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Abstract

In this paper we proposed wavelet based collocation methods for solving neutral delay differ-
ential equations. We use Legendre wavelet, Hermite wavelet, Chebyshev wavelet and Laguerre
wavelet to solve the neutral delay differential equations numerically. We solve five linear and
one nonlinear problem to demonstrate the accuracy of wavelet series solution. Wavelet series
solution converges fast and gives more accurate results in comparison to other methods present
in literature. We compare our results with Runge-Kutta-type methods by Wang et al. [1] and
one-leg θ methods by Wang et al. [2] and observe that our results are more accurate.
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Collocation Grids.
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1. Introduction

Delay differential equations have a great application in dynamical system. The term de-
lay in differential equations arises due to time lags between observation and control action in
mathematical model of natural and technological problems. Such type of models study in these
class of differential equations are known as delay differential equations.

There are many type of delay differential equations. We consider the neutral delay differ-
ential equation (NDDE) of the type

y′(t) = f (t,y(t),y(t−ρ(t,y(t))),y′(t−σ(t,y(t)))), t1 ≤ t ≤ t f , (1.1)

with

y(t) = φ(t), t ≤ t1 (1.2)

∗Corresponding author
Email addresses: mofaheem5292@gmail.com (Mo Faheem), akmalrazataqvi@gmail.com (Akmal

Raza), akhan2@jmi.ac.in (Arshad Khan∗)



where f : [t1, t f ]×R×R −→ R is a differentiable function, ρ(t,y(t)) and σ(t,y(t)) are con-
tinuous function on [t, t f ]×R such that t − ρ(t,y(t)) < t f and t −σ(t,y(t)) < t f . Also φ(t)
represents the initial function [3].
This type of problem occurs in a number of mathematical model of engineering and physi-
cal sciences. Delay differential equations (DDE’s) are used to analyze and predict the model
of population dynamic, immunology, epidemiology, physiology, neural networks etc.. In the
model of population dynamic the delay occur due to the stages of life cycle. In epidemiology
the time gap between infection of a cell and the production of new viruses gives rise a time
delay. Similarly in immunology and physiology the delay occur due to immune period and
the duration of infectious period respectively and so on. DDE’s are also used in the analysis
of real time dynamic substructuring in which we can test the dynamic behaviour of complex
structures. The delay in real-time dynamic substructuring arises due to the inherent dynamic
of the transfer systems. These type of DDE’s are also used to study many physical problems,
like in circuit theory which include delayed elements. Many researchers had been shown their
vast interest in the study of systems of neutral delay differential equation, see ( [4], [5], [6], [7],
[8], [9], [10] and [11]). Some of those researchers had worked for solving delay differential
equation using R-K method [12], an iterative method [13], one-step implicit methods [14], a
fully-discrete spectral method [15], homotopy analysis method [16], The variational iteration
method [17] etc.. S. Islam et al. [18], S. Islam and I. Aziz [19], Lepik and H. Hein [20],
[21] and S. Pandit and M. Kumar [22], [23] used Haar wavelet for solving ordinary and partial
differential equations.

The aim of the present work is to develop wavelet series collocation methods using Leg-
endre, Chebyshev, Hermite, Laguerre wavelets for solving neutral delay differential equations,
which are simple and guaranteed the necessary accuracy for a relative small number of grid
points. These wavelets transform the delay differential equation into algebraic equations.
We describe the basic Legendre wavelet, Chebyshev wavelet, Hermite wavelet and Laguerre
wavelet and their operational matrix of integration.

The outline of this article is as follows: In Section 2, we define wavelet and multiresolution
analysis. In Section 3, we describe Legendre wavelet, function approximation and operational
matrix of integration. In Section 4, we describe Chebyshev wavelet, function approximation
and operational matrix of integration. In Section 5, we describe Hermite wavelet, function
approximation and operational matrix of integration and method for the solution of NDDE.
In Section 6, we describe Laguerre wavelet, function approximation and operational matrix
of integration. In Section 7 we discuss method for the solution of NDDE. In Section 8, we
describe the convergence analysis of Legendre wavelet, Chebyshev wavelet, Hermite wavelet
and Laguerre wavelet. In Section 9, we have solved five linear and one nonlinear NDDE
problems and obtain maximum absolute errors of each problem. Further we compare our results
with exact solutions and existing methods such as R-K method, one-leg θ method and Haar
wavelet method.
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2. Wavelet

Definition 2.1. Wavelet constitutes a family of function constructed from dilation and transla-
tion of single function called mother wavelet ψ(t). They are defined by,

ψa,b(t) =
1√
|a|

ψ(
t−b

a
), a,b ∈ R; a 6= 0. (2.1)

where a is dilation parameter and b is translation parameter [24], [25].

Definition 2.2. Multiresolution analysis (MRA), which is basically known as the heart of
wavelet, is a key to describe the wavelet in general way. With the help of MRA we can ex-
press any arbitrary function f ∈ L2(R) on the multiresolution approximation spaces. The aim
of MRA is to degrade the whole function space into subspaces. Let V j and W j be the scaling
function subspace and wavelet subspace. Firstly,

V j ⊂ V j+1 (2.2)

{V j}’s are dense in L2(R) i.e.,

⋃
j∈Z

V j = L2(R) (2.3)

If PV j f is defined as the projection of a function f on V j, then equation (2.3) implies,

PV j f −→ f , as j −→ ∞ (2.4)

On dilating the function goes from one space V j to the next space V j+1 for all j, i.e.,

f (t) ∈ V j⇐⇒ f (2t) ∈ V j+1, f or all j ∈ N (invariance to dilation) (2.5)

Alternatively we can shift the function as follows:

f (t) ∈ V j⇐⇒ f (t− k) ∈ V j, f or all k ∈ N (invariance to translation) (2.6)

Lastly the smallest subspace should contain only zero element i.e.,

⋂
j∈Z

V j = {0}. (2.7)

3. Legendre Wavelet

Definition 3.1. The Legendre polynomial of order m denoted by Pm(t) are defined on the inter-
val [−1,1] and determined with the help of the following formula,
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P0(t) = 1,P1(t) = t, ....

