REFERENCES
Ǻgren, G., Kleja, D., & Bosatta, E. (2018). Modeling Dissolved Organic
Carbon Production in Coniferous Forest Soils. Soil Science Society
of America Journal , 82 (1), 392-1403.
https://doi.org/10.2136/sssaj2017.11.0407
Bäumler, R. & Zech, W. (1997). Atmospheric deposition and impact of
forest thinning on the throughfall of mountain forest ecosystems in the
Bavarian Alps. Forest Ecology and Management , 95 (3),
243-251. https://doi.org/10.1016/S0378-1127(97)00039-X
Camino-Serrano, M., Gielen, B., Luyssaert, S., Ciais, P., Vicca, S.,
Guenet, B., … & Janssens, I. (2014). Linking variability in soil
solution dissolved organic carbon to climate, soil type, and vegetation
type. Global Biogeochemical Cycles , 28 (5), 497-509.
https://doi.org/10.1002/2013GB004726
Chaplot, V. & Ribolzi, O. (2014). Hydrograph separation to improve
understanding of Dissolved Organic Carbon Dynamics in Headwater
catchments. Hydrological Processes , 28 (21), 5354-5366.
https://doi.org/10.1002/hyp.10010
Chen, S., Yoshitake, S., Iimura, Y., Asai, C., & Ohtsuka, T., 2017.
Dissolved organic carbon (DOC) input to the soil: DOC fluxes and their
partitions during the growing season in a cool-temperate broad-leaved
deciduous forest, central Japan. Ecological Research ,32 (5), 713–724. https://doi.org/10.1007/s11284-017-1488-6
Coelho, C. H., Francisco, J. G., Nogueira, R. F. P., & Campos, M. L. A.
M., (2008). Dissolved organic carbon in rainwater from areas heavily
impacted by sugar cane burning. Atmospheric Environment ,42 (30), 7115–7121.
https://doi.org/10.1016/j.atmosenv.2008.05.072
Coelho Netto, A. L. (1987) Overlandfl ow production in a tropical
rainforest catchment: the role of litter cover. Catena ,14 (1-3), 213-231,
https://doi.org/10.1016/S0341-8162(87)80019-X
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L.
J., Striegl, R. G., … Melack, J. (2007). Plumbing the Global
Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon
Budget. Ecosystems , 10 (1), 172–185.
https://doi.org/10.1007/s10021-006-9013-8
Costa, E. N. D., Souza, J. C., Pereira, M. A., Souza, M. F. L., Souza,
W. F. L., & Silva, D. M. L., (2016). Influence of hydrological pathways
on dissolved organic carbon fluxes in tropical streams. Ecology
and Evolution , 7 , 228-239.
https://doi.org/10.1002/ece3.2543
Dawson, J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M.,
& Malcolm, I. A. (2008). Influence of hydrology and seasonality on DOC
exports from three contrasting upland catchments.Biogeochemistry , 90 (1), 93-113.
https://doi.org/10.1007/s10533-008-9234-3
Dereczynski, C. P., Oliveira, J. S., & Machado, C. O. (2009).
Precipitation climatology of the city of Rio de Janeiro. Brazilian
Journal of Meteorology , 24 (1), 24-38.
http://dx.doi.org/10.1590/S0102-77862009000100003
Dias, M. A. & Coelho Netto, A. N. (2011). A influência da topografia na
distribuição de gramíneas em um fragmento de Floresta Atlântica urbana
montanhosa – Maciço da Tijuca/RJ. Revista Brasileira de
Geomorfologia , 12 (2) 03-14.
http://dx.doi.org/10.20502/rbg.v12i2.230
Don, A., & Kalbitz, K. (2005). Amounts and degradability of dissolved
organic carbon from foliar litter at different decomposition stages.Soil Biology and Biochemistry , 37 (12), 2171–2179.
https://doi.org/10.1016/j.soilbio.2005.03.019
Drummond, J. (1996) The Garden in the Machine: An Environmental History
of Brazil’s Tijuca. Environmental History , 1 (1) 83-104.
Figueiredo, J. A., Menor, E. A., Taboada-Castro, M. T., Taboada-Castro,
M. M., Rodríguez-Blanco, M. L., Braga, E. S., (2014). Using
hydrogeochemical signatures of stream water to assess pathways for
rainfall events: toward a predictive model. Hydrological
Processes , 28 (4), 2301-2311.
https://doi.org/10.1002/hyp.9801
Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., Mulder, J. (2006).
