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Abstract1

1. Plant leaf stomata are the gatekeepers of the atmosphere-plant interface and are essential2

building blocks of land surface models as they control transpiration and photosynthesis.3

Although more stomatal trait data is needed to significantly reduce the error in these model4

predictions, recording these traits is time-consuming, and no standardized protocol is currently5

available. Some attempts were made to automate stomatal detection from photomicrographs,6

however, these approaches have the disadvantage of using classic image processing or targeting7

a narrow taxonomic entity which makes these technologies less robust and generalizable to8

other plant species. We propose an easy-to-use and adaptable workflow from leaf to label.9

A methodology for automatic stomata detection was developed using deep neural networks10

according to the state-of-the-art and its applicability demonstrated across the phylogeny of the11

angiosperms.12

2. We used a patch-based approach for training/tuning three different deep learning architectures.13

For training, we used 431 micrographs taken from leaf prints made according to the nail14

polish method from herbarium specimens of 19 species. The best performing architecture15

was tested on 595 images of 16 additional species spread across the angiosperm phylogeny.16

3. The nail polish method was successfully applied in 78% of the species sampled here. The17

VGG19 architecture slightly outperformed the basic shallow and deep architectures, with a18

confidence threshold equal to 0.7 resulting in an optimal trade-off between precision and recall.19

Applying this threshold, the VGG19 architecture obtained an average F-score of 0.87, 0.89,20

and 0.67 on the training, validation, and unseen test set, respectively. The average accuracy21

was very high (94%) for computed stomatal counts on unseen images of species used for22
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training.23

4. The leaf-to-label pipeline is an easy-to-use workflow for researchers of different areas of24

expertise interested in detecting stomata more efficiently. The described methodology was25

based on multiple species and well-established methods so that it can serve as a reference for26

future work.27
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1 Introduction32

The study of ecosystem functioning requires a thorough understanding of the physiological processes33

of organisms occurring at the individual level. Organisms can be defined in terms of their functional34

traits, which are the phenotypic characteristics that are related to the fitness and performance of35

an organism. The spatial distribution of these functional traits in combination with environmental36

conditions, constitute the global diversity in ecosystem functioning and are therefore essential37

building blocks of land surface models (LSM). LSM are essential for estimating transpiration and38

photosynthesis from vegetated surfaces (Jefferson et al., 2017), the dominant component of global39

land evapotranspiration, and are a key component in models for operational predictions of the40

near-climate (Kushnir et al., 2019; Bertolino et al., 2019). Transpiration in an ecosystem, in essence,41

occurs at the individual leaf surface where stomata function as ‘gates’ between deep-soil water42

reservoirs and the atmosphere. Leaf stomata are microscopic pores surrounded by two guard cells43

ranging from approximately 10-100 µm in length. They control the balance between water loss and44

CO2 uptake by the leaves and therefore have an important effect on the global carbon and hydrologic45

cycle (Berry et al., 2010; Steinthorsdottir et al., 2012; Wang et al., 2015). Moreover, as stomatal46

traits show a clear response to environmental parameters such as climate (e.g. Liu et al., 2018a) and47

atmospheric carbon dioxide concentrations (e.g. Woodward, 1987; Tanaka et al., 2013), they are48

key proxies of environmental change (Hetherington and Woodward, 2003). Stomatal conductance49

(gs), defined as the uptake rate of carbon dioxide or water vapor loss through the stomata of a leaf, is50

an elemental parameter in the LSM linking plant water use and carbon uptake (Kala et al., 2016)51

and is constrained by and derived from the size and density of the leaf stomata (Drake et al., 2013).52

It is well known that (maximum and minimum) stomatal conductance, as well as stomatal size,53

density, and rate of response, vary widely across plant species. Recent efforts have mapped stomatal54
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behavior globally (a.o. Lin et al., 2015), yet more detail is needed as including more interspecific55

trait variation in climate models could significantly reduce the error in model predictions (Wolz56

et al., 2017; Butler et al., 2017). To be useful in global-scale mapping, functional traits should be57

relatively easy and inexpensive to measure in a large number of taxa using a standardized protocol58