Pm+1(t) =
(

2m+1
m+1

)
tPm(t)−

(
m

m+1

)
Pm−1(t), m = 1,2,3... . (3.1)

Legendre wavelet Ln,m(t) = L(k,n,m, t) having four argument defined on interval [0,1) by
[26],

Ln,m(t) =


√

m+ 1
22

k
2 Pm(2kt−2n+1), t ∈

[2n−2
2k , 2n

2k

)
0, elsewhere

(3.2)

where k = 2,3,4.....2n−1, n = 1,2,3.....2k−1, m = 0,1,2.....M−1 is the order of Legendre
wavelet and M is the fixed positive integer. The set of Legendre wavelet forms an orthonormal
basis of L2(R).
Equivalently, for any positive integer k, we can define Legendre wavelet family as,

Li(t) =


√

m+ 1
22

k
2 Pm(2kt−2n+1), t ∈

[2n−2
2k , 2n

2k

)
0, elsewhere

(3.3)

where i is wavelet number and it can be determined by, i = n+2k−1m,

where n = 1,2,3....2k−1, m = 0,1,2...M−1.

3.1. Function approximation by Legendre wavelet

Any function f (t) ∈ L2[0,1) can be expanded into Legendre wavelet series as [27],

f (t) =
∞

∑
n=1

∞

∑
m=0

an,mLn,m(t) =
∞

∑
i=1

aiLi(t). (3.4)

For approximation, the above series may be truncated for a natural number N as follows,

f (t) =
N

∑
i=1

aiLi(t) = aTL(t), (3.5)

where
aT = [a1,0,a1,1, ...a1,m−1,a2,0,a2,1...a2,m−1, .....,a2k−1,0, ....,a2k−1,m−1],

aT = [a1,a2, ....aN ],

L= [L1,0, ....,L1,m−1,L2,0, ....,L2,m−1,L2k−1,0, ...,L2k−1,m−1],

L= [L1, ....LN ],

where N = 2k−1M.

Collocation points are given by t(l) = l−0.5
N ,

where l = 1,2, ...N, N = 2J, J = 1,2, ...
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3.2. Operational matrix of integration

The integration of Legendre wavelet function L(t)= [L1,0(t), ....,L1,m−1(t),L2,0(t), ....,L2,m−1(t),
....,L2k−1,1(t), ....,L2k−1,m−1(t)], can be approximated by

∫ t

0
L(τ)dτ ∼= PL(t), (3.6)

where P is called Legendre wavelet operational matrix of integration.
P is (2k−1M)× (2k−1M) matrix as [28],

P = (1/2k)


L1 F1 F1 . . . F1

0 L1 F1 . . . F1
...

...
... . . . ...

0 0 0 . . . F1

0 0 0 . . . L1

, F1 =


2 0 . . . 0
0 0 . . . 0
...

... . . . 0
0 0 . . . 0

 ,

L1 =



1 1√
3

0 0 . . . 0 0 0

−
√

3
3 0

√
3

3
√

5
0 . . . 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
. . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . 2M−3
(2M−3)

√
2M−5

0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . 0 −
√

2M−1
(2M−1)

√
2M−3

0



4. Chebyshev Wavelet

Definition 4.1. Chebyshev wavelet Cn,m = C(k,n,m, t), having four arguments, where n =

1,2, ...,2k−1, k can have any positive integer, m is degree of Chebyshev polynomials of first
kind and t denotes the time.

Cn,m(t) =

2
k
2 Tm(2kt−2n+1), t ∈

[ n−1
2k−1 ,

n
2k−1

)
0, elsewhere

(4.1)
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where,

Tm(t) =


1√
π
, m = 0√
2
π

Tm(t), m > 0
(4.2)

and m = 0,1, ....,M−1, n = 1,2, ....,2k−1. Tm(t) are Chebyshev polynomial of the first kind of
degree m which are orthogonal with respect to weight function w(t) = 1√

1−t2 , on [−1,1] and
satisfying the following recursive formula:
T0(t) = 1,T1(t) = t, ...

Tm+1(t) = 2tTm(t)−Tm−1(t), m = 1,2, ... (4.3)

Or equivalently for any positive integer k, the Chebyshev wavelet can be defined as

Ci(t) =

2
k
2 Tm(2kt−2n+1), t ∈

[ n−1
2k−1 ,

n
2k−1

)
0, elsewhere

(4.4)

where i is wavelet number and it can be determined by the relation i = n+2k−1m,
where m = 0,1,2, ..,m−1, n = 1,2, ...,2k−1.

4.1. Function approximation by Chebyshev wavelet

A function f (t) ∈ L2[0,1] may be expanded as,

f (t) =
∞

∑
n=1

∞

∑
m=0

bn,mCn,m(t) =
∞

∑
i=1

biCi(t), (4.5)

where bi = 〈 f (t),Ci(t)〉=
∫ 1

0 f (t)Ci(t)dt.
After approximation the above series may be truncated for a finite natural number N as

f (t) =
N

∑
i=1

biCi(t) = bTC(t), (4.6)

where N = 2k−1M and b, C(t) are N×1 matrices given by

b = [b1,0,b1,1, ...b1,m−1,b2,0,b2,1...b2,m−1, .....,b2k−1,0, ....,b2k−1,m−1]
T ,

b = [b1,b2, ....bN ]
T , (4.7)

C = [C1,0, ....,C1,m−1,C2,0, ....,C2,m−1,C2k−1,0, ...,C2k−1,m−1],

C = [C1, ....CN ], (4.8)
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4.2. Operational matrix of integration

The integration of the vector C(t), can be obtained as∫ t

0
C(s)ds∼= QC(t), (4.9)

where the matrix Q as [29],

Q =


L2 F2 F2 . . . F2

0 L2 F2 . . . F2
...

...
... . . . ...

0 0 0 . . . F2

0 0 0 . . . L2

, F2 =
√

2
2k



1 0 0 . . . 0
0 0 0 . . . 0
−1

3 0 0 . . . 0
0 0 0 . . . 0
− 1

15 0 0 . . . 0
...

...
... . . . ...

− 1
M(M−2) 0 0 . . . 0


,

L2 =
1
2k



1
2

1
2
√

2
0 0 . . . 0 0 0

− 1
8
√

2
0 1

8 0 . . . 0 0 0

− 1
6
√

2
1
4 0 1

12 . . . 0 0 0

...
...

...
... . . . ...

...
...

