REFERENCES
Adair, E. C., Reich, P. B., Hobbie, S. E., Knops, J. M. H. (2009).
Interactive effects of time, CO2, N, and diversity on
total belowground carbon allocation and ecosystem carbon storage in a
grassland community. Ecosystems , 12 , 1037-1052.
https://doi.org/10.1007/s10021-009-9278-9
Aye, N. S., Butterly, C. R., Sale, P. W. G., & Tang, C. X. (2018).
Interactive effects of initial pH and nitrogen status on soil organic
carbon priming by glucose and lignocelluloses. Soil Biology and
Biochemistry , 123 , 33-44.
https://doi.org/10.1016/j.soilbio.2018.04.027
Baumann, K., Marschner, P., Smernik, R. J., & Baldock, J. A. (2009).
Residue chemistry and microbial community structure during decomposition
of eucalypt, wheat and vetch residues. Soil Biology and
Biochemistry , 41 , 1966-1975.
https://doi.org/10.1016/j.soilbio.2009.06.022
Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T. H., Kuzyakov, Y.
(2007). Priming effects in Chernozem induced by glucose and N in
relation to microbial growth strategies. Applied Soil Ecology ,37 , 95-105. https://doi.org/10.1016/j.apsoil.2007.05.002
Blagodatskaya, E., & Kuzyakov, Y., 2008. Mechanisms of real and
apparent priming effects and their dependence on soil microbial biomass
and community structure: critical review. Biology and Fertility of
Soils , 45 , 115-131. http:// doi.org/ 10.1007/s00374-008-0334-y
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I.,
Blagodatsky, S., Kuzyakov, Y. (2014). Microbial interactions affect
sources of priming induced by cellulose. Soil Biology and
Biochemistry , 74 , 39-49. http:// doi.org/10.1016/j.
soilbio.2014.02.017
Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S., Seabloom,
E. W. (2017). A decade of insights into grassland ecosystem responses to
global environmental change. Nature Ecology and Evolution ,1 , 0118. https://doi.org/10.1038/s41559-017-0118
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K.,
Lin, X., Blagodatskaya, E., Kuzyakov, Y. (2014). Soil C and N
availability determine the priming effect: microbial N mining and
stoichiometric decomposition theories. Global Change Biology ,20 , 2356-2367. http:// doi.org/10.1111/gcb.12475
Chen, Y. L., Chen, L. Y., Peng, Y. F., Ding, J. Z., Li, F., Yang, G. B.,
Liu, L., Fang, K., Zhang, B. B., Wang, J., Yang, Y. H. (2016). Linking
microbial C:N:P stoichiometry to microbial community and abiotic factors
along a 3500-km grassland transect on the Tibetan Plateau. Global
Ecology and Biogeography , 25 , 1416-1427.
https://doi.org/10.1111/geb.12500
Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is
there a “Redfield ratio” for the microbial biomass?Biogeochemistry , 85 , 235-252.
https://doi.org/10.2307/20456544
Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen
limitation increases decomposition. Ecology , 88 ,
2105-2113. https://doi.org/10.1890/06-1847.1
Crowther, T.W., Riggs, C., Lind, E.M., Borer, E.T., Seabloom, E.W.,
Hobbie, S.E., Wubs, J., Adler, P.B., Firn, J., Gherardi, L., Hagenah,
N., Hofmockel, K.S., Knops, J. M.H., McCulley, R.L., McDougall, A.,
Peri, P.L., Prober, S.M., Stevens, C.J., & Routh, D. (2019).
Sensitivity of global soil carbon stocks to combined nutrient
enrichment. Ecology Letters , 22 , 936-945.
https://doi.org/10.1111/ele.13258
Di Lonardo, D. P., Boer, W. D., Klein Gunnewiek, P. J. A., Hannula, S.