Concentration and fluxes of dissolved organic carbon (DOC) in three
Norway spruce stands along a climatic gradient in Sweden.Biogeochemistry , 77 , 1-23.
https://doi.org/10.1007/s10533-004-0564-5
Fröberg, M., Hansson, K., Kleja, D.B., & Alavi, G. (2011). Dissolved
organic carbon and nitrogen leaching from Scots pine, Norway spruce, and
silver birch stands in southern Sweden. Forest ecology and
management , 262 (9), 1742-1747.
https://doi.org/10.1016/j.foreco.2011.07.033
Godoy-Silva, D., Nogueira, R. F. P., & Campos, M. L. A. M., 2017. A
13-year study of dissolved organic carbon in rainwater of an
agro-industrial region of São Paulo state (Brazil) heavily impacted by
biomass burning. Science of the Total Environment , 609 ,
476-483. Disponível:
https://doi.org/10.1016/j.scitotenv.2017.07.145
Guggenberger, G., & Zech, W. (1993). Dissolved organic carbon control
in acid forest soils of the Fichtelgebirge (Germany) as revealed by
distribution patterns and structural composition analyses.Geoderma , 59 (1-4), 109-129.
https://doi.org/10.1016/0016-7061(93)90065-S
Graeber, D., Poulsen, J. R., Heinz, M., Rasmussen, J. J., Zak, D.,
Gücker, B., … Kamjunke, N. (2018). Going with the flow:
Planktonic processing of dissolved organic carbon in streams.Science of The Total Environment , 625 , 519–530.
https://doi.org/10.1016/j.scitotenv.2017.12.285
Hafner, S. D., Groffman, P. M., & Mitchell, M. J. (2005). Leaching of
dissolved organic carbon, dissolved organic nitrogen, and other solutes
from coarse woody debris and litter in a mixed forest in New York State.Biogeochemistry , 74(2), 257-282.
http://www.jstor.org/stable/20055238
Hale, R. L. & Godsey, S. E. (2019). Dynamic stream network
intermittence explains emergent dissolved organic carbon chemostasis in
headwaters. Hydrological Processes , 33 (13), 1926-1936.
https://doi.org/10.1002/hyp.13455
Hongve, D., (1999). Production of dissolved organic carbon in forested
catchments. Journal of Hydrology , 224 (3-4) 91-99.
https://doi.org/10.1016/S0022-1694(99)00132-8
Iavorivska, L., Boyer, E. W., Grimm, J. W., Miller, M. P., DeWalle, D.
R., Davis, K. J., Kaye, M.W. (2017). Variability of dissolved organic
carbon in precipitation during storms at the Shale Hills Critical Zone
Observatory. Hydrological Processes , 31 (16), 2935-2950.
https://doi.org/10.1002/hyp.11235
Inagaki, M., Sakai, M., & Ohnuki, Y. (1995). The effects of organic
carbon on acid rain in a temperate forest in Japan. Water, Air,
and Soil Pollution , 85 (4), 2345-2350.
https://doi.org/10.1007/BF01186184
Jiang, R., Hatano, R., Zhao, Y., Kuramochi, K., Hayakawa, A., Woli, K.
P., & Shimizu, M. (2014). Factors controlling nitrogen and dissolved
organic carbon exports across timescales in two watersheds with
different land uses. Hydrological Processes , 28 (19),
5105-5121. https://doi.org/10.1002/hyp.9996
Kaiser, K., Guggenberger, G., & Zech, W. (1996). Sorption of DOM and
DOM fractions to forest soils. Geoderma , 74 (3-4), 281-303.
https://doi.org/10.1016/S0016-061(96)00071-7
Kaiser, K. & Guggenberger, G., (2007). Sorptive stabilization of
organic matter by microporous goethite: sorption into small pores vs.
surface complexation. European Journal of Soil Science ,58 (1): 45-59.
https://doi.org/10.1111/j.1365-2389.2006.00799.x
Kieber R. J., Peake B., Willey J. D., & Brooks A. G., (2002). Dissolved
organic carbon and organic acids in coastal New Zealand rainwater.Atmos Environment , 36 (21). 3557–3563.
https://doi.org/10.1016/S1352-2310(02)00273-X
Leinemann, T., Preusserb, S., Mikuttac, R., Kalbitzd, K., Cerlie, C.,
Höschenf, C., … Guggenbergera, G. (2018). Multiple exchange processes
on mineral surfaces control the transport of dissolved organic matter
through soil profiles. Soil Biology and Biochemistry , 118 ,
79–90. https://doi.org/10.1016/j.soilbio.2017.12.006
Ledesmaa, J., Futtera, M., Laudonb, H., Evans, C., & Köhler, S. (2016).