(Cornelissen et al., 2003; Perez-Harguindeguy et al., 2013; Moretti et al., 2017; Dawson et al., 2019).59

Recording stomatal traits is widely considered to be labor-intensive and time-consuming, and to this60

day, mostly performed manually (e.g., counting stomata through the microscope) and, therefore61

not replicable. The aspects of the methodologies currently used that add to the cost and intensity62

of the labor are the i) preparation of the leaves to be viewed with a microscope, ii) the number of63

replicates to account for the intra-individual variation in stomatal traits and iii) the measurements,64

either counts or size measurements, themselves. Few methods to automate the detection of and65

measurement on stomata have been reported in the literature, and in most cases, they consist of66

conventional image processing using algorithms that have to be tweaked to the specific task at67

hand. Scarlett et al. (2016) for instance, apply Maximum Stable External Regions to detect potential68

ellipses of stomata on microscope images of vine leaves while da Silva Oliveira et al. (2014) use69

Gaussian filtering and a series of morphological operations to detect stomata on optical microscope70

imagery of five different plant species. Duarte et al. (2017) use wavelet spot detection in tandem71

with standard image processing tools to segment stomata on one plant species and Higaki et al.72

(2014) combine a genetic algorithm and self−organizing maps, coined Clustering-Aided Rapid73

Training Agent, for the detection of stomata on fluorescently-labeled cell contour images of the74

leaf epidermis of Arabidopsis leaves. A series of other papers relies on classifiers for detecting of75

stomata. Vialet-Chabrand and Brendel (2014) report on the use of a cascade classifier for rapid76

assessment of the density and distribution of stomata on the leaves of two oak species. By training a77

Haar feature-based classifier with exemplary stomata, they can be detected with high accuracy on78
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SEM microphotographs. Jayakody et al. (2017) use a cascade object detection learning algorithm79

to correctly identify multiple stomata on rather large microscopic images of grapevine leaves, but80

also apply a combination of image processing techniques to estimate the pore dimensions of the81

stomata that were detected with the cascade object detector. Typically, the applied classic image82

processing techniques are based on handcrafted features for the detection and segmentation of the83

desired stomata. While these techniques perform well on one specific plant species, they do not84

generalize to other species.85

An answer to the limitations of classical image processing techniques came from the field of86

neural networks with the introduction of deep learning. In a significant breakthrough, Krizhevsky87

et al. (2012) showed that deep learning was capable of achieving record-breaking results for object88

recognition. Deep learning allows computational models that are composed of multiple processing89

layers to learn representations from raw data with multiple levels of abstraction (LeCun et al., 2015;90

Najafabadi et al., 2015a). Since then, deep learning was quickly adopted by the vision community,91

which led to state-of-the-art results for the prediction of galaxy pictures (Dieleman et al., 2015),92

face recognition (Parkhi et al., 2015) or the detection of anatomical structures (Shen et al., 2017;93

Hoo-Chang et al., 2016). Its application is now being explored in different fields of biology including94

plant phenotyping (e.g. Jackson et al., 2017) and taxonomy (e.g. Wäldchen and Mäder, 2018), and95

very recent work has used deep learning for the detection of stomata (Fetter et al., 2018; Aono et al.,96

2019). LeCun et al. (2015) state that all of these successes in deep learning can be explained by97

the increase in computing power via GPUs, the ease with which data can be collected and various98

improvements for neural network techniques. Moreover, with the advent of deep learning toolboxes99

such as Keras (Chollet et al., 2015), deep learning also became accessible for non-computer scientists.100

Although deep learning can outperform other machine learning algorithms, training data is needed.101

Despite their important function, no standardized methodology has yet been described to measure102
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stomatal traits such as stomatal density and size. The handbook of protocols for the measurement103

of plant functional traits (Cornelissen et al., 2003), highlights the importance of stomata as hard104

functional traits, however, does not include any advice standardized way on how to prepare, image105

and count them, while there is a clear need in the framework of global efforts on the one hand (Lin106

et al., 2015), and to feed our deep learning networks on the other hand.107

Finally, the recent paper by (Christin et al., 2019) highlights the importance of guidelines and108

recommendations to help ecologists get started with deep learning. Although deep learning has109

proven its potential in a lot of disciplines, developing a deep learning solution is not yet a trivial110

task. They strongly advocate a stronger interaction between computer scientists and ecologists.111