E., Van der Wal, A. (2017). Priming of soil organic matter: Chemical
structure of added compounds is more important than the energy content.Soil Biology and Biochemistry , 108 , 41-54.
https://doi.org/10.1016/j.soilbio.2017.01.017
Diamond, S., Andeer, P. F., Li, Z., Crits-Christoph, A., Burstein, D.,
Anantharaman, K., Lane, K. R., Thomas, B. C., Pan, C., Northern, T. R.,
& Banfield, J. F. (2019). Mediterranean grassland soil C-N compound
turnover is dependent on rainfall and depth, and is mediated by
genomically divergent microorganisms. Nature microbiology ,4 , 1356-1367. https://doi.org/10.1038/s41564-019-0449-y
Fayiah, M., Dong S. K., Khomera, S. W., Ur Rehman, S. A., Yang, M. Y.,
& Xiao, J. N. (2020). Status and challenges of Qinghai-Tibet Plateau’s
grasslands: an analysis of causes, mitigation measures, and way forward.Sustainability , 12 , 1099.
http://doi.org/10.3390/su12031099
Fontaine, S., Bardoux, G., Abbadie, L., & Mariotti, A. (2004). Carbon
input to soil may decrease soil carbon content. Ecology Letters ,7 , 314-320. https://doi.org/10.1111/j.1461-0248.2004.00579.x
Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J. M. G.,
Maire, V., Mary, B., Revaillot, S., & Maron, P. A. (2011). Fungi
mediate long term sequestration of carbon and nitrogen in soil through
their priming effect. Soil Biology and Biochemistry , 43 ,
86-96. https://doi.org/10.1016/j.soilbio.2010.09.017
Fontaine, S., Mariottib, A., Abbadie, L. (2003). The priming effect of
organic matter: a question of microbial competition? Soil Biology
and Biochemistry , 35 , 837-843.
http://doi.org/10.1016/S0038-0717(03)00123-8
Fornara, D. A., Banin, L., & Crwley, M. J. (2013). Multi-nutrient vs.
nitrogen-only effects on carbon sequestration in grassland soils.Global Change Biology , 19 , 3848-3857.
https://doi.org/10.1111/gcb.12323
Fornara, D.A., & Tilman, D. (2012). Soil carbon sequestration in
prairie grasslands increased by chronic nitrogen addition.Ecology , 93 , 2030-2036. https://doi.org/10.1890/12-0292.1
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z.
C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M.
A. (2008). Transformation of the nitrogen cycle: recent trends,
questions, and potential solutions. Science , 320 , 889-892.
http://doi.org/10.1126/science.1136674
Geyer, K. M., Kyker-Snowman, E., Grandy, A. S., Frey, S. D. (2016).
Microbial carbon use efficiency: accounting for population, community,
and ecosystem-scale controls over the fate of metabolized organic
matter. Biogeochemistry , 127 , 173-188.
http://doi.org/10.1007/s10533-016-0191-y
Hou, Y. L. (2018). Effect of fertilization on carbon components in soil
aggregates and decomposition dynamic of soil organic carbon in alpine
meadows on the Qinghai-Tibetan Plateau. Lanzhou: MSc Dissertation,
Lanzhou University.
Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., &
Binder, S. (2013). Nutrient enrichment, biodiversity loss, and
consequent declines in ecosystem productivity. Proceedings of
National Academy of Sciences , 110 , 11911-11916.
http://doi.org/10.1073/pnas.1310880110.
http://doi.org/10.1073/pnas.1310880110
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., Piñeiro, G. (2017). The ecology of soil carbon: pools,
vulnerabilities, and biotic and abiotic controls. Annual Review of
Ecology, Evolution, and Systematics , 48 , 419-445.
https://doi.org/10.1146/annurev-ecolsys-112414- 054234
Kuzyakov, Y. (2010). Priming effects: interactions between living and
dead organic matter. Soil Biology and Biochemistry , 42 ,
1363-1371. http://doi.org/10.1016/j.soilbio.2010.04.003
Kuzyakov, Y., & Bol, R. (2006). Sources and mechanisms of priming
effect induced in two grassland soils amended with slurry and sugar.Soil Biology and Biochemistry , 38 , 747-758.
https://doi.org/10.1016/j.soilbio.2005.06.025
Kuzyakov, Y., Friedel, J.K., & Stahr, K. (2000). Review of mechanisms
and quantification of priming effects. Soil Biology and
Biochemistry , 32 , 1485-1498.
https://doi.org/10.1016/S0038-0717(00)00084-5
Leff, J. W., Jones, S. E., Prober, S. M., Barberan, A., Borer. E. T.,
Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J.