Boreal forest riparian zones regulate stream sulfate and dissolved
organic carbon. Science of the Total Environment , 560-561 ,
110–122. https://doi.org/10.1016/j.scitotenv.2016.03.230
Lee, M. H., Park, J. H., & Matzner, E. (2018). Sustained production of
dissolved organic carbon and nitrogen in forest floors during continuous
leaching. Geoderma , 310 , 163-169.
https://doi.org/10.1016/j.geoderma.2017.07.027
Li, C., Yan, F., Kang, S., Chen, P., Qu, B., Hu, Z., & Sillanpää, M.
(2016). Concentration, sources, and flux of dissolved organic carbon of
precipitation at Lhasa city, the Tibetan Plateau. Environmental
Science and Pollution Research , 23 (13), 12915-12921.
https://doi.org/10.1007/s11356-016-6455-1
Liu, C. P. & Sheu, B. H., (2003). Dissolved organic carbon in
precipitation, throughfall, stemflow, soil solution, and stream water at
the Guandaushi subtropical forest in Taiwan. Forest Ecology and
Management , 173 , 315-325.
https://doi.org/10.1016/S0378-1127(01)00793-9
Meyer, J. L., Mcdowell, W. H., Bott, T. L., Elwood, J. W., Ishizaki, C.,
Melack, J. M., … Rublee, P. A. (1988). Elemental dynamics in streams.Journal of the North American Benthological Society , 7, 410-432.
http://www.jstor.org/stable/1467299
Mcdowell, W. H. & Wood, T. (1984). Podzolization: soil processes
control dissolved organic carbon concentrations in stream water.Soil Science , 137 (1), 23-32.
Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., & Matzner, E.
(2001). Fluxes and concentrations of dissolved organic carbon and
nitrogen – a synthesis for temperate forests. Biogeochemistry ,52 (2), 173–205. https://doi.org/10.1023/a:1006441620810
Miranda, F. S. M. & Avelar, A., S. (2019). Dynamics of surface organic
matter conditioned by topography in the Atlantic Forest of the coastal
massif, PARNA-Tijuca, RJ. Revista Brasileira de Geomorfologia ,20 (3), 641-661. https://doi.org/10.20502/rbg.v20i3.1544
Moyer, R. P., Powell, C. E., Gordon, D. J., Long, J. S., & Bliss, C. M.
(2015). Abundance, distribution, and fluxes of dissolved organic carbon
(DOC) in four small sub-tropical rivers of the Tampa Bay Estuary
(Florida, USA). Applied Geochemistry , 63 , 550–562.
https://doi.org/10.1016/j.apgeochem.2015.05.004
Neff, J. C.; & Asner, G. P. (2001). Dissolved Organic Carbon in
Terrestrial Ecosystems: Synthesis and a Model. Ecosystems ,4 (1), 29-48. https://doi.org/10.1007/s100210000058
Negreiros, A. B. & Coelho Netto, A. N. (2009). Reabilitação funcional
de clareira de deslizamento em encosta íngreme no domínio da Floresta
Atlântica, Rio de Janeiro (RJ). Revista Brasileira de
Geomorfologia , 10 (1), 85-93.
https://doi.org/10.20502/rbg.v10i1.120
Nosrati, K., Govers, G., & Smolders, E. (2012). Dissolved organic
carbon concentrations and fluxes correlate with land use and catchment
characteristics in a semi-arid drainage basin of Iran. Catena ,95 , 177-183. https://doi.org/10.1016/j.catena.2012.02.019
Oni, S. K., Futter, M. N., Molot, L. A., Dillon, P. J., (2014).
Adjacents catchments with similar patterns of land use and climate have
markedly different dissolved organic carbon concentration and runoff
dynamics. Hydrological Processes , 28 (3), 1436-1449.
https://doi.org/10.1002/hyp.9681
Oliveira, R. R., Záu, A. S, Lima, D. F., Silva, M. B. R., Viana, M. C.,
Sodré, D. O. & Sampaio, P. D. (1995). Ecological significance of slope
orientation in the Tijuca Forest ecosystem (Rio de Janeiro, Brazil).Oecologia Brasiliensis , 1 (1), 523-542.
https://doi.org/10.4257/oeco.1995.0101.28
Ovalle, A. R. C. (1985). Geochemical study of fluvial waters of the
Upper Rio Cachoeira Basin, Tijuca National Park. Master Thesis in
Geochemistry, Fluminense Federal University (UFF).