Here, we describe the development of deep learning models to perform stomatal detection/counts112

automatically. To this end, we developed a pipeline of actions from leaf preparation to microscope113

imaging that is easy, inexpensive, and acquires enough image quality to train and use the DL network.114

The objective of this paper is, therefore twofold. (1) We provide a methodological protocol aimed115

at standardising sample preparation as well as imaging of stomata. The rationale is to facilitate116

comparability and usability across studies for revealing patterns and mechanisms by increasing the117

reliability and predictive power of stomatal counts. More specifically, we outline an accessible118

methodology to obtain stomatal counts “from leaf to label” that can be applied beyond a lab setting119

and is also suitable for educational purposes. (2) We present a detailed and replicable methodology120

for automatic stomata detection with deep neural networks and show its applicability of deep learning121

across the phylogeny of the angiosperms. Our aim is to motivate researchers from the ecology and122

evolution community to consider deep learning techniques for the automation of their workflows.123

6



A robust automated workflow for stomata detection

2 Materials and methods124

2.1 Dataset generation125

2.1.1 Specimens and species126

We used mounted specimens from the African herbarium collection of Meise Botanic Garden which127

contains approximately 500.000 herbarium specimens from Burundi, Rwanda and Democratic128

Republic of the Congo, representing more than 80% of the existing collections from these countries129

(Stoffelen P., pers. comm., 2019). Five fully developed leaves per specimen were carefully detached130

and remounted afterwards. The species for algorithm training were selected in the context of131

studying the effects of global change on the central African forest vegetation. The specimens used132

here mainly came from common tropical (timber) tree species such as Cola griseiflora,Mammea133

africana, and Erythrophleum suaveolens which are well-represented in the collection and were134

recurrently collected throughout the last century (1902-2013) (for complete species list, see Suppl.135

Table). These herbarium specimens were collected at the Yangambi Biosphere Reserve, situated136

within the Congo River Basin west of the City Kisangani in the Democratic Republic of the Congo.137

2.1.2 Leaf prints138

Epidermal leaf impressions were made from the abaxial side of the leaves in the middle of the139

leaf, between the midvein and edge. This region of the leaf has been shown to contain guard140

cell lengths and stomatal densities comparable to the means of the entire leaf (see Beaulieu et al.,141

2008, and references therein). Transparent nail polish (Bourjois Cristal ball) was used to make the142

impressions which, once dried, were mounted pointing upward with double-sided tape (ScotchTM)143

on a microscope slide.144
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2.1.3 Image acquisition145

Three photomicrographs of 1600x1200 pixels were taken per leaf print (dimensions = 344x258146

µm; area view field = 0.09 mm2) using a digital microscope (VH-5000 Ver 1.5.1.1, KEYENCE147

CORPORATION, Osaka, Japan) with full coaxial lightning and default factory settings for shutter148

speed at ×1000 lens magnification (VH-Z250R). A single photomicrograph was created by stacking149

of several digital images taken at different focal planes to increase the depth of the resulting image.150

All stomata that fell entirely within the view field were counted and converted to stomata per square151

millimeter to obtain stomatal density.152

2.2 Model development153

2.2.1 Deep learning approach154

A basic deep learning architecture is depicted in Fig. 1C. It consists, from left to right, of an input155

layer, multiple stacked convolutional and pooling layers, a fully connected feedforward neural156

network, and an output layer. By alternating convolutional and pooling layers, the (raw) input157

(e.g., a RGB image) is progressively transformed into more abstract representations. Therefore, the158

convolutional layers convolve the input feature maps with a set of learnable filters (i.e., non-linear159

transformations) to produce a stack of output feature maps (Zeiler and Fergus, 2014). The pooling160

layers are used to reduce the dimensionality of the feature maps by computing some aggregation161

function (typically the maximum or the mean) across small local regions of the input (Boureau et al.,162