M. H., McCulley, R. L., Pierre, K. L., Risch, A. C., Seabloom, E. W.,
Schütz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015).
Consistent responses of soil microbial communities to elevated nutrient
inputs in grasslands across the globe. Proceedings of National
Academy of Sciences , 112 , 10967-10972.
http://doi.org/10.1073/pnas.1508382112.
Li, H., Yang, S., Xu, Z. W., Yan, Q. Y., Li, X. B., van Nostrand, J. D.,
He, Z. L., Yao, F., Han, X. G., Zhou, J. Z., Deng, Y., & Jiang, Y.
(2017). Responses of soil microbial functional genes to global changes
are indirectly influenced by aboveground plant biomass variation.Soil Biology and Biochemistry , 104 , 18-29. http://doi.org/
10.1016/j.soilbio.2016.10.009
Li, J. H., Hou, Y. L., Zhang, S. X., Li, W. J., Xu, D. H., Knops, J. M.
H., & Shi, X. M. (2018a). Fertilization with nitrogen and/or phosphorus
lowers soil organic carbon sequestration in alpine meadows. Land
Degradation & Development , 29 , 1634-1641.
http://doi.org/10.1002/ldr.2961
Li, J. H., Li, F., Chen, S., Li, W. J., Abbott, L. K., & Knops, J. M.
H. (2018b). Nitrogen additions promote decomposition of soil organic
carbon in a Tibetan alpine meadow. Soil Science Society of America
Journal , 82 , 614-621. http://doi.org/10.2136/sssaj2017.12.0417
Li, J. H., Yang, Y. J., Li, B. W., Li, W. J., Wang, G., & Knops, J. M.
H. (2014). Effects of nitrogen and phosphorus fertilization on soil
carbon fractions in alpine meadows on the Qinghai-Tibetan plateau. PLoS
One, 9(7), e103266. https://doi.org/10.1371/journal.pone.0103266
Lin, Y. X., Ye, G. P., Kuzyakov, Y., Liu, D. Y., Fan, J. B., & Ding, W.
X. (2019). Long-term manure application increases soil organic matter
and aggregation, and alters microbial community structure and keystone
taxa. Soil Biology and Biochemistry , 134 , 187-196.
http://doi.org/10.1016/j.soilbio.2019.03.030
Liu, X. J., Zhang, Y., Han, W. H., Tang, A. H., Shen, J. L., Cui, Z. L.,
Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A.,
& Zhang, F. S. (2013). Enhanced nitrogen deposition over China. Nature
494(7438):459-462. https://doi.org/10.1038/nature11917
Liu, L. L., & Greaver, T. L. (2010). A global perspective on
belowground carbon dynamics under nitrogen enrichment. Ecology
Letters , 13 , 819-828.
http://doi.org/10.1111/j.1461-0248.2010.01482.x
Liu, S., Zamanian, K., Schleuss, P., Zarebanadkouki, M., & Kuzyakov, Y.
(2018). Degradation of Tibetan grasslands: consequences for carbon and
nutrient cycles. Agriculture Ecosystem & Environment ,252 , 93-104. http://doi.org/10.1016/j.agee.2017.10.011
Luo, R. Y., Fan, J. L., Wang, W. J., Luo, J. F., Kuzyakov, Y., He, J.