− 1
2
√

2(M−1)(M−3)
0 0 0 . . . − 1

4(M−3) 0 − 1
4(M−1)

− 1
2
√

2M(M−2)
0 0 0 . . . 0 − 1

4(M−2) 0


where Q is N×N matrix, F and L are M×M matrices.

5. Hermite Wavelet

Definition 5.1. The Hermite polynomials Hm(t) of order m are defined on the interval (−∞,∞),
and can be defined with the assistance of following recursive formulae :
H0(t) = 1,H1(t) = 2t, ... .

Hm+1(t) = 2tHm(t)−2mHm−1(t), m = 1,2, .... (5.1)
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The Hermite polynomials Hm(t) are orthogonal with respect to the weight function e−t2
.

The Hermite wavelets are defined on interval [0,1) as [30], [31],

Hm,n(t) =

2
k
2

√
1

n!2n√π
Hm(2kt−2n+1), t ∈

[ n−1
2k−1 ,

n
2k−1

)
0, elsewhere

(5.2)

where k = 1,2, ... , n = 1,2, ...2k−1 and m is the order of Hermite polynomial.
Equivalently for any positive integer k, Hermite wavelet can be defined as

Hi(t) =

2
k
2

√
1

n!2n√π
Hm(2kt−2n+1), t ∈

[ n−1
2k−1 ,

n
2k−1

)
0, elsewhere

(5.3)

where i is wavelet number and defined by the relation i = n+2k−1m.

5.1. Function approximation by Hermite wavelet

A function f (t) ∈ L2[0,1) can be expanded in term of Hermite wavelet as [32],

f (t) =
∞

∑
n=1

∞

∑
m=0

cn,mHn,m(t) =
∞

∑
i=1

ciHi(t), (5.4)

where, ci = 〈 f (t),Hi(t)〉=
∫ 1

0 f (t)Hi(t)dt.
After approximation the above series may be truncated for a finite natural number N as,

f (t) =
N

∑
i=1

ciHi(t) = cTH(t), (5.5)

where N = 2k−1M and c, H(t) are N×1 matrices given by,

c = [c1,0,c1,1, ...c1,m−1,c2,0,c2,1...c2,m−1, .....,c2k−1,0, ....,c2k−1,m−1]
T ,

c = [c1,c2, ....cN ]
T , (5.6)

H = [H1,0, ....,H1,m−1,H2,0, ....,H2,m−1,H2k−1,0, ...,H2k−1,m−1],

H = [H1, ....HN ], (5.7)

where N = 2K−1M and K is any positive integer.

5.2. Operational matrix of integration

The integration of the vector H(t) can be obtained as∫ t

0
H(s)ds∼=WH(t), (5.8)
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where the matrix W as [33],

W =


A

... B

. . .
... . . .

O
... A

,

B = 1
2k



1 0 0 0 . . . 0

0 0 0 0 . . . 0

−1
3 0 0 0 . . . . . .

...
...

...
... . . . ...

(−1)m+1

m+1 0 0 0 . . . 0


, A = 1

2k



1
2 −1

2 0 0 . . . 0

−1
8 0 1

2 0 . . . 0

− 1
24 0 0 0 . . . 0

...
...

...
... . . . ...

− 1
(m+1)2m+1 0 0 0 . . . 0


,

O =


0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 0



6. Laguerre wavelet

Definition 6.1. The Laguerre polynomials Hm(t) of order m are defined on the interval (−∞,∞)

and can be defined with the assistance of following recursive formulae :

L0(t) = 1,L1(t) = 1− t, ... .

Lm+1(t) =
(

2m+3− t
m+2

)
Lm+1(t)−

(
m+1
m+2

)
Lm−1(t), m = 1,2, .... (6.1)

The Laguerre polynomials Lm(t) are orthogonal with respect to the weight function 1.
The Laguerre wavelets are defined on interval [0,1) as [34],

ℑm,n(t) =

2
k
2

m! Lm(2kt−2n+1), t ∈
[ n−1

2k−1 ,
n

2k−1

)
0, elsewhere

(6.2)
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where k = 1,2, ... , n = 1,2, ...2k−1 and m is the order of Laguerre polynomial.
Equivalently for any positive integer k Laguerre wavelet can be defined as,

ℑi(t) =

2
k
2

m! Lm(2kt−2n+1), t ∈
[ n−1

2k−1 ,
n

2k−1

)
0, elsewhere

(6.3)

where i is wavelet number and is defined by the relation i = n+2k−1m

6.1. Function approximation by Laguerre wavelet

A function f (t) ∈ L2[0,1) may be expanded as

f (t) =
∞

∑
n=1

∞

∑
m=0

dn,mℑn,m(t) =
∞

∑
i=1

diℑi(t), (6.4)

where di = 〈 f (t),ℑi(t)〉=
∫ 1

0 f (t)ℑi(t)dt.
After approximation the above series may be truncated as,

f (t) =
N

∑
i=1

diℑi(t) = dT
ℑ(t), (6.5)

where N = 2k−1M and d, ℑ(t) are N×1 matrices given by :

d = [d1,0,d1,1, ...d1,m−1,d2,0,d2,1...d2,m−1, .....,d2k−1,0, ....,d2k−1,m−1]
T ,

d = [d1,d2, ....dN ]
T , (6.6)

ℑ = [ℑ1,0, ....,ℑ1,m−1,ℑ2,0, ....,ℑ2,m−1,ℑ2k−1,0, ...,ℑ2k−1,m−1],

ℑ = [ℑ1, ....ℑN ]. (6.7)

where N = 2K−1M and K is any positive integer.