2010). This results in a hierarchical set of features where higher-level (more abstract) features are163

defined in terms of lower-level (less abstract) features (Najafabadi et al., 2015b).164

The resulting feature maps are then concatenated and fed into a stack of fully connected neural165

layers to map these features onto the desired output.166
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Deep neural networks come with a lot of trainable parameters: order 100 million parameters is167

not exceptional. In order to properly adjust the weights, gradient descent in combination with the168

backpropagation procedure can be used (LeCun et al., 2015). By applying the chain rule on the169

stacked layers on both the convolutional and fully connected layers, the gradient of the objective170

with respect to the input can be computed. The backpropagation equation can be applied repeatedly171

to propagate gradients through all modules, starting from the output at the top (where the network172

produces its prediction) all the way to the bottom (where the external input is fed) (LeCun et al.,173

2015). Today, adapted versions of the gradient descent optimization algorithm are used (see Ruder,174

2016, for an overview). A particular popular optimizer is Adam (Kingma and Ba, 2014), an adaptive175

learning-rate method, with bias-correction and momentum.176

Because of their proven capabilities and state-of-the-art results in many domains, deep neural177

networks are popular. However, due to their huge amount of trainable parameters, overfitting to data178

remains a major challenge. A toolbox of techniques to avoid overfitting exist, including the reduction179

of the model complexity by reducing the number of hidden layers or units, layer-wise pre-training and180

fine-tuning (Bengio et al., 2007), dropout (Srivastava et al., 2014) and data augmentation (Simard181

et al., 2003).182

2.2.2 Detection of stomata with deep learning183

In this work, we assessed the performance of deep learning for the detection of stomata. While this184

task can be broadened to a generic object detection task for which multiple efficient methodologies185

were proposed (see Liu et al., 2018b, for an extensive review), we focus on a simple methodology186

across multiple species which models the stomata detection task as classification task within a fixed187

window. This baseline approach is illustrated in Figure 1.188

For generating the training set we used herbarium specimens of 19 common tropical tree species189

9



A robust automated workflow for stomata detection

Figure 1: From leaf to label: a simple deep learning approach for automatic stomata detection.
A photomicrograph (A) is divided into small overlapping patches (B) by using a sliding window
approach. The deep learning architecture (C) is trained to label these patches. Positively labeled
patches of a photomicrograph (D) are clustered which results in the detection (E).
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belonging to 12 flowering plant families and 8 orders (Fig. 2, Suppl. Table). The choice of190

trainingset was made in function of a running research project (COBECORE) to investigate the191

change in stomatal density and function over time in Central-African tropical rainforest (Bauters192

et al., under review). A total of 431 micrographs was used for training, 1-53 training images per193

species, 3-115 per family, and 14-126 per order.194
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Figure 2: Stomata microscope images of herbarium specimens of nine representative species of

the training set used to train the classification algorithm: Cola griseiflora (A), Carapa procera (B),

Celtis mildbraedii (C), Garcinia punctata (D), Mammea africana (E), Petersianthus macrocarpus

(F), Prioria balsamifera (G), Erythrophleum suaveolens (H), Trichilia gigliana (I).

In order to detect the stomata in a picture, we applied a simple patch-based method (Hou et al.,195

2016; Cruz-Roa et al., 2014). Therefore, we divided each picture in multiple overlapping patches196

of size 120 by 120 pixels. This patch size is based on the average stomatal size observed in the197
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training set. The patches were labeled as being positive or negative by an expert (Fig. 3). Note the198

variability of the stomata in the training set as well the variability of the negative patches due to the199

occurrence of different artifacts in the data. In total we extracted more than 12 thousand positive200

labeled patches and 72 thousand negative patches from the training set. Due to the apparent larger201

variability in the negative patches, more negative patches than positive patches were included.202

Figure 3: Patches with positive (left) and negative (right) examples of stomata. Stomata that are not
fully visible, were labeled negative.