S., Chu, H. Y., & Ding, W. X. (2019). Nitrogen and phosphorus
enrichment accelerates soil organic carbon loss in alpine grassland on
the Qinghai-Tibetan Plateau. The Science of the Total
Environment , 650 , 303-312.
https://doi.org/10.1016/j.scitotenv.2018.09.038
Luo, R. Y., Kuzyakov, Y., Liu, D. Y., Fan, J. L., Luo, J. F., Lindsey,
S., He, J. S., & Ding, W. X. (2020). Nutrient addition reduces carbon
sequestration in a Tibetan grassland soil: Disentangling microbial and
physical controls. Soil Biology and Biochemistry , 144 ,
107764. https://doi.org/10.1016/j.soilbio.2020.107764
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., shaver G. S., &
Chapin III, F. S. (2004). Ecosystem carbon storage in arctic tundra
reduced by long term nutrient fertilization. Nature , 431 ,
440-443. https://doi.org/10.1038/nature02887
Nottingham, A. T., Griffiths, H., Chamberlain, P. M., Stott, A. W.,
Tanner, E. V. J. (2009). Soil priming by sugar and leaf-litter
substrates: A link to microbial groups. Applied Soil Ecology ,42 , 83-90. https://doi.org/10.1016/j.apsoil.2009.03.003
Paterson, E., & Sim, A. (2013). Soil-specific response functions of
organic matter mineralization to the availability of labile carbon.Global Change Biology , 19 , 1562-1571.
https://doi.org/10.1111/gcb.12140
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., Kuzyakov, Y.
(2014). Labile carbon retention compensates for CO2released by priming in forest soils. Global Change Biology ,20, 1943-1954. http:// doi.org/10.1111/gcb.12458.
Ramirez, K. S., Craine, J. M., & Fierer, N. (2010). Nitrogen
fertilization inhibits soil microbial respiration regardless of the form
of nitrogen applied. Soil Biology and Biochemistry , 42 ,
2336-2338. http://doi.org/ 10.1016/j.soilbio.2010.08.032
Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects
of nitrogen amendments on soil microbial communities and processes
across biomes. Global Change Biology, 18, 1918-1927.
https://doi.org/10.1111/j.1365-2486.2012.02639.x
Razanamalala, K., Fanomezana, R. A., Razafimbelo, T., Chevallier, T.,
Trap, J., Blanchart, E., & Bernard, L. (2018). The priming effect
generated by stoichiometric decomposition and nutrient mining in
cultivated tropical soils: Actors and drivers. Applied Soil
Ecology , 126 , 21-33.
https://doi.org/10.1016/j.apsoil.2018.02.008
Reid, J. P., Adair, E. C., Hobbie, S. E., Reich, P. B. (2012).
Biodiversity, nitrogen deposition, and CO2 affect
grassland soil carbon cycling but not storage. Ecosystems ,15 , 580-590. https://doi.org/10.1007/s10021-012-9532-4
Riggs, C. E., & Hobbie, S. E. (2016). Mechanisms driving the soil
organic matter decomposition response to nitrogen enrichment in
grassland soils. Soil Biology and Biochemistry , 99 , 54-65.
http://doi.org/10.1016/j.soilbio.2016.04.023
Riggs, C. E., Hobbie, S. E., Bach, E. M., Hofmockel, K. S., & Kazanski,
C. E. (2015). Nitrogen addition changes grassland soil organic matter
decomposition. Biogeochemistry , 125 , 203-219.
https://doi.org/10.1007/s10533‐015‐0123‐2
Sokol, N. W., Sanderman, J., & Bradford, M. A. (2019). Pathways of
mineral-associated soil organic matter formation: integrating the role
of plant carbon source, chemistry, and point of entry. Global
Change Biology , 25 , 12-24. https://doi.org/10.1111/gcb.14482
Soudzilovskaia, N. A., Onipchenko, V. G., Cornelissen, J. H. C., &
Aerts, R. (2007). Effects of fertilization and irrigation on ‘foliar
afterlife’ in alpine tundra. Journal of Vegetation Science ,18 , 755-766. http://doi.org/10.1111/j.1654-1103.2007.tb02591.x.
Wang, H., Boutton, T. W., Xu, W. H., Hu, G. Q., Jiang, P., & Bai, E.
(2015). Quality of fresh organic matter affects priming of soil organic
matter and substrate utilization patterns of microbes. Scientific
Reports , 5 , 10102 . http://doi.org/10.1038/srep10102
Wen, L., Dong, S. K., Li, Y. Y., Wang, X. X., Li, X. Y., Shi, J. J., &
Dong, Q. M. (2013). The impact of land degradation on the C pools in
alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil ,368 , 329-340. http://doi.org/10.1007/s11104-012-1500-4
Werth, M., & Kuzyakov, Y. (2010). 13C fractionation
at the root-microorganisms-soil interface: a review and outlook for
partitioning studies. Soil Biology and Biochemistry , 42 ,
1372-1384. https://doi.org/10.1016/j.soilbio.2010.04.009
Wild, B., Schnecker, J., Alves, R. J. E., Barsukov, P., Bárta, J.,
Capek, P., Gentsch, N., Gittel, A., Guggenberger, G., Lashchinsky, N.,
Mikutta, R., Rusalimova, O., Santrucková, H., Shibistova, O., Urich, T.,
Watzka, M., Zrazhevskaya, G., & Richter, A. (2014). Input of easily
available organic C and N stimulates microbial decomposition of soil
organic matter in arctic permafrost soil. Soil Biology and
Biochemistry , 75 , 143-151.
http://doi.org/10.1016/j.soilbio.2014.04.014
Wu, L. W., Yang, Y. F., Wang, S. P., Yue, H. W., Lin, Q.Y., Hu, Y.G. ,
He, Z. L., Nostrand, J. D. V., Hale, L., Li, X. Z., Gilbert, J. A., &
Zhou, J. Z. (2017). Alpine soil carbon is vulnerable to rapid microbial
decomposition under climate cooling. The ISME Journal , 11 ,
2102-2111. https://doi.org/10.1038/ismej.2017.75
Yang, Y. H., Fang, J. Y., Tang, Y. H., Ji, C. J., Zheng, C. Y., He, J.
S., & Zhu, B. (2008). Storage, patterns and controls of soil organic
carbon in the Tibetan grasslands. Global Change Biology ,14 , 1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x
Zeng, J., Liu, X. J., Song, L., Lin, X. G., Zhang, H. Y., Shen, C. C, &
Chu, H. Y. (2016). Nitrogen fertilization directly affects soil
bacterial diversity and indirectly affects bacterial community
composition. Soil Biology and Biochemistry , 92 , 41-49.
http://doi.org/10.1016/j.soilbio.2015.09.018
Zhang, T. A., Chen, Y. H., & Ruan H. H. (2018). Global negative effects
of nitrogen deposition on soil microbes. The ISME Journal ,12 , 1817-1825. http://doi.org/10.1038/s41396-018-0096-y
Zhao, H., Sun, J., Xu, X. L., & Qin, X. J. (2017). Stoichiometry of
soil microbial biomass carbon and microbial biomass nitrogen in China’s
temperate and alpine grasslands. European Journal of Soil
Biology , 83 , 1-8. https://doi.org/10.1016/j.ejsobi.2017.09.007
Zhu, Z. K., Ge, T. D., Luo, Y., Liu, S. L., Xu, X. L., Tong C. L,
Shibistova, O., Guggenberger, G., & Wu, J. S. (2018). Microbial
stoichiometric flexibility regulates rice straw mineralization and its
priming effect in paddy soil. Soil Biology and Biochemistry ,121 , 67-76. https://doi.org/10.1016/j.soilbio.2018.03.003
Table 1 Correlations between priming effects (PEs) and
stoichiometric properties of soil and microorganisms