6.2. Operational matrix of integration

The integration of the vector ℑ(t), can be obtained as,∫ t

0
ℑ(s)ds∼= Zℑ(t) (6.8)

where the matrix Z is given as [35],
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Z=



1
2 −1

4 0 . . . 1
2 0 0

3
8

1
4 −1

4 . . . 1
2 0 0

13
24 0 1

4 . . . 7
12 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 1
2 −1

4 0

0 0 0 . . . 3
8

1
4 −1

4

0 0 0 . . . 13
24 0 1

4



7. Method for solution of NDDE

The following notation is introduced,

ψ
1
i (t) =

∫ t

0
ψi(τ)dτ. (7.1)

Let us assume the equation (1.1) with equation (1.2) and let the wavelet series approximation
for first derivative is,

y′(t) =
N

∑
i=1

diψi(t). (7.2)

Now integrate equation (7.2) from 0 to t, we get:

y(t) =
N

∑
i=1

diψ
1
i (t)+ y(0), (7.3)

Replace t by t−σ(t,y(t)) in equation (7.2), we get:

y′(t−σ(t,y(t))) =
N

∑
i=1

diψi(t−σ(t,y(t))). (7.4)

Replace t by t−ρ(t− y(t)) in equation (7.3), we get:

y(t−ρ(t,y(t))) =
N

∑
i=1

diψ
1
i (t−ρ(t,y(t)))+ y(0). (7.5)
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Using equations (7.2-7.5) in equation (1.1), we get the following system of linear equations:

N

∑
i=1

diψi(t) = f (t,
N

∑
i=1

diψ
1
i (t)+ y(0),

N

∑
i=1

diψ
1
i (t−ρ(t,y(t)))+ y(0),

N

∑
i=1

diψi(t−σ(t,y(t)))).

(7.6)

We solve the system of equations and determine the wavelet coefficients di’s. After putting the
values of these coefficients in equation (7.3) we get the wavelet solution of the NDDE. We have
used similar technique to solve nonlinear NDDE. We obtain system of nonlinear equations and
use Newton’s method for solving the system to obtain wavelet coefficients di’s. After putting
the values of these coefficients in equation (7.3), it gives wavelet solution of nonlinear NDDE.

8. Convergence Analysis

Lemma 1: The Legendre wavelet series solution (??) of equation (1.1) converges towards
ξ1(t) = ∑

n
j=1 α jL j(t).

Proof Let L2(Ω); Ω is bounded domain, be the Hilbert space.
For f1(t), f2(t) ∈L2(Ω).
Now define 〈 f1, f2〉=

∫ 1
0 f1(t) f2(t)dt,

where 〈,〉 denote the inner product on [0,1]. We can expand any function y(t)∈L2(Ω) defined
on [0,1] by the infinite series of wavelet basis as in equation (3.11).
For k= 1, let ξ1(t)=∑

M
i=1 a1iL1i(t) be the solution of equation (1.1), where a1i = 〈ξ1(t),L1i(t)〉.

To prove that this series converges to the solution ξ1(t) of equation (3.9), define a partial sum
Sn, and let H be Hilbert space. Next we show that Sn is Cauchy sequence in H. By the com-
pleteness of H Cauchy implies convergence.
For this, we denote L1i(t) = Li(t) and let α j = 〈ξ1(t),L j(t)〉.

Let Sn = ∑
n
j=1 α jL j(t) and Sm = ∑

m
j=1 α jL j(t) be the partial sums with n≥ m.

〈ξ1(t),Sn〉= 〈ξ1(t),∑n
j=1 α jL j(t)〉= ∑

n
j=1 α j〈ξ1(t),L j(t)〉= ∑

n
j=1 α jα j = ∑

n
j=1 |α j|2

Also Sn−Sm = ∑
n
j=m+1 α jL j(t).

Now consider

||Sn−Sm||2 = ||
n

∑
j=m+1

α jL j(t)||
2

= 〈
n

∑
i=m+1

αiL(ti),
n

∑
j=m+1

α jL j(t)〉

=
n

∑
i=m+1

n

∑
j=m+1

αiα j〈L j(t),L j(t)〉

=
n

∑
j=m+1

|α j|2. (8.1)

By the Bessels inequality, ∑
n
j=m+1 |α j|2 converges, as n→ ∞. Hence Sn is a Cauchy sequence
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in H and it converges to a sum S, then

〈S−ξ1(t),L j(t)〉= 〈S,L j(t)〉−〈ξ1(t),L j(t)〉
= 〈limn→∞Sn,L j(t)〉−α j

= limn→∞〈Sn,L j(t)〉−α j

= limn→∞〈
n

∑
i=1

αiLi(t),L j(t)〉−α j

= limn→∞

n

∑
i=1

αi〈Li(t),L j(t)〉−α j

= limn→∞(α j−α j)

= 0. (8.2)

As a result 〈S−ξ1(t),L j(t)〉= 0 which implies S = ξ1(t).
Hence ξ1(t) = ∑

n
j=1 α jL j(t).

Lemma 2: The Chebyshev wavelet series solution (??) of equation (1.1) converges towards
ξ2(t) = ∑

n
j=1 γ jC j(t).

Proof For k = 1 then equation (??) becomes,

M−1

∑
l=1

b1lC1l(t), where bl1 = 〈ξ2(t),C1l(t)〉. (8.3)

We have

ξ2(t) =
n

∑
l=1
〈ξ2(t),C1l(t)〉C1l(t). (8.4)

Let us denote C1l(t) as Cl(t), γ j = 〈ξ2(t),C j(t)〉.
Define the sequence of partial sums Sn o f (γ j,C j(t)). Let Sn and Sm be arbitrary partial sums
with n≥ m and H be a Hilbert space. We shall prove that Sn is a Cauchy sequence in H.
Let

Sn =
n

∑
j=1

γ jC j(t).

T hen 〈ξ2(t),Sn〉 = 〈ξ2(t),
n

∑
j=1

γ jC j(t)〉

=
n

∑
j=1

γ j〈ξ2(t),C j(t)〉

〈ξ2(t),Sn〉=
n

∑
j=1
|γ j|2 (8.5)

13



We assert that ||Sn−Sm||2 = ∑
n
j=m+1 |γ j|2 f or n > m.We get

||
n

∑
j=m+1

γ jC j(t)||
2

= 〈
n

∑
i=m+1

γiCi(t),
n

∑
j=1

γ jC j(t)〉

=
n

∑
i=m+1

n

∑
j=m+1

γiγ j〈Ci(t),C j(t)〉

=
n

∑
j=m+1

|γ j|2.||Sn−Sm||2

=
n

∑
j=m+1

|γ j|2, f or n > m. (8.6)

According to Bessels inequality, we have ∑
n
j=m+1 |γ j|2 is convergent and ||Sn−Sm||2→ 0 as m,n→

∞, i.e. ||Sn−Sm|| → 0 and Sn is a Cauchy sequence and convergent.
We claim that ξ2(t) = S, then

〈S−ξ2(t),C j(t)〉= 〈S,C j(t)〉−〈ξ2(t),C j(t)〉
= 〈limn→∞Sn,C j(t)〉− γ j

= γ j− γ j

= 0. (8.7)

Hence, ξ2(t) = S and ∑
n
j=1 γ jC j(t) converges to ξ2(t).