The obtained patches were then used to train three different deep learning models: two basic203

architectures with three convolutional layers followed by two dense layers and an output layer204

(Fig. 1C) with respectively 180,242 and 23,297,090 trainable parameters. Therefore we varied the205

depth of of the convolutional layers from 8-16-32 (basic shallow) and 32-64-128 (basic deep)),206

and the size of the dense layers: 2x32 neurons (basic shallow) and 2x1024 neurons (basic deep).207

One VGG19 (Simonyan and Zisserman, 2014) architecture with 47,297,602 parameters of which208

27,273,218 were trained (i.e. the parameters from the fully connected layers) by fine tuning them209
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on our training set and 20,024,384 parameters (i.e. the parameters from the convolutional layers)210

obtained through pre-training on ImageNet (Deng et al., 2009). These parameters were optimized211

by using the Adam (Kingma and Ba, 2014) learning rule for which both the batch size and learning212

rate were tuned. Dropout and data augmentation, by random rotations, horizontal and vertical flips213

of the patches, were applied to avoid overfitting. Table 2.2.2 summarizes all the training parameters214

of the deep learning architecture. Our deep learning models were trained (or fine-tuned in the case215

of VGG19) over 200 epochs (50 epochs for VGG19) to output two numbers between 0.0 and 1.0216

indicating the absence or presence of a stoma. Intuitively, the output is either [0.0,1.0] or [1.0,0.0]217

depending whether the patch contains the whole stoma or not. In reality, however, the network will218

output any number between 0.0 and 1.0 depending on the model confidence. Consequently, one219

has to tune a threshold with a validation set which, in this case, consisted of three plant species220

belonging to the order of Sapindales (Lannea acida, Lannea welwitschii and Lannea schweinfurthii)221

and are relatively closely related to the species from the training set (see Suppl. Table). Lastly,222

all positively labeled patches are clustered by using mean shift clustering (Comaniciu and Meer,223

2002). This technique groups neighboring (or even overlapping) positively labeled patches from224

which the resulting stoma coordinates are derived. All software was implemented in Python 3.6.225

Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2016) were used to implement the deep226

learning models. Training and testing was performed on a Linux (Ubuntu 18.04) workstation with227

an i7-5930k CPU, 64 GB RAM and a NvidiaTM Titan Xp GPU.228

To evaluate the performance of the model, we calculated the information retrieval (IR) standard229

measures, precision (= TP
TP+FP ) and recall (= TP

TP+FN ). Precision decreases with the number of false230

positives (FP) and recall with the number of false negatives (FN). The F-score is the harmonic mean231

of precision and recall with a high F-score, meaning low false positives and low false negatives.232

Precision indices were calculated for all annotated images used for training (denoted "training set"233
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parameter Basic shallow Basic deep VGG19
#parameters 180,242 23,297,090 47,297,602
#trainable parameters 180,242 23,297,090 27,273,218
optimizer Adam Adam Adam
parameters optimizer α =5 × 10−4 α =5 × 10−5 α =5 × 10−6

β1 = 0.9 β1 = 0.9 β1 = 0.9
β2 = 0.999 β2 = 0.999 β2 = 0.999

batch size 32 64 128
training epochs 200 200 50

Table 1: Summary of the training parameters.

in Suppl. Table), on 70 unseen images from a subset of the training set ("unseen within the scope of234

training") and on 595 images from species not included in the training set ("unseen beyond the scope235

of training"), a range of 16 species from 7 genera chosen from more and less related angiosperm236

orders as the samples used for training. The latter set was included to assess the performance of237

the model on other angiosperm species and to evaluate how well the model generalizes to these238

other species. We expected the deep learning model to perform better on species from the same239

angiosperm order as the training species as related species are expected to resemble each other more240

in stomatal shape and size (Zhang et al., 2012). As stomatal shape can vary in relation to climate241

even between species within a genus (e.g. Yukawa et al., 1992; Pautov et al., 2017) we sampled for242

this dataset three species within each genus with one species from the tropical rainforest, one from243

the tropical moist deciduous forest and one from tropical shrubland and desert (but only two climate244

regions for the Asparagaceae and one for Orchidaceae) to average precision measures and be able to245

compare genera by controlling for provenance. Precision indices for the training set were calculated246

to assess the performance in function of the number of stomata used per species for training and to247

compare performance to the "unseen beyond the scope of training" set.248

The output of the developed model for stomatal detection consists of the coordinates of the249
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detected stomata. To calculate stomatal densities for scientific research questions, all stomata per250

image are counted and converted to the number of stomata per square millimeter. The accuracy (%)251

was calculated for 70 unseen images of species used in the training set ("unseen within the scope252

of training") for which we compared manual and computed stomatal counts. Accuracy is defined253

as the ratio of the number of correctly classified items to the total number of items (Michie et al.,254