Pan, Y., Wang, Y., Xin, J., Tang, G., Song, T., Wang, Y., … Wu, F.
(2010). Study on dissolved organic carbon in precipitation in Northern
China. Atmospheric Environment , 44 , 2350-2357.
https://doi.org/10.1016/j.atmosenv.2010.03.033
Park, J. & Matzner, E. (2003). Controls on the release of dissolved
organic carbon and nitrogen from a deciduous forest floor investigated
by manipulations of aboveground litter inputs and water flux.Biogeochemistry , 66 (3), 265-286.
https://doi.org/10.1023/B:BIOG.0000005341.19412.7b
Pregitzer, K. S. & Euskirchen, E. S. (2004) Carbon cycling and storage
in world forests: Biome patterns related to forest age. Global
Change Biology , 10 , 2052–2077.
https://doi.org/10.1111/j.1365-2486.2004.00866.x
Richter, D. D. & Markewitz, D. (1996). Carbon changes during the growth
of loblolly pine on formerly cultivated soil. The Calhoun Experimental
Forest, U.S.A. Advanced Science Institutes Series , 38 ,
397-407. https://doi.org/10.1007/978-3-642-61094-3_38
Roig-Planasdemunt, M., Llorens, P., & Latron, J., (2016). Seasonal and
stormflow dynamics of dissolved organic carbon in a Mediterranean
mountain catchment (Vallcebre, eastern Pyrenees). Hydrological
Sciences Journal , 62 (1), 50-63.
https://doi.org/10.1080/02626667.2016.1170942
Schmidt, B.H.M., Wang, C., Chang, S, Matzner, E. (2010). High
precipitation causes large fluxes of dissolved organic carbon and
nitrogen in a subtropical montane Chamaecyparis forest in Taiwan.Biogeochemistry , 101 (1-3), 243-256.
https://doi.org/10.1007/s10533-010-9470-1
Seekell, D.A., Lapierre, J.F., Ask, J., Bergström, A.K., Deininger, A.,
Rodríguez, P., Karlsson, J. (2015). The influence of dissolved organic
carbon on primary production in northern lakes. Limnology and
Oceanography , 60 (4), 1276–1285.
https://doi.org/10.1002/lno.10096
Singh, M., Sarkar, B., Biswas, B., Churchman, J., Boland, N. S. (2016).
Adsorption-desorption behavior of dissolved organic carbon by soil clay
fractions of varying mineralogy. Geoderma , 280 , 47-56.
https://doi.org/10.1016/j.geoderma.2016.06.005
Singh, M., Sarkar, B., Hussain, S., Ok, Y.S., Nanthi S. Bolan, N.S.,
Churchman, G.J., 2017. Influence of physico-chemical properties of soil
clay fractions on the retention of dissolved organic carbon.Environmental Geochemistry and Health , 39 , 1335–1350.
https://doi.org/10.1007/s10653-017-9939-0
Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of
dissolved organic carbon in precipitation over urban and forest sites in
central Poland. Environment Science Pollution Research ,22 , 11087-11096. https://doi.org/10.1007/s11356-015-4356-3
Toming, K., Kutser, T., Tuvikene, L., Viik, M., & Nõges, T. (2016).
Dissolved organic carbon and its potential predictors in eutrophic
lakes. Water Research , 102 , 32–40.
https://doi.org/10.1016/j.watres.2016.06.012
Turgeon, J. M. L., Courchesne, F., (2008). Hydrochemical behaviour of
dissolved nitrogen and carbon in a headwater stream of the Canadian
Shield: relevance of antecedent soil moisture conditions.Hydrological Processes , 22 (3), 327-339.
https://doi.org/10.1002/hyp.6613
Zhou, W.-J., Sha, L.-Q., Schaefer, D. A., Zhang, Y.-P., Song, Q.-H.,
Tan, Z.-H., … Guan, H.-L. (2015). Direct effects of litter
decomposition on soil dissolved organic carbon and nitrogen in a
tropical rainforest. Soil Biology and Biochemistry , 81 ,
255–258. https://doi.org/10.1016/j.soilbio.2014.11.019
Table 1: Characteristics and antecedent humidity conditions of the
analyzed rainfall events