)-(16),J;(t) of equation (8) becomes

Tt < al/ IVu®%da + as(k —ql)(é?l[/ |vu012dx]%91—1[(/ uFda)?)3) +q1/ vz,
Q Q Q Q
(17)

we use the fundamental inequality

a’®’ < qa+pb  (a,b>0,p,q>0,p+qg=1),



equation (17) becomes

/ k — 0 k — 071
Ji(t) < (a1+a2(2m)1)/ﬂ|vua|2d$+a2(‘h)1

(/ ukd:c)Qel—l—ql/ vPdz. (18)
2 Q Q

The same derivation method is used to estimate the Jé(t) term in equation (8),

_ _ -1
Jy(t) < (b1+l)2(l€2q2)92)/ |Vv'6|2dx—l—bQ(kQ2)62(/ vkdzn)291—|—q2/ ubdz, (19)
Q Q Q

2
ﬂ%*gg%zﬂzjl+ﬂfi] 21+3§2i$£ﬂl,ﬂ;i
where by = C%/\_%]Q‘ F g1 = [ kfgl %)
In order to deal with the gradient terms in (18)and (19),set 6; = _%’ 0y =
_ 2k
ba(k—q2) "

Finally, by synthesizing equations (18) and (19), we obtain

, 2 k— 2 b2 b — 2
J(t) < —M(/ ubdz)?er — 2((]2)(/ vk dx)?9 —|—q1/ vkdr + q2/ uFdr,
Q Q Q

4a1 4b1 Q
(20)
take Hy = —ag(ia_fl)Q - bg(i;;mz,Hg = q1 + q2,c1 = max{2e1,291} > 1, equation (19)
becomes
J(t) < HiJC(t) + HaJ(2), (21)

integrating (21) from 0 to t*, we obtain

00 dn
t >/ _ 22
~ Jyy Hin® + Han (22)

84 Lower bound of blowing up time under Neumann boundary

conditions

The lower bound of blowing up time for solutions of equations under Neumann
boundary conditions is discussed below.

3.1 when!>0

Theorem 2: Define the same measure as (6) and the same condition as k.
If(u,v)is a non-negative classical solution to the equation set (1) with (2) and (4),

then the lower bound of ¢* is

L S
g0y Hin® + Hsn®2 + (Hy + Hy)n'

where J(0) = fQ(uo + v9)dx, The normal number Hy, Ho, H3, Hy, c1,co is given in the

following proof.



Proof of theorem 2:

The lemma 4 is used to estimate two boundary terms in equation (7), then

0 3l kd
/ k-1 0™ ——ds = l/ ukds < = / ubdr + —/ w1 Vuldz, (23)
90 v 0 Po Jon

where pg = Ig}zn (x-n) >0,d= max x|
From the second term on the right side of equation(23) and lemma 1 and lemma
5, we can know
otV < (fo |l 3 (o ub=(m V)
(g uFtm=3 |V ?dx) + 2“ fa uk—(m—l)d
= _% Jo [V 57 Pda + oy Jout =" Vda, (24)
where 7 is an arbitrary constant.

<
<

The lemma 1 is used to estimate the second term on the right side of equation(24)

, we have
/Qﬁ4m4ux§§/ummf*ﬁﬁ mt (25)
0 Q

Substituting (24) and (25) into equation (23),we get
m l
/ ukil—au ds < 3/ uFdr — ag/ ’VUQ|2dm+a4(/ “kdm)@’ (26)
00 ov po Ja Q Q
where a3 = Q(TZ_?::Z(_’CI_)%) A4 = 2T1p0 = k_(?_l)-

Similarly, another boundary term in equation (7) is estimated as follows

/ vk_lalds < 3l vhdz — b3/ |V [2dx + b4(/ v dr)9?, (27)
a9 v po Ja Q Q
where bz = —Q&TZ(_’T)%) by = 27»2,;0 Q"% , g2 = w, r9 is an arbitrary constant.

Substituting (21), (26) and (27) into equation (7), we get
Ji(t) < @n—%+%&ﬂﬁuwwm%wum—@+@&ﬂﬁuwwﬂwz
taq( o uFdz)® + a5 ([ uFdz)? + (% + q2) Jo uF

+ba( [ v dz)92 + b5 ([, vFdx)?9 + (% +q1) Jq vkdx. (28)
/Qx\
__as(k—aq)? , _ b3(k— )’
ap = ——————— by = —————,
4a1 4bl
k—q)0 ba(k — q2)0
al—a3+7a2( 2q1)3:0,bl—bg+2( 2Q2) =0,



3l
H1=a5+b5,H2ZQ1+Q2,H3=G4+b4,H4=;,
0

c1 = max{2e1,2g1} > 1,¢co = maz{ei, g1} >0,
equation (28) becomes

J'(t) < HyJ(t) + H3J(t) + (Hy + Hy)J(t), (29)

integrating (29) from 0 to t* we obtain

H>/m dn
~ Jyo) Hin® + Hsn® + (Hy + Ha)n’

whereJ(0) = [ (u® + 0%)dz.
3.2 When! <0
Ifl < O,then% <0, %L: < 0,according to equation (7),we obtain

T () < Ji() + Ja(0), (30)
that is, the same measure relation is obtained with equation (8). Therefore, when [ < 0,
the lower bound of blow up time of the equation set (1)with(2)and(4) is consistent with
that of equation (22).
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