1994). Goodness-of-fit was determined by calculation of the coefficient of determination (R2) from255

a linear regression between computed and manual counts.256

3 Results257

3.1 Efficacy of the nail polish method258

A total of 49 species was sampled from the African herbarium of Meise Botanic Garden (see Suppl.259

Table). The nail polish method was successfully applied in 78% of the species sampled. Generating260

impressions failed in 16 % of the species due to hairy or velvety leaf surfaces. In 7% of the species261

for which we managed to get leaf prints, we were unable to detect the stomata visually.262

3.2 Model selection and evaluation263

The accuracy of all three architectures on an unseen dataset (i.e. the validation set) is depicted264

in Fig. 4, illustrating the precision and recall for varying thresholds (0.05 to 0.95), as well as the265

F-score, which is an indication of the overall performance. One can observe that there is a trade-off266

between precision and recall, a well-known, general feature of information retrieval models. For267

example, one can choose to obtain maximal precision with very low recall or vice versa. From Fig. 4268

it is clear that with increasing trainable parameters, the performance of the architecture increases,269
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although the VGG19 architecture only slightly outperforms the basic architectures. Furthermore,270

from Fig. 4 one can observe that the VGG19 architecture is less sensitive to the choice of the271

threshold in comparison to the basic architecture. Moreover, VGG19 can be seen as a standard272

textbook approach, while the basic architecture were hand-tuned. For all these reasons, we will273

continue our analysis and discussion with the VGG19 architecture. However, we want to point out274

that our choice is not the computationally most efficient. With less parameters, the basic architectures275

are less computationally demanding than VGG19. We refer to the work of Bianco et al. (2018) for a276

benchmark study of deep learning architectures.277

Figure 5 shows that there are slight variations of the performance on the validation set. For278

the VGG19 architecture, a threshold equal to 0.7 is a good trade-off between precision and recall279

and will result in an average F-score of 0.89. This is close to an average F-score of 0.87 for the280

plant species of the training set. For species for which 250 stomata or more were used for training,281

precision, recall, and F-score values of 0.8 and higher were obtained (Fig. 6).282

3.3 Accuracy283

The accuracy was calculated for 70 images of species within the scope of the training set to compare284

results of stomatal densities between computed and manual counts. Average accuracy was high285

(94%) and a strong correlation between the computed counts and the manual counts was observed286

among all the images (Fig. 7, R2 = 0.96, P < 0.001). Figure 7 shows the reference line (1:1) with an287

intercept within the 95% confidence interval (CI) around the intercept (-4.46-0.86) of the linear288

regression and with a slope value of 1 slightly outside the 95% CI of the regression slope (1.01-1.11).289

For images containing many stomata (>60) stomatal number tends to be underestimated (Fig. 7).290
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Figure 4: Precision-recall curve for the detection of three species unseen during training for three
different deep learning architectures (zoom on the right). The curve gives us insight on how to
choose the decision threshold which ranged from 0.05 to 0.95 in steps of 0.05. To guide this decision
process the F iso−curves are shown as well.
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Figure 5: Precision-recall curve for the fine-tuned VGG19 architecture on the three different species
(zoom on the right).

3.4 Generalisation to other species291

In Figure 8 the overall performance of the VGG19 architecture on the "unseen beyond the scope of292

training set" (open circles) is shown for a confidence threshold of 0.7. Average precision, recall and293

F-score for the training set are 0.84, 0.91 and 0.87, respectively. Performance indices for unseen294

species within the same angiosperm order as the training set (Malpighiales, Ericales) range between295

0.75-0.84 for precision, 0.57-0.87 for recall and 0.64-0.79 for F-score. Performance indices for296

unseen species beyond the training set (Poales, Asparagales, Gentianales, Solanales) range between297

0.53-0.77 for precision, 0.63-0.94 for recall and 0.57-0.80 for F-score.298
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Figure 6: Precision, recall and F-score indices in function of the number of stomata used for each of
the 19 species for training.
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Figure 7: Accuracy of the computed stomatal counts per image (n = 70) from seven species included
in the training set. The blue line with grey 95% CIs is the regression line with slope 1.056 and
intercept -1.8 (R2 = 0.96, P < 0.001)), the black line is the reference line (1:1).
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Figure 8: Performance of the network in function of the phylogenetic relatedness of taxa used for
training, validation and testing. (A) Angiosperm phylogeny (modified from APG III, 2009) and
diversity in the training set (full circles) and test set (open circles). The open diamond indicates the
position within the angiosperm phylogeny of the taxa used for validation (Lannea species; see text).
The numbers in the central frame denote the performance indices: precision, recall and F-score.
Average precision, recall and F-score for the training set are 0.84, 0.91 and 0.87, respectively. Images
(B, C, and D) visualize the performance of the network on unseen taxa belonging to the test set with
(B) Cyrtorchis chailluana (Orchidaceae, Asparagales), (C) Lannea schweinfurthii (Anacardiaceae,
Sapindales) and (D) Ipomoea eriocarpa (Convolvulaceae, Solanales). Green crosses denote the
actual stomata, red x’s the stomata recognized by the network with a confidence of 0.7 or higher.
Color gradient from green (low confidence) to yellow (high confidence).
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4 Discussion299

In this work, we developed a leaf-to-label workflow that allows detecting stomata on light microscope300

images from dried plant material such as that of herbarium specimens. Even though mostly used301

in fresh plant material (e.g. Wu and Zhao, 2017), the nail polish method proves to be a reliable,302

non-invasive, easy, and inexpensive method that can obtain qualitative leaf impressions from dried303

leaves on the majority of species (78%). We trained a deep learning architecture for the detection304

of stomata in focus-stacked images of high-resolution. However, we believe that traditional light305

microscopy could also be used for imaging given that the entire field of view is in focus. We306

illustrated that, even with a simple deep learning approach in which we model the object detection307

problem as a classification problem with a fixed patch size based, a F-score of 0.89 can be reached308

on unseen taxa on the condition that they are in the phylogenetic scope of the training set. This is in309

line with the average results (F-score:0.87) on the training set. The model on average did not perform310

better on unseen species within the same angiosperm order as the training set (F-score: 0.64-0.79)311

as compared to its performance on unseen species of other angiosperm orders (F-score: 0.57-0.80).312

This result seems to indicate that the variation in stomatal structure and shape within flowering plant313

orders is similar to the variation between them. However, note that this test set includes at most a314

few species representing an angiosperm order and therefore does not include all variation within315

genera, families, and orders. The training focused mainly on taxa belonging to the core eudicots and316

one species of the basal angiosperms Polyalthia suaveolens (Magnoliales). The model performed on317

average better on unseen species from the core eudicots (F-score: 0.77) than on unseen species from318

the monocots (F-score: 0.59). The difference in stomatal shape between monocots and the dicots is319

apparent, especially the grasses (Poaceae), represented here by Chloris species are known for their320

particular dumbbell-shaped guard cells as compared to kidney-shaped cells of dicots (Zeiger et al.,321
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1987; Rudall et al., 2017). Also, the orchid species included in the test set, Cyrtorchis chailluana322

has a stomatal shape not easily detected by our model (Fig. 8), probably because of its particular323

circular shape and round opening [cf. stoma Type II in Dendrobium (Yukawa et al., 1992)]. Also324

note that we did not include species with extremely large stomata typical for e.g. the Liliaceae, as325

this will decrease the performance of the model to detect the stomata (but see below).326

While the model performs relatively well over a broad taxonomy, our approach has room for327

further improvement. Firstly, the model performance is highly related to the variation (Fig. 8), the328

quantity (Fig. 6), and quality of training images. The network presented in this paper is not trained329

to handle low-quality images. Therefore high-quality images should be aimed to enable the network330

to perform optimally. The quality (contrast, blurriness, etc.) of a set of pictures can be quantified331

using the image histogram and using PyImageQualityRanking software for ranking the images in a332

set and detecting outliers (Koho et al., 2016). Based on this ranking, one can choose to leave out333

low-ranked images due to their insufficient quality. If low-quality images should still be processed,334

then the network should be trained accordingly.335

Secondly, the performance of our model depends on the number of examples of stomata used336

during training (Fig. 6). In general, if more examples are available of a species, the better the337

performance of the model for that species. In this case, even though overall accuracy of stomatal338

counts was very high (94%) for unseen pictures of seven species (Fig. 7), the average accuracy for339

each of the species individually was highly correlated with the number of images and total number340

of stomata seen during training (results not shown) as was the case for the information retrieval341

(IR) standard measures (Fig. 6). For example, only 69 stomata or 3 images for the species Irvingia342

grandifolia were used in training (Suppl. Table) rendering an average accuracy of 64%, i.e. a343

reduction or increase in stomatal density of 36%. Since a 28% reduction in stomatal density in344

transgenic poplars is enough to cause a 30% drop in transpiration (Wang et al., 2016; Bertolino345
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et al., 2019) we recommend at least 250 stomata for training depending on the level of difference in346

stomatal density one wants to detect. If small differences in stomatal density within a species are347

targeted, the general protocol described in this paper can be used. In order to obtain more accurate348

results, the threshold of the deep learning model (cf. Section 3.2) can be adjusted for each species349

separately. Furthermore, the accuracy for an individual species can be increased by fine-tuning the350

model by training the dense layers of the deep learning model.351

Thirdly, our patch-based approach is constrained by a patch size of 120 by 120 pixels which352

correspond to a window of 25 by 25 µm using the microscope settings as described above.353

Angiosperms on average have a stomatal length or guard cell length of 31 µm (cf. Hodgson et al.,354

2010; Beaulieu et al., 2008) (Suppl. Fig.). Although this patch size could be successfully applied to355

the majority of angiosperm species, the patch size limits both the aspect ratio and the scale of the356

input image. The simplest solution is to adjust magnification during data collection, by increasing357

the magnification when stomata are too small to be detected and decreasing the magnification when358

stomata extend beyond a patch size of 120 by 120 pixels. In our model, stomata between 60 and 120359

pixels are best detected by the model. Another more elegant way of handling this problem is by360

including some region of interest pooling layer as discussed by Dai et al. (2016) and He et al. (2014),361

which would allow moving from the patch-based method to detect all stomata in a spatial hierarchical362

way. This object detection pipeline can be improved further with Fast R-CNN (Girshick, 2015) and363

Faster R-CNN (Ren et al., 2015) which combine the idea of using a spatial hierarchical pooling364

with region based convolutions into an end-to-end trainable deep learning model. Furthermore, if365

processing speed is an issue, one can opt for a single shot multibox detector approach (SSD). SSD,366

discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios367

and scales per feature map location (Liu et al., 2016). At prediction time, the network generates368

scores for the presence of each object category in each default box and produces adjustments to the369
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box to better match the object shape.370

Fourthly, with the current advances in deep learning, the object detection pipeline can be improved371

further by using novel convolutional neural network architectures such as Xception (Chollet, 2017)372

or ResNeXt (Xie et al., 2017) as a backbone for feature extraction. See (Bianco et al., 2018) for an373

in-depth analysis of the majority of the deep neural network architectures that deviate from the idea374

that simply stacking convolutional layers is sufficient.375

To summarize, we illustrated that by using a simple deep learning architecture one can work out376

a simple leaf-to-label workflow that allows detecting stomata on light microscope images from dried377

plant material such as that of herbarium specimens. Our approach can be optimized depending378

on the availability of the data as well as by using more recent object detection pipelines. We379

recommend the survey paper of Liu et al. (2018b) and (Huang et al., 2017) for a thorough overview380

and benchmarking of object detector pipelines.381

5 Conclusions382

The entire leