Acknowledgments

This work was supported by grants from the National Key Research and Development Program of China (2016YFD0100506), the Foundation for Young Scientists of BAAFS (QNJJ202033), and the Natural Science Foundation of China (31772307).

References

Alvarez, F., & Loyola, A. (2017). Histone Variants: Structure, Function, and Implication in Diseases: Wile-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527697274.ch7
Andres, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13 (9), 627-639. doi:10.1038/nrg3291
Araus, J., Slafer, G., Reynolds, M., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89 , 925-940. doi:10.1093/aob/mcf049
Blanvillain, R., Wei, S., Wei, P., Kim, J. H., & Ow, D. W. (2011). Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. Embo journal, 30 (18), 3812-3822. doi:10.1038/emboj.2011.270
Buckley, T. N., Sack, L., & Farquhar, G. D. (2017). Optimal plant water economy. Plant Cell and Environment, 40 (6), 881-896. doi:10.1111/pce.12823
Chen, Z., Zhang, H., Jablonowski, D., Zhou, X., Ren, X., Hong, X., . . . Gong, Z. (2006). Mutations in ABO1/ELO2, a subunit of Holo-Elongator, increase abscisic acid sensitivity and drought tolerance inArabidopsis thaliana . Molecular and Cellular Biology, 26 (18), 6902-6912. doi:10.1128/MCB.00433-06
De Lucia, F., Crevillen, P., Jones, A. M., Greb, T., & Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proceedings of the National Academy of Sciences, 105 (44), 16831-16836. doi:10.1073/pnas.0808687105
Dong, Q., Wang, Y., Qi, S., Gai, K., He, Q., & Wang, Y. (2018). Histone variant H2A.Z antagonizes the positive effect of the transcriptional activator CPC1 to regulate catalase-3 expression under normal and oxidative stress conditions. Free Radical Biology and Medicine, 121 , 136-148. doi:10.1016/j.freeradbiomed.2018.05.003
Du, H., Huang, F., Wu, N., Li, X., Hu, H., & Xiong, L. (2018). Integrative regulation of drought escape through ABA-Dependent and -Independent pathways in rice. Molecular Plant, 11 (4), 584-597. doi:10.1016/j.molp.2018.01.004
Fang, Y., & Xiong, L. (2014). General mechanisms of drought response and their application in drought resistance improvement in plants.Cellular and Molecular Life Sciences CMLS, 72 (4), 673. doi:10.1007/s00018-014-1767-0
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: control of flowering in Arabidopsis. Cell, 141 (3), 0-550000. doi:10.1016/j.cell.2010.04.024
Franks, S. J., & Weis, A. E. (2008). A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. Journal of Evolutionary Biology, 21 (5), 1321-1334. doi:10.1111/j.1420-9101.2008.01566.x
Gechev, T. S., Dinakar, C., Benina, M., Toneva, V., & Bartels, D. (2012). Molecular mechanisms of desiccation tolerance in resurrection plants. Cellular and Molecular Life Sciences, 69 (19), 3175-3186. doi:10.1007/s00018-012-1088-0
He, Y., Michaels, S. D., & Amasino, R. M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science, 302 (5651), 1751-1754. doi:10.1126/science.1091109
Hwang, K., Susila, H., Nasim, Z., Jung, J. Y., & Ahn, J. H. (2019). Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant, 12 (4), 489-505. doi:10.1016/j.molp.2019.01.002
Jiang, D., & Berger, F. (2017). Histone variants in plant transcriptional regulation. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1860 (1), 123-130. doi:10.1016/j.bbagrm.2016.07.002
Kang, M. J., Jin, H. S., Noh, Y. S., & Noh, B. (2015). Repression of flowering under a noninductive photoperiod by the HDA9-AGL19-FT module in Arabidopsis. New Phytologist, 206 (1), 281-294. doi:10.1111/nph.13161
Kawashima, T., Lorković, Z., Nishihama, R., Ishizaki, K., Axelsson, E., Yelagandula, R., . . . Berger, F. (2015). Diversification of histone H2A variants during plant evolution. Trends in Plant Science, 20 (7), 419-425. doi:10.1016/j.tplants.2015.04.005
Kim, J. M., To, T. K., Matsui, A., Tanoi, K., Kobayashi, N. I., Matsuda, F., . . . Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 17 (3), 17097. doi:10.1038/nplants.2017.97
Kim, Y. J., Wang, R., Gao, l., Li, D., Xu, C., Mang, H., . . . Chen, X. (2016). POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis.Proceedings of the National Academy of Sciences, 113 (51), 14858-14863. doi:10.1073/pnas.1618618114
Lee, H., Suh, S. S., Park, E., Cho, E., Ahn, J. H., Kim, S. G., . . . Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14 (18), 2366-2376. doi:10.1101/gad.813600
Leung, J., & Giraudat, J. (1998). Abscisic acid signal transduction.Annual Review of Plant Physiology & Plant Molecular Biology, 49 , 199-222. doi:10.1146/annurev.arplant.49.1.199
Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses.International Journal of Molecular Sciences, 16 (7), 15251-15270. doi:10.3390/ijms160715251
Linster, E., Stephan, I., Bienvenut, W. V., Maple-Grodem, J., Myklebust, L. M., Huber, M., . . . Wirtz, M. (2015). Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis.Nature Communications, 17 (6), 7640. doi:10.1038/ncomms8640
Liu, C., Lu, F., Cui, X., & Cao, X. (2010). Histone methylation in higher plants. Annual Review of Plant Biology, 61 (1), 395-420. doi:10.1146/annurev.arplant.043008.091939
Luo, M., Tai, R., Yu, C.-W., Yang, S., Chen, C., Lin, W.-D., . . . Wu, K. (2015). Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant Journal, 82 (6), 925-936. doi:10.1111/tpj.12868
Melters, D. P., Pitman, M., Rakshit, T., Dimitriadis, E. K., Bui, M., Papoian, G. A., & Dalal, Y. (2019). Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners.Proceedings of the National Academy of Sciences, 116 (48), 24066-24074. doi:10.1073/pnas.1911880116
Riboni, M., Galbiati, M., Tonelli, C., & Conti, L. (2013). GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS.Plant Physiology, 162 (3), 1706-1719. doi:10.1104/pp.113.217729
Riboni, M., Robustelli Test, A., Galbiati, M., Tonelli, C., & Conti, L. (2016). ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.Journal of Experimental Botany, 67 (22), 6309-6322. doi:10.1093/jxb/erw384
Servet, C., Benhamed, M., Latrasse, D., Kim, W., Delarue, M., & Zhou, D. X. (2008). Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochimica Et Biophysica Acta-Biomembranes, 1779(6-7), 376-382. doi:10.1016/j.bbagrm.2008.04.007
Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76 , 75-100. doi:10.1146/annurev.biochem.76.052705.162114
Su, T., Li, P., Wang, H., Wang, W., Zhao, X., Yu, Y., . . . Zhang, F. (2019). Natural variation in a calreticulin gene causes reduced resistance to Ca(2+) deficiency-induced tipburn in Chinese cabbage (Brassica rapa ssp. pekinensis ). Plant Cell and Environment, 42 (11), 3044-3060. doi:10.1111/pce.13612
Su, T., Wang, W., Li, P., Zhang, B., Li, P., Xin, X., . . . Zhang, F. (2018). A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis ) Selection. Molecular Plant, 11 (11), 1360-1376. doi:10.1016/j.molp.2018.08.006
Sullivan, S., & Landsman, D. (2003). Characterization of sequence variability in nucleosome core histone folds. Proteins, 52 (3), 454-465. doi:10.1002/prot.10441
Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427 (6970), 159-164. doi:10.1038/nature02195
Sura, W., Kabza, M., Karlowski, W., Bieluszewski, T., Kus-Slowinska, M., Pawełoszek, Ł., . . . Ziolkowski, P. (2017). Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes.Plant Cell, 29 (4), 791-807. doi:10.1105/tpc.16.00573
Tenea, G. N., Spantzel, J., Lee, L. Y., Zhu, Y., Lin, K., Johnson, S. J., & Gelvin, S. B. (2009). Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. Plant Cell, 21 (10), 3350-3367. doi:10.1105/tpc.109.070607
Versées, W., Groeve, S., & Lijsebettens, M. (2010). Elongator, a conserved multitasking complex? Molecular Microbiology, 76 (5), 1065-1069. doi:10.1111/j.1365-2958.2010.07162.x
Verslues, P., & Juenger, T. (2011). Drought, metabolites, and Arabidopsis natural variation: A promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biologyl, 14 (3), 240-245. doi:10.1016/j.pbi.2011.04.006
Vurukonda, S., Vardharajula, S., Shrivastava, M., & Skz, A. (2015). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184 , 13-24. doi:10.1016/j.micres.2015.12.003
Weber, C. M., & Henikoff, S. (2014). Histone variants: dynamic punctuation in transcription. Genes & Development, 28 (7), 672-682. doi:10.1101/gad.238873.114
Wood, C. C., Robertson, M., Tanner, G., Peacock, W. J., Dennis, E. S., & Helliwell, C. A. (2006). The Arabidopsis thalianavernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proceedings of the National Academy of Sciences, 103 (39), 14631-14636. doi:10.1073/pnas.0606385103
Wu, K., Zhang, L., Zhou, C., Yu, C.-W., & Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany, 59 (2), 225-234. doi:10.1093/jxb/erm300
Xiao, J., Zhang, H., Xing, L., Xu, S., Liu, H., Chong, K., & Xu, Y. (2013). Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. Journal of Plant Physiology, 170 (4), 444-451. doi:10.1016/j.jplph.2012.11.007
Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3 (3), 469-490. doi: 10.1093/mp/ssq016
Yu, C. W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., . . . Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology, 156 (1), 173-184. doi:10.1104/pp.111.174417
Yuan, L., Liu, X., Luo, M., Yang, S., & Wu, K. (2013). Involvement of histone modifications in plant abiotic stress responses. Journal of Integrative Plant Biology, 55 (10), 892-901. doi:10.1111/jipb.12060
Zhou, X., Hua, D., Chen, Z., Zhou, Z., & Gong, Z. (2009). Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant Journal, 60 (1), 79-90. doi:10.1111/j.1365-313X.2009.03931.x