REFERENCES
Ǻgren, G., Kleja, D., & Bosatta, E. (2018). Modeling Dissolved Organic Carbon Production in Coniferous Forest Soils. Soil Science Society of America Journal , 82 (1), 392-1403. https://doi.org/10.2136/sssaj2017.11.0407
Bäumler, R. & Zech, W. (1997). Atmospheric deposition and impact of forest thinning on the throughfall of mountain forest ecosystems in the Bavarian Alps. Forest Ecology and Management , 95 (3), 243-251. https://doi.org/10.1016/S0378-1127(97)00039-X
Camino-Serrano, M., Gielen, B., Luyssaert, S., Ciais, P., Vicca, S., Guenet, B., … & Janssens, I. (2014). Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles , 28 (5), 497-509. https://doi.org/10.1002/2013GB004726
Chaplot, V. & Ribolzi, O. (2014). Hydrograph separation to improve understanding of Dissolved Organic Carbon Dynamics in Headwater catchments. Hydrological Processes , 28 (21), 5354-5366. https://doi.org/10.1002/hyp.10010
Chen, S., Yoshitake, S., Iimura, Y., Asai, C., & Ohtsuka, T., 2017. Dissolved organic carbon (DOC) input to the soil: DOC fluxes and their partitions during the growing season in a cool-temperate broad-leaved deciduous forest, central Japan. Ecological Research ,32 (5), 713–724. https://doi.org/10.1007/s11284-017-1488-6
Coelho, C. H., Francisco, J. G., Nogueira, R. F. P., & Campos, M. L. A. M., (2008). Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmospheric Environment ,42 (30), 7115–7121. https://doi.org/10.1016/j.atmosenv.2008.05.072
Coelho Netto, A. L. (1987) Overlandfl ow production in a tropical rainforest catchment: the role of litter cover. Catena ,14 (1-3), 213-231, https://doi.org/10.1016/S0341-8162(87)80019-X
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., … Melack, J. (2007). Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems , 10 (1), 172–185. https://doi.org/10.1007/s10021-006-9013-8
Costa, E. N. D., Souza, J. C., Pereira, M. A., Souza, M. F. L., Souza, W. F. L., & Silva, D. M. L., (2016). Influence of hydrological pathways on dissolved organic carbon fluxes in tropical streams. Ecology and Evolution , 7 , 228-239. https://doi.org/10.1002/ece3.2543
Dawson, J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., & Malcolm, I. A. (2008). Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments.Biogeochemistry , 90 (1), 93-113. https://doi.org/10.1007/s10533-008-9234-3
Dereczynski, C. P., Oliveira, J. S., & Machado, C. O. (2009). Precipitation climatology of the city of Rio de Janeiro. Brazilian Journal of Meteorology , 24 (1), 24-38. http://dx.doi.org/10.1590/S0102-77862009000100003
Dias, M. A. & Coelho Netto, A. N. (2011). A influência da topografia na distribuição de gramíneas em um fragmento de Floresta Atlântica urbana montanhosa – Maciço da Tijuca/RJ. Revista Brasileira de Geomorfologia , 12 (2) 03-14. http://dx.doi.org/10.20502/rbg.v12i2.230
Don, A., & Kalbitz, K. (2005). Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages.Soil Biology and Biochemistry , 37 (12), 2171–2179. https://doi.org/10.1016/j.soilbio.2005.03.019
Drummond, J. (1996) The Garden in the Machine: An Environmental History of Brazil’s Tijuca. Environmental History , 1 (1) 83-104.
Figueiredo, J. A., Menor, E. A., Taboada-Castro, M. T., Taboada-Castro, M. M., Rodríguez-Blanco, M. L., Braga, E. S., (2014). Using hydrogeochemical signatures of stream water to assess pathways for rainfall events: toward a predictive model. Hydrological Processes , 28 (4), 2301-2311. https://doi.org/10.1002/hyp.9801
Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., Mulder, J. (2006). Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden.Biogeochemistry , 77 , 1-23. https://doi.org/10.1007/s10533-004-0564-5
Fröberg, M., Hansson, K., Kleja, D.B., & Alavi, G. (2011). Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce, and silver birch stands in southern Sweden. Forest ecology and management , 262 (9), 1742-1747. https://doi.org/10.1016/j.foreco.2011.07.033
Godoy-Silva, D., Nogueira, R. F. P., & Campos, M. L. A. M., 2017. A 13-year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning. Science of the Total Environment , 609 , 476-483. Disponível: https://doi.org/10.1016/j.scitotenv.2017.07.145
Guggenberger, G., & Zech, W. (1993). Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses.Geoderma , 59 (1-4), 109-129. https://doi.org/10.1016/0016-7061(93)90065-S
Graeber, D., Poulsen, J. R., Heinz, M., Rasmussen, J. J., Zak, D., Gücker, B., … Kamjunke, N. (2018). Going with the flow: Planktonic processing of dissolved organic carbon in streams.Science of The Total Environment , 625 , 519–530. https://doi.org/10.1016/j.scitotenv.2017.12.285
Hafner, S. D., Groffman, P. M., & Mitchell, M. J. (2005). Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State.Biogeochemistry , 74(2), 257-282. http://www.jstor.org/stable/20055238
Hale, R. L. & Godsey, S. E. (2019). Dynamic stream network intermittence explains emergent dissolved organic carbon chemostasis in headwaters. Hydrological Processes , 33 (13), 1926-1936. https://doi.org/10.1002/hyp.13455
Hongve, D., (1999). Production of dissolved organic carbon in forested catchments. Journal of Hydrology , 224 (3-4) 91-99. https://doi.org/10.1016/S0022-1694(99)00132-8
Iavorivska, L., Boyer, E. W., Grimm, J. W., Miller, M. P., DeWalle, D. R., Davis, K. J., Kaye, M.W. (2017). Variability of dissolved organic carbon in precipitation during storms at the Shale Hills Critical Zone Observatory. Hydrological Processes , 31 (16), 2935-2950. https://doi.org/10.1002/hyp.11235
Inagaki, M., Sakai, M., & Ohnuki, Y. (1995). The effects of organic carbon on acid rain in a temperate forest in Japan. Water, Air, and Soil Pollution , 85 (4), 2345-2350. https://doi.org/10.1007/BF01186184
Jiang, R., Hatano, R., Zhao, Y., Kuramochi, K., Hayakawa, A., Woli, K. P., & Shimizu, M. (2014). Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological Processes , 28 (19), 5105-5121. https://doi.org/10.1002/hyp.9996
Kaiser, K., Guggenberger, G., & Zech, W. (1996). Sorption of DOM and DOM fractions to forest soils. Geoderma , 74 (3-4), 281-303. https://doi.org/10.1016/S0016-061(96)00071-7
Kaiser, K. & Guggenberger, G., (2007). Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. European Journal of Soil Science ,58 (1): 45-59. https://doi.org/10.1111/j.1365-2389.2006.00799.x
Kieber R. J., Peake B., Willey J. D., & Brooks A. G., (2002). Dissolved organic carbon and organic acids in coastal New Zealand rainwater.Atmos Environment , 36 (21). 3557–3563. https://doi.org/10.1016/S1352-2310(02)00273-X
Leinemann, T., Preusserb, S., Mikuttac, R., Kalbitzd, K., Cerlie, C., Höschenf, C., … Guggenbergera, G. (2018). Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. Soil Biology and Biochemistry , 118 , 79–90. https://doi.org/10.1016/j.soilbio.2017.12.006
Ledesmaa, J., Futtera, M., Laudonb, H., Evans, C., & Köhler, S. (2016). Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. Science of the Total Environment , 560-561 , 110–122. https://doi.org/10.1016/j.scitotenv.2016.03.230
Lee, M. H., Park, J. H., & Matzner, E. (2018). Sustained production of dissolved organic carbon and nitrogen in forest floors during continuous leaching. Geoderma , 310 , 163-169. https://doi.org/10.1016/j.geoderma.2017.07.027
Li, C., Yan, F., Kang, S., Chen, P., Qu, B., Hu, Z., & Sillanpää, M. (2016). Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research , 23 (13), 12915-12921. https://doi.org/10.1007/s11356-016-6455-1
Liu, C. P. & Sheu, B. H., (2003). Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. Forest Ecology and Management , 173 , 315-325. https://doi.org/10.1016/S0378-1127(01)00793-9
Meyer, J. L., Mcdowell, W. H., Bott, T. L., Elwood, J. W., Ishizaki, C., Melack, J. M., … Rublee, P. A. (1988). Elemental dynamics in streams.Journal of the North American Benthological Society , 7, 410-432. http://www.jstor.org/stable/1467299
Mcdowell, W. H. & Wood, T. (1984). Podzolization: soil processes control dissolved organic carbon concentrations in stream water.Soil Science , 137 (1), 23-32.
Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry ,52 (2), 173–205. https://doi.org/10.1023/a:1006441620810
Miranda, F. S. M. & Avelar, A., S. (2019). Dynamics of surface organic matter conditioned by topography in the Atlantic Forest of the coastal massif, PARNA-Tijuca, RJ. Revista Brasileira de Geomorfologia ,20 (3), 641-661. https://doi.org/10.20502/rbg.v20i3.1544
Moyer, R. P., Powell, C. E., Gordon, D. J., Long, J. S., & Bliss, C. M. (2015). Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA). Applied Geochemistry , 63 , 550–562. https://doi.org/10.1016/j.apgeochem.2015.05.004
Neff, J. C.; & Asner, G. P. (2001). Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems ,4 (1), 29-48. https://doi.org/10.1007/s100210000058
Negreiros, A. B. & Coelho Netto, A. N. (2009). Reabilitação funcional de clareira de deslizamento em encosta íngreme no domínio da Floresta Atlântica, Rio de Janeiro (RJ). Revista Brasileira de Geomorfologia , 10 (1), 85-93. https://doi.org/10.20502/rbg.v10i1.120
Nosrati, K., Govers, G., & Smolders, E. (2012). Dissolved organic carbon concentrations and fluxes correlate with land use and catchment characteristics in a semi-arid drainage basin of Iran. Catena ,95 , 177-183. https://doi.org/10.1016/j.catena.2012.02.019
Oni, S. K., Futter, M. N., Molot, L. A., Dillon, P. J., (2014). Adjacents catchments with similar patterns of land use and climate have markedly different dissolved organic carbon concentration and runoff dynamics. Hydrological Processes , 28 (3), 1436-1449. https://doi.org/10.1002/hyp.9681
Oliveira, R. R., Záu, A. S, Lima, D. F., Silva, M. B. R., Viana, M. C., Sodré, D. O. & Sampaio, P. D. (1995). Ecological significance of slope orientation in the Tijuca Forest ecosystem (Rio de Janeiro, Brazil).Oecologia Brasiliensis , 1 (1), 523-542. https://doi.org/10.4257/oeco.1995.0101.28
Ovalle, A. R. C. (1985). Geochemical study of fluvial waters of the Upper Rio Cachoeira Basin, Tijuca National Park. Master Thesis in Geochemistry, Fluminense Federal University (UFF).
Pan, Y., Wang, Y., Xin, J., Tang, G., Song, T., Wang, Y., … Wu, F. (2010). Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment , 44 , 2350-2357. https://doi.org/10.1016/j.atmosenv.2010.03.033
Park, J. & Matzner, E. (2003). Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux.Biogeochemistry , 66 (3), 265-286. https://doi.org/10.1023/B:BIOG.0000005341.19412.7b
Pregitzer, K. S. & Euskirchen, E. S. (2004) Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology , 10 , 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
Richter, D. D. & Markewitz, D. (1996). Carbon changes during the growth of loblolly pine on formerly cultivated soil. The Calhoun Experimental Forest, U.S.A. Advanced Science Institutes Series , 38 , 397-407. https://doi.org/10.1007/978-3-642-61094-3_38
Roig-Planasdemunt, M., Llorens, P., & Latron, J., (2016). Seasonal and stormflow dynamics of dissolved organic carbon in a Mediterranean mountain catchment (Vallcebre, eastern Pyrenees). Hydrological Sciences Journal , 62 (1), 50-63. https://doi.org/10.1080/02626667.2016.1170942
Schmidt, B.H.M., Wang, C., Chang, S, Matzner, E. (2010). High precipitation causes large fluxes of dissolved organic carbon and nitrogen in a subtropical montane Chamaecyparis forest in Taiwan.Biogeochemistry , 101 (1-3), 243-256. https://doi.org/10.1007/s10533-010-9470-1
Seekell, D.A., Lapierre, J.F., Ask, J., Bergström, A.K., Deininger, A., Rodríguez, P., Karlsson, J. (2015). The influence of dissolved organic carbon on primary production in northern lakes. Limnology and Oceanography , 60 (4), 1276–1285. https://doi.org/10.1002/lno.10096
Singh, M., Sarkar, B., Biswas, B., Churchman, J., Boland, N. S. (2016). Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma , 280 , 47-56. https://doi.org/10.1016/j.geoderma.2016.06.005
Singh, M., Sarkar, B., Hussain, S., Ok, Y.S., Nanthi S. Bolan, N.S., Churchman, G.J., 2017. Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon.Environmental Geochemistry and Health , 39 , 1335–1350. https://doi.org/10.1007/s10653-017-9939-0
Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environment Science Pollution Research ,22 , 11087-11096. https://doi.org/10.1007/s11356-015-4356-3
Toming, K., Kutser, T., Tuvikene, L., Viik, M., & Nõges, T. (2016). Dissolved organic carbon and its potential predictors in eutrophic lakes. Water Research , 102 , 32–40. https://doi.org/10.1016/j.watres.2016.06.012
Turgeon, J. M. L., Courchesne, F., (2008). Hydrochemical behaviour of dissolved nitrogen and carbon in a headwater stream of the Canadian Shield: relevance of antecedent soil moisture conditions.Hydrological Processes , 22 (3), 327-339. https://doi.org/10.1002/hyp.6613
Zhou, W.-J., Sha, L.-Q., Schaefer, D. A., Zhang, Y.-P., Song, Q.-H., Tan, Z.-H., … Guan, H.-L. (2015). Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biology and Biochemistry , 81 , 255–258. https://doi.org/10.1016/j.soilbio.2014.11.019
Table 1: Characteristics and antecedent humidity conditions of the analyzed rainfall events