Lemma 3: The Hermite wavelet series solution (??) of equation (1.1) converges towards
ξ3(t) = ∑

n
j=1 γ jH j(t).

Proof Let L2(R) be the Hilbert space and Hn,m(t) defined in equation (5.2) forms an orthonor-
mal basis.
Let ξ3(t) = ∑

M−1
i=0 cn,iHn,i(t), where cn,i = 〈ξ3(t),Hn,i(t)〉, where 〈,〉 denote the inner product

on [0,1], for a fixed value of n. Let us denote Hn,i(t) =Hi(t) and γ j = 〈ξ3(t),H j(t)〉.
Define the partial sums Sn. Consider the partial sums Sn and Sm with n≥m. We will prove that
Sn is a Cauchy sequence in Hilbert space and by completeness of Hilbert space Cauchy implies
convergence.

Let Sn =
n

∑
j=1

γ jH j(t)

Now 〈u(t),Sn〉= 〈ξ3(t),
n

∑
j=1

γ jH j(t)〉=
n

∑
j=1
|γ j|2. (8.8)
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Claim that ||Sn−Sm||2 =
n

∑
j=m+1

|γ j|2,n≥ m. (8.9)

Now

||
n

∑
j=1

γ jH j(t)||
2

= 〈
n

∑
j=1

γ jH j(t),
n

∑
i=1

γiHi(t)〉

=
n

∑
j=m+1

|γ j|2, f or n > m. (8.10)

From Bessels inequality, we have ∑
n
j=1 |γ j|2 is convergent and hence

||∑n
j=1 γ jH j(t)||2→ 0 as n,m→ ∞.

So, ||∑n
j=1 γ jH j(t)|| → 0 and Sn is Cauchy sequence and it converges to ξ (say).

We assert that ξ3(t) = ξ . Now

〈ξ −ξ3(t),H j(t)〉= 〈ξ ,H j(t)〉−〈ξ3(t),H j(t)〉
= 〈limn→∞Sn,H j(t)〉− γ j

= γ j− γ j

= 0. (8.11)

This implies,
〈ξ −ξ3(t),H j(t)〉= 0.
Hence ξ3(t) = ξ and ∑

n
j=1 γ jH j(t) converges to ξ3(t) as n→ ∞ and proved.

Lemma 4: The Laguerre wavelet series solution (7.3) of equation (1.1) converges towards
ξ4(t) = ∑

n
i=1 diℑi(t).

Proof Consider the Hilbert space L2(Ω); Ω is bounded domain and ℑn,m(t) is defined as equa-
tion (6.2) forms an orthonormal basis.
Let ξ4(t) = ∑

m−1
i=0 dκ,iℑκ,i(t), where dκ,i = 〈ξ4(t),ℑκ,i(t)〉 for fixed κ.

We define the Partial sums Sn. Consider the partial sums Sn and Sm with n≥m. We shall prove
Sn is Cauchy sequence in L2(Ω) and then by consequence of completeness of Hilbert space
Cauchy implies convergence.

Now Sn =
n

∑
i=0

dκ,iℑκ,i(t), this implies

〈ξ4(t),Sn〉= 〈ξ4(t),
n

∑
i=0

dκ,iℑκ,i(t)〉

=
n

∑
i=m+1

|dκ,i|2. (8.12)
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We claim that ||Sn−Sm||2 = ∑
n
i=m+1 |dκ,i|2, for all n > m

Now

||
n

∑
i=m+1

dκ,iℑκ,i(t)||
2

= 〈
n

∑
i=m+1

dκ,iℑκ,i(t),
n

∑
j=m+1

dκ, jℑκ, j(t)〉

=
n

∑
i=m+1

n

∑
j=1

dκ,idκ, j〈ℑκ,i(t),ℑκ, j(t)〉

=
n

∑
i=m+1

|dκ,i|2, f or all n > m (8.13)

By Bessel’s inequality,
Since ∑

n
i=m+1 |dκ,i|2 ≤ ||ξ4(t)||2.

Therefore ∑
n
i=m+1 |dκ,i|2 is bounded and convergent. Hence ||∑n

i=m+1 dκ,iℑκ,i(t)||2 → 0 as
m,n→ ∞. Therefore Sn is a Cauchy sequence and it converges to χ (say).
We assert that ξ4(t) = χ

Now

〈χ−ξ4(t),ℑκ,i(t)〉= 〈χ,ℑκ,i(t)〉−〈ξ4(t),ℑκ,i(t)〉
= 〈χ,ℑκ,i(t)〉−〈limn→∞Sn,ℑκ,i(t)〉
= 〈χ,ℑκ,i(t)〉−〈χ,ℑκ,i(t)〉
= 0. (8.14)

Hence ξ4(t) = χ and ∑
n
i=0 dκ,iℑκ,i(t) converges to ξ4(t), as n→ ∞ and hence proved.

9. Numerical Examples

In this section we present five examples of linear and one example of nonlinear NDDE
to demonstrate the developed methods and obtain maximum absolute errors. We compared
our results with exact solution and existing methods such as Haar wavelet method [36], R-K
method by Wang et al. [1] and one-leg θ method by Wang et al. [2].
Problem 1: Consider the NDDE

y′(t)+
√

cost y′(
√

t)+(sin(
√

t)+ et)y(sint) = et +
√

cost e
√

t +(sin(
√

t)+ et)esint , t ∈ [0,1](9.1)

with initial condition

y(t) = et , t 6 0 (9.2)
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Analytical solution is

y(t) = et (9.3)

We solved problem 1 by Legendre wavelet series method (LWSM), Chebyshev wavelet se-
ries method (CWSM), Hermite wavelet series method (HWSM) and Laguerre wavelet series
method (LAWSM) and calculated the results for J=3 in Table 1. We compare our results with
existing result from Haar wavelet series method [36]. Obtained MAE with different resolutions
level are given in the Table 2, which shows that our results are more accurate than the exist-
ing result. The errors given in first row of Table 2 for LWSM, CWSM, HWSM and LAWSM
are corresponding to J=1(M=0, K=1). Similarly in second row we take J=2(M=1, K=1). In
third row for LWSM, CWSM and HWSM we take J=3(M=8, K=1) but for LAWSM we take
J=3(M=4, K=2). In fourth row we take J=4(M=8, K=2) for all our methods. In last row for
LWSM and CWSM we take J=5(M=16, K=2) but in the case of HWSM and LAWSM, we take
J=5(M=8, K=3). The graphs of exact and approximate solutions have been given in Figures
(1-4).

