Acknowledgments
This work was supported by grants from the National Key Research and
Development Program of China (2016YFD0100506), the Foundation for Young
Scientists of BAAFS (QNJJ202033), and the Natural Science Foundation of
China (31772307).
References
Alvarez, F., & Loyola, A. (2017). Histone Variants: Structure,
Function, and Implication in Diseases: Wile-VCH Verlag GmbH & Co. KGaA.
doi:10.1002/9783527697274.ch7
Andres, F., & Coupland, G. (2012). The genetic basis of flowering
responses to seasonal cues. Nature Reviews Genetics, 13 (9),
627-639. doi:10.1038/nrg3291
Araus, J., Slafer, G., Reynolds, M., & Royo, C. (2002). Plant breeding
and drought in C3 cereals: what should we breed for? Annals of
Botany, 89 , 925-940. doi:10.1093/aob/mcf049
Blanvillain, R., Wei, S., Wei, P., Kim, J. H., & Ow, D. W. (2011).
Stress tolerance to stress escape in plants: role of the OXS2
zinc-finger transcription factor family. Embo journal, 30 (18),
3812-3822. doi:10.1038/emboj.2011.270
Buckley, T. N., Sack, L., & Farquhar, G. D. (2017). Optimal plant water
economy. Plant Cell and Environment, 40 (6), 881-896.
doi:10.1111/pce.12823
Chen, Z., Zhang, H., Jablonowski, D., Zhou, X., Ren, X., Hong, X., . . .
Gong, Z. (2006). Mutations in ABO1/ELO2, a subunit of Holo-Elongator,
increase abscisic acid sensitivity and drought tolerance inArabidopsis thaliana . Molecular and Cellular Biology,
26 (18), 6902-6912. doi:10.1128/MCB.00433-06
De Lucia, F., Crevillen, P., Jones, A. M., Greb, T., & Dean, C. (2008).
A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of
FLC during vernalization. Proceedings of the National Academy of
Sciences, 105 (44), 16831-16836. doi:10.1073/pnas.0808687105
Dong, Q., Wang, Y., Qi, S., Gai, K., He, Q., & Wang, Y. (2018). Histone
variant H2A.Z antagonizes the positive effect of the transcriptional
activator CPC1 to regulate catalase-3 expression under normal and
oxidative stress conditions. Free Radical Biology and Medicine,
121 , 136-148. doi:10.1016/j.freeradbiomed.2018.05.003
Du, H., Huang, F., Wu, N., Li, X., Hu, H., & Xiong, L. (2018).
Integrative regulation of drought escape through ABA-Dependent and
-Independent pathways in rice. Molecular Plant, 11 (4), 584-597.
doi:10.1016/j.molp.2018.01.004
Fang, Y., & Xiong, L. (2014). General mechanisms of drought response
and their application in drought resistance improvement in plants.Cellular and Molecular Life Sciences CMLS, 72 (4), 673.
doi:10.1007/s00018-014-1767-0
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: control
of flowering in Arabidopsis. Cell, 141 (3), 0-550000.
doi:10.1016/j.cell.2010.04.024
Franks, S. J., & Weis, A. E. (2008). A change in climate causes rapid
evolution of multiple life-history traits and their interactions in an
annual plant. Journal of Evolutionary Biology, 21 (5), 1321-1334.
doi:10.1111/j.1420-9101.2008.01566.x
Gechev, T. S., Dinakar, C., Benina, M., Toneva, V., & Bartels, D.
(2012). Molecular mechanisms of desiccation tolerance in resurrection
plants. Cellular and Molecular Life Sciences, 69 (19), 3175-3186.
doi:10.1007/s00018-012-1088-0
He, Y., Michaels, S. D., & Amasino, R. M. (2003). Regulation of
flowering time by histone acetylation in Arabidopsis. Science,
302 (5651), 1751-1754. doi:10.1126/science.1091109
Hwang, K., Susila, H., Nasim, Z., Jung, J. Y., & Ahn, J. H. (2019).
Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC
complex to regulate SOC1 expression and mediate drought-accelerated
flowering. Molecular Plant, 12 (4), 489-505.
doi:10.1016/j.molp.2019.01.002
Jiang, D., & Berger, F. (2017). Histone variants in plant
transcriptional regulation. Biochimica Et Biophysica Acta-Gene
Regulatory Mechanisms, 1860 (1), 123-130.
doi:10.1016/j.bbagrm.2016.07.002
Kang, M. J., Jin, H. S., Noh, Y. S., & Noh, B. (2015). Repression of
flowering under a noninductive photoperiod by the HDA9-AGL19-FT module
in Arabidopsis. New Phytologist, 206 (1), 281-294.
doi:10.1111/nph.13161
Kawashima, T., Lorković, Z., Nishihama, R., Ishizaki, K., Axelsson, E.,
Yelagandula, R., . . . Berger, F. (2015). Diversification of histone H2A
variants during plant evolution. Trends in Plant Science, 20 (7),
419-425. doi:10.1016/j.tplants.2015.04.005
Kim, J. M., To, T. K., Matsui, A., Tanoi, K., Kobayashi, N. I., Matsuda,
F., . . . Seki, M. (2017). Acetate-mediated novel survival strategy
against drought in plants. Nature Plants, 17 (3), 17097.
doi:10.1038/nplants.2017.97
Kim, Y. J., Wang, R., Gao, l., Li, D., Xu, C., Mang, H., . . . Chen, X.
(2016). POWERDRESS and HDA9 interact and promote histone H3
deacetylation at specific genomic sites in Arabidopsis.Proceedings of the National Academy of Sciences, 113 (51),
14858-14863. doi:10.1073/pnas.1618618114
Lee, H., Suh, S. S., Park, E., Cho, E., Ahn, J. H., Kim, S. G., . . .
Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates
floral inductive pathways in Arabidopsis. Genes & Development,
14 (18), 2366-2376. doi:10.1101/gad.813600
Leung, J., & Giraudat, J. (1998). Abscisic acid signal transduction.Annual Review of Plant Physiology & Plant Molecular Biology, 49 ,
199-222. doi:10.1146/annurev.arplant.49.1.199
Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015).
Function of ABA in stomatal defense against biotic and drought stresses.International Journal of Molecular Sciences, 16 (7), 15251-15270.
doi:10.3390/ijms160715251
Linster, E., Stephan, I., Bienvenut, W. V., Maple-Grodem, J., Myklebust,
L. M., Huber, M., . . . Wirtz, M. (2015). Downregulation of N-terminal
acetylation triggers ABA-mediated drought responses in Arabidopsis.Nature Communications, 17 (6), 7640. doi:10.1038/ncomms8640
Liu, C., Lu, F., Cui, X., & Cao, X. (2010). Histone methylation in
higher plants. Annual Review of Plant Biology, 61 (1), 395-420.
doi:10.1146/annurev.arplant.043008.091939
Luo, M., Tai, R., Yu, C.-W., Yang, S., Chen, C., Lin, W.-D., . . . Wu,
K. (2015). Regulation of flowering time by the histone deacetylase HDA5
in Arabidopsis. Plant Journal, 82 (6), 925-936.
doi:10.1111/tpj.12868
Melters, D. P., Pitman, M., Rakshit, T., Dimitriadis, E. K., Bui, M.,
Papoian, G. A., & Dalal, Y. (2019). Intrinsic elasticity of nucleosomes
is encoded by histone variants and calibrated by their binding partners.Proceedings of the National Academy of Sciences, 116 (48),
24066-24074. doi:10.1073/pnas.1911880116
Riboni, M., Galbiati, M., Tonelli, C., & Conti, L. (2013). GIGANTEA
enables drought escape response via abscisic acid-dependent activation
of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS.Plant Physiology, 162 (3), 1706-1719. doi:10.1104/pp.113.217729
Riboni, M., Robustelli Test, A., Galbiati, M., Tonelli, C., & Conti, L.
(2016). ABA-dependent control of GIGANTEA signalling enables drought
escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.Journal of Experimental Botany, 67 (22), 6309-6322.
doi:10.1093/jxb/erw384
Servet, C., Benhamed, M., Latrasse, D., Kim, W., Delarue, M., & Zhou,
D. X. (2008). Characterization of a phosphatase 2C protein as an
interacting partner of the histone acetyltransferase GCN5 in
Arabidopsis. Biochimica Et Biophysica Acta-Biomembranes, 1779(6-7), 376-382. doi:10.1016/j.bbagrm.2008.04.007
Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific
histone acetylation and deacetylation. Annual Review of
Biochemistry, 76 , 75-100. doi:10.1146/annurev.biochem.76.052705.162114
Su, T., Li, P., Wang, H., Wang, W., Zhao, X., Yu, Y., . . . Zhang, F.
(2019). Natural variation in a calreticulin gene causes reduced
resistance to Ca(2+) deficiency-induced tipburn in Chinese cabbage
(Brassica rapa ssp. pekinensis ). Plant Cell and
Environment, 42 (11), 3044-3060. doi:10.1111/pce.13612
Su, T., Wang, W., Li, P., Zhang, B., Li, P., Xin, X., . . . Zhang, F.
(2018). A genomic variation map provides insights into the genetic basis
of spring Chinese cabbage (Brassica rapa ssp. pekinensis )
Selection. Molecular Plant, 11 (11), 1360-1376.
doi:10.1016/j.molp.2018.08.006
Sullivan, S., & Landsman, D. (2003). Characterization of sequence
variability in nucleosome core histone folds. Proteins, 52 (3),
454-465. doi:10.1002/prot.10441
Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis
thaliana is mediated by the PHD finger protein VIN3. Nature,
427 (6970), 159-164. doi:10.1038/nature02195
Sura, W., Kabza, M., Karlowski, W., Bieluszewski, T., Kus-Slowinska, M.,
Pawełoszek, Ł., . . . Ziolkowski, P. (2017). Dual role of the histone
variant H2A.Z in transcriptional regulation of stress-response genes.Plant Cell, 29 (4), 791-807. doi:10.1105/tpc.16.00573
Tenea, G. N., Spantzel, J., Lee, L. Y., Zhu, Y., Lin, K., Johnson, S.
J., & Gelvin, S. B. (2009). Overexpression of several Arabidopsis
histone genes increases agrobacterium-mediated transformation and
transgene expression in plants. Plant Cell, 21 (10), 3350-3367.
doi:10.1105/tpc.109.070607
Versées, W., Groeve, S., & Lijsebettens, M. (2010). Elongator, a
conserved multitasking complex? Molecular Microbiology, 76 (5),
1065-1069. doi:10.1111/j.1365-2958.2010.07162.x
Verslues, P., & Juenger, T. (2011). Drought, metabolites, and
Arabidopsis natural variation: A promising combination for understanding
adaptation to water-limited environments. Current Opinion in Plant
Biologyl, 14 (3), 240-245. doi:10.1016/j.pbi.2011.04.006
Vurukonda, S., Vardharajula, S., Shrivastava, M., & Skz, A. (2015).
Enhancement of drought stress tolerance in crops by plant growth
promoting rhizobacteria. Microbiological Research, 184 , 13-24.
doi:10.1016/j.micres.2015.12.003
Weber, C. M., & Henikoff, S. (2014). Histone variants: dynamic
punctuation in transcription. Genes & Development, 28 (7),
672-682. doi:10.1101/gad.238873.114
Wood, C. C., Robertson, M., Tanner, G., Peacock, W. J., Dennis, E. S.,
& Helliwell, C. A. (2006). The Arabidopsis thalianavernalization response requires a polycomb-like protein complex that
also includes VERNALIZATION INSENSITIVE 3. Proceedings of the
National Academy of Sciences, 103 (39), 14631-14636.
doi:10.1073/pnas.0606385103
Wu, K., Zhang, L., Zhou, C., Yu, C.-W., & Chaikam, V. (2008). HDA6 is
required for jasmonate response, senescence and flowering in
Arabidopsis. Journal of Experimental Botany, 59 (2), 225-234.
doi:10.1093/jxb/erm300
Xiao, J., Zhang, H., Xing, L., Xu, S., Liu, H., Chong, K., & Xu, Y.
(2013). Requirement of histone acetyltransferases HAM1 and HAM2 for
epigenetic modification of FLC in regulating flowering in
Arabidopsis. Journal of Plant Physiology, 170 (4), 444-451.
doi:10.1016/j.jplph.2012.11.007
Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing down
the targets: towards successful genetic engineering of drought-tolerant
crops. Molecular Plant, 3 (3), 469-490. doi: 10.1093/mp/ssq016
Yu, C. W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., . . . Wu, K.
(2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and
regulates flowering in Arabidopsis. Plant Physiology, 156 (1),
173-184. doi:10.1104/pp.111.174417
Yuan, L., Liu, X., Luo, M., Yang, S., & Wu, K. (2013). Involvement of
histone modifications in plant abiotic stress responses. Journal
of Integrative Plant Biology, 55 (10), 892-901. doi:10.1111/jipb.12060
Zhou, X., Hua, D., Chen, Z., Zhou, Z., & Gong, Z. (2009). Elongator
mediates ABA responses, oxidative stress resistance and anthocyanin
biosynthesis in Arabidopsis. Plant Journal, 60 (1), 79-90.
doi:10.1111/j.1365-313X.2009.03931.x