Table 1: M.A.E for problem 1 with J=3

t(= l
16) Exact LAWSM LWSM CWSM HWSM

l Solution (M=4,K=2) (M=8,K=1) (M=8,K=1) (M=8,K=1)

1 1.0644944 1.0644916 1.0644944 1.0644944 1.0644944
3 1.2062302 1.2062317 1.2062302 1.2062302 1.2062302
5 1.3668379 1.3668385 1.3668379 1.3668379 1.3668379
7 1.5488302 1.5488277 1.5488302 1.5488302 1.5488302
9 1.7550546 1.7550477 1.7550546 1.7550546 1.7550546
11 1.9887374 1.9887354 1.9887374 1.9887374 1.9887374
13 2.2535347 2.2535318 2.2535347 2.2535347 2.2535347
15 2.5535894 2.5535876 2.5535894 2.5535894 2.5535894

Table 2: M.A.E for problem 1

resolution J Haar [36] LAWSM LWSM CWSM HWSM

1 .... 2.2802e−02 2.2802e−02 2.2802e−02 2.2802e−02
2 .... 1.3169e−04 1.3169e−04 1.3169e−04 1.3169e−04
3 2.000e−04 6.9400e−06 3.8922e−10 3.8921e−10 3.8922e−10
4 1.8877e−04 2.5583e−08 2.0679e−12 2.0661e−12 1.9992e−12
5 3.1031e−05 9.0299e−08 3.0606e−12 2.4948e−12 3.2249e−12
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Figure 1: Exact and LWSM for problem 1 with J=5 Figure 2: Exact and CWSM for problem 1 with J=5

Figure 3: Exact and HWSM for problem 1 with J=5 Figure 4: Exact and LAWSM for problem 1 with J=5

Problem 2: Consider the NDDE

y′(t)+
√

t(y′(e−
t
2 ))− y(

√
te−t)+ y(t) = cost +

√
t(cos(e−

t
2 )− sin(

√
te−t)+ sint), t ∈ [0,1](9.4)

with initial condition

y(t) = sint, t 6 0 (9.5)

The analytical solution is

y(t) = sint. (9.6)

We solved problem 2 by LWSM, CWSM, HWSM and LAWSM and calculate the results for J=3
in Table 3. We compare our results with existing results from Haar wavelet series method [36]
in the Table 4, which shows that our results are more accurate than the existing result. In this
Table the errors given in first and second row for all our methods are corresponding to J=1(M=0,
K=1) and J=2(M=4,K=1) respectively. The errors given in third row for LWSM, CWSM and
HWSM are corresponding to J=3(M=8, K=1) but in LAWSM case the errors are corresponding
to J=3(M=4, K=2). In fourth row the errors given for all our methods are corresponding to
J=4(M=8, K=2). In last row the errors given for LWSM and CWSM are corresponding to
J=5(M=16, K=2) but in HWSM and LAWSM the errors are corresponding to J=5(M=8, K=3).
The graphs for exact and approximate solutions are given in Figures (5-8).
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Figure 5: Exact and LWSM for problem 2 with J=5 Figure 6: Exact and CWSM for problem 2 with J=5

Figure 7: Exact and HWSM for problem 2 with J=5 Figure 8: Exact and LAWSM for problem 2 with J=5

Table 3: M.A.E for problem 2 with J=3
t(= l

16) Exact LWSM CWSM HWSM LAWSM
l Solution (M=8,K=1) (M=8,K=1) (M=8,K=1) (M=4,K=2)
1 0.0624593 0.0624593 0.0624593 0.0624593 0.0624577
3 0.1864032 0.1864032 0.1864032 0.1864032 0.1864027
5 0.3074385 0.3074385 0.3074385 0.3074385 0.3074374
7 0.4236762 0.4236762 0.4236762 0.4236762 0.3074374
9 0.5333026 0.5333026 0.5333026 0.5333026 0.5332988

11 0.6346070 0.6346070 0.6346070 0.6346070 0.6346046
13 0.7260086 0.7260086 0.7260086 0.7260086 0.7260057
15 0.8060811 0.8060811 0.8060811 0.8060811 0.8060785

Table 4: M.A.E for problem 2

resolution J Haar[36] LAWSM LWSM CWSM HWSM

1 .... 2.2802e−02 2.2802e−02 2.2802e−02 2.2802e−02
2 .... 6.4537e−05 4.3412e−04 6.4537e−05 6.4537e−05
3 2.200e−03 3.7747e−06 2.2641e−08 2.0511e−010 2.2641e−08
4 8.2354e−04 5.0831e−08 3.6650e−11 1.1301e−12 1.1301e−12
5 3.8198e−04 7.0452e−08 1.0770e−12 4.3221e−13 4.3221e−13
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Problem 3: Consider the NDDE

y′(t)+ ety′(t− sin(t2))+ cos(t)y(t− sint) =−e−t− esint2
+ cos(t)esin(t)−t , t ∈ [0,1] (9.7)

with initial condition

y(t) = e−t , t 6 0 (9.8)

The analytical solution is

y(t) = e−t . (9.9)

We solved problem 3 by Legendre wavelet series method (LWSM), Chebyshev wavelet se-
ries method (CWSM), Hermite wavelet series method (HWSM) and Laguerre wavelet series
method (LAWSM) and calculate the results for J=3 in Table 5. We compare our results with ex-
isting results from Haar wavelet series method [36] in the Table 6, which shows that our results
are more accurate than the existing result. The errors given in first and second row of Table 6 for
all of our methods are corresponding to J=1(M=0, K=1) and J=2(M=4, K=1) respectively. The
errors given in third row for LWSM, CWSM and HWSM are corresponding to J=3(M=8, K=1)
but in case of LAWSM the errors are corresponding to J=3(M=4, K=2). The errors in fourth
row for all our methods are corresponding to J=4(M=16, K=2). In last row the errors given
for LWSM and CWSM are corresponding to J=5(M=16, K=2) but in HWSM and LAWSM the
errors are corresponding to J=5(M=8, K=3). The graphs for exact and approximate solutions
are given in Figures (9-12).

Table 5: M.A.E for problem 3 with J=3

t(= l
16) Exact LWSM CWSM HWSM LAWSM

l Solution (M=8,K=1) (M=8,K=1) (M=8,K=1) (M=4,K=2)
1 0.9394130 0.9394130 0.9394130 0.9394130 0.9394140
3 0.8290291 0.8290291 0.8290291 0.8290291 0.8290291
5 0.7316156 0.7316156 0.7316156 0.7316156 0.8290297
7 0.6456485 0.6456485 0.6456485 0.6456485 0.6456479
9 0.5697828 0.5697828 0.5697828 0.5697828 0.5697838

11 0.5028315 0.5028315 0.5028315 0.5028315 0.5028313
13 0.4437473 0.4437473 0.4437473 0.4437473 0.4437462
15 0.3916056 0.3916056 0.3916056 0.3916056 0.3916036
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Figure 9: Exact and LWSM for problem 3 with J=5 Figure 10: Exact and CWSM for problem 3 with J=5

Figure 11: Exact and HWSM for problem 3 with J=5 Figure 12: Exact and LAWSM for problem 3 with J=5

Table 6: M.A.E for problem 3

resolution J Haar[36] LAWSM LWSM CWSM HWSM

1 .... 2.2802e−02 2.2802e−02 2.2802e−02 2.2802e−02
2 .... 6.0619e−05 6.0619e−05 6.0619e−05 6.0619e−05
3 9.3374e−04 2.0050e−06 1.2429e−10 1.2429e−10 1.2428e−10
4 5.0517e−04 7.0004e−08 6.7024e−13 6.7057e−13 8.4305e−13
5 1.5678e−04 4.5616e−08 1.2434e−13 1.8063e−13 3.4273e−13
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Problem 4: Consider the NDDE

y′(t) = 0.5(y′(0.80t))+0.10y(0.80t)− y(t)+(0.80t−0.32)e−0.80t + e−t , t ∈ [0,1] (9.10)

with initial condition

y(0) = 0, t 6 0 (9.11)

The exact solution is

y(t) = te−t . (9.12)

We solved problem 4 by Legendre wavelet series method (LWSM), Chebyshev wavelet se-
ries method (CWSM), Hermite wavelet series method (HWSM) and Laguerre wavelet series
method (LAWSM) and calculate the results for J=3 in Table 7. We compare our results with
existing results from R-K method by Wang et al. [1], one-leg θ method by Wang et al. [2]
in Table 9 and Haar wavelet series method [36] in Table 8. Which shows that our results are
more accurate than the existing result. The errors given in first and second row of Table 8 for
all our methods are corresponding to J=1(M=0, K=1) and J=2(M=4, K=1). In third row the
errors given for LWSM, CWSM and HWSM are corresponding to J=3(M=8, K=1) but in case
of LAWSM the errors are corresponding to J=3(M=4, K=2). The errors given in fourth row for
all our methods are corresponding to J=4(M=8, K=2). In last row the errors given for LWSM
and CWSM are corresponding to J=5(M=16, K=2) but in case of HWSM and LAWSM the
errors are corresponding J=5(M=8, K=3). The graphs for exact and approximate solutions are
given in Figures (13-16).

Table 7: M.A.E for problem 4 with J=3

t(= l
16) Exact LWSM CWSM HWSM LAWSM

l Solution (M=8,K=1) (M=8,K=1) (M=8,K=1) (M=4,K=2)
1 0.0587133 0.0587133 0.0587133 0.0587133 0.0587026
3 0.1554429 0.1554429 0.1554429 0.1554429 0.1554373
5 0.2286298 0.2286298 0.2286298 0.2286298 0.2286250
7 0.2824712 0.2824712 0.2824712 0.2824712 0.2824692
9 0.3205028 0.3205028 0.3205028 0.3205028 0.3204944

11 0.3456967 0.3456967 0.3456967 0.3456967 0.3456900
13 0.3605446 0.3605446 0.3605446 0.3605446 0.3605380
15 0.3671302 0.3671302 0.3671302 0.3671302 0.3671264
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Figure 13: Exact and LWSM for problem 4 with J=5 Figure 14: Exact and CWSM for problem 4 with J=5

Figure 15: Exact and HWSM for problem 4 with J=5 Figure 16: Exact and LAWSM for problem 4 with J=5

Table 8: M.A.E for problem 4

resolution J Haar[36] LAWSM LWSM CWSM HWSM

1 .... 1.86e−02 1.86e−02 1.86e−02 1.86e−02
2 .... 2.3104e−04 2.3104e−04 2.3104e−04 2.3104e−04
3 3.6461e−04 1.0677e−05 2.7861e−09 2.7861e−09 2.7861e−09
4 7.0605e−05 8.7894e−09 7.5146e−12 7.5142e−12 7.6164e−12
5 1.4873e−05 2.9810e−08 4.7518e−14 1.0258e−13 5.5017e−13

Table 9: Comparison of M.A.E for problem 4 with J=3

J Existing methods Our methods
Wang et al. [1] Wang et al. [2] LAWSM LWSM CWSM HWSM

3 2.31e−03 5.47e−03 2.9810e−08 7.5146e−12 7.5142e−12 7.6164e−12
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Problem 5: Consider the NDDE

y′(t) = 0.5(y′(0.50t))+0.50y(0.50t)− y(t), t ∈ [0,1] (9.13)

with initial condition

y(0) = 1, t 6 0 (9.14)

The exact solution is

y(t) = e−t . (9.15)

We solved problem 5 by Legendre wavelet series method (LWSM), Chebyshev wavelet se-
ries method (CWSM), Hermite wavelet series method (HWSM) and Laguerre wavelet series
method (LAWSM) and calculate the results for J=3 in Table 10. We compare our results with
existing results from R-K method by Wang et al. [1], one-leg θ method by Wang et al.[2] in
Table 12 and Haar wavelet series method [36] in Table 11. Which shows that our results are
more accurate than the existing result. The errors given in first and second row of Table 11 for
all our methods are corresponding to J=1(M=0, K=1) and J=2(M=4, K=1) respectively. The
errors given in third row for LWSM, CWSM and HWSM are corresponding to J=3(M=8, K=1)
but in case of LAWSM the errors are corresponding to j=3(M=4, K=2). The errors in fourth
row for all our methods are corresponding to J=4(M=16, K=2). In last row the errors given
for LWSM and CWSM are corresponding to J=5(M=16, K=2) but in HWSM and LAWSM the
errors are corresponding to J=5(M=8, K=3). The graphs for exact and approximate solutions
are given in Figures (17-20).

Table 10: M.A.E for problem 5 with J=3

t(= l
16) Exact LWSM CWSM HWSM LAWSM

l Solution (M=8,K=1) (M=8,K=1) (M=8,K=1) (M=4,K=2)
1 0.9394130 0.9394130 0.9394130 0.9394130 0.9394165
3 0.8290291 0.8290291 0.8290291 0.8290291 0.8290333
5 0.7316156 0.7316156 0.7316156 0.7316156 0.7316201
7 0.6456485 0.6456485 0.6456485 0.6456485 0.6456522
9 0.5697828 0.5697828 0.5697828 0.5697828 0.5697884

11 0.5028315 0.5028315 0.5028315 0.5028315 0.5028363
13 0.4437473 0.4437473 0.4437473 0.4437473 0.4437515
15 0.3916056 0.3916056 0.3916056 0.3916056 0.3916093
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Figure 17: Exact and LWSM for problem 5 with J=5 Figure 18: Exact and CWSM for problem 5 with J=5

Figure 19: Exact and HWSM for problem 5 with J=5 Figure 20: Exact and LAWSM for problem 5 with J=5

Table 11: M.A.E for problem 5

resolution J Haar[36] LAWSM LWSM CWSM HWSM

1 .... 1.26e−02 1.26e−02 1.26e−02 1.26e−02
2 .... 9.1446e−05 9.1446e−05 9.1446e−05 9.1446e−05
3 8.9532e−05 5.6250e−06 6.1475e−10 6.1475e−10 6.1480e−10
4 1.3456e−05 2.6663e−09 2.1738e−12 2.1736e−12 2.1457e−12
5 1.9630e−06 4.1430e−09 1.5654e−14 1.2323e−14 4.5741e−14

Table 12: M.A.E for problem 5 with J=3

J Existing methods Our methods
Wang et al. [1] Wang et al. [2] LAWSM LWSM CWSM HWSM

3 1.85e−03 7.66e−02 2.666e−09 2.173e−12 2.173e−12 2.145e−12
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Problem 6: Consider the NDDE

y(t)y′(t)+
√

costy′(
√

t)+(sin(
√

t)+et)y(sint)= e2t +
√

coste
√

t +(sin(
√

t)+et)esint , t ∈ [0,1]
(9.16)

with initial condition

y(t) = et , t 6 0 (9.17)

Analytical solution is

y(t) = et (9.18)

We solved problem 6 by Legendre wavelet series method (LWSM), Chebyshev wavelet se-
ries method (CWSM), Hermite wavelet series method (HWSM) and Laguerre wavelet series
method (LAWSM) and calculate the results for J=3 in Table 13. We compare our results with
existing result from Haar wavelet series method [36] in the Table 14. The errors given in first
row and second row of table for all our methods are corresponding to J=1(M=0, K=1) and
J=2(M=4, K=1). In third row the errors given for LWSM, CWSM and HWSM are correspond-
ing to J=3(M=8, K=1) but in case of LAWSM the errors are corresponding to J=3(M=4, K=2).
The errors given in fourth row for all our methods are corresponding to J=4(M=8, K=2). In last
row the errors given for LWSM and CWSM are corresponding to J=5(M=16, K=2) but in case
of HWSM and LAWSM the errors are corresponding J=5(M=8, K=3). The graphs for exact
and approximate solutions are given in Figures (21-24).

Table 13: M.A.E for problem 6 with J=3

t(= l
16) Exact LWSM CWSM HWSM LAWSM

l Solution (M=8,K=1) (M=8,K=1) (M=8,K=1) (M=4,K=2)
1 1.0644944 1.0644944 1.0644944 1.0644944 1.0644929
3 1.2062302 1.2062302 1.2062302 1.2062302 1.2062308
5 1.3668379 1.3668379 1.3668379 1.3668379 1.3668377
7 1.5488302 1.5488302 1.5488302 1.5488302 1.5488298
9 1.7550546 1.7550546 1.7550546 1.7550546 1.7550491

11 1.9887374 1.9887374 1.9887374 1.9887374 1.988734
13 2.2535347 2.2535347 2.2535347 2.2535347 2.2535310
15 2.5535894 2.5535894 2.5535894 2.5535894 2.5535875
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Figure 21: Exact and LWSM for problem 6 with J=5 Figure 22: Exact and CWSM for problem 6 with J=5

Figure 23: Exact and HWSM for problem 6 with J=5 Figure 24: Exact and LAWSM for problem 6 with J=5

Table 14: M.A.E for problem 6

resolution J Haar[36] LAWSM LWSM CWSM HWSM

1 .... 2.07e−02 2.07e−02 2.07e−02 2.07e−02
2 8.300e−03 1.0302e−04 1.0302e−04 1.0302e−04 1.0302e−04
3 2.5862e−04 5.5001e−06 2.976e−10 3.2907e−10 3.2923e−10
4 4.5075e−05 2.1181e−07 2.1931e−12 2.1927e−12 1.8403e−12
5 1.3195e−05 2.5728e−07 3.4195e−13 2.6124e−12 1.7821e−12

10. Conclusion

We applied Legendre, Hermite, Chebyshev and Laguerre wavelet series methods to solve
the linear and nonlinear neutral delay differential equations and then, we observe that error
tolerance is very small. That is, we get the accuracy upto 14 decimal place as we increase
the resolution level. Further we have shown the convergence of each wavelet series method to
determine the theoretical aspects or error bound. These methods are easy to apply directly and
converges very fast in comparison to other methods such as Haar wavelet [36], Runge-Kutta
method [1] and one-leg θ method [2]. We tabulated maximum absolute errors obtained by each
wavelets in the Tables 1-14 and the graphs of exact and approximate solution have also been
shown in the Figures 1-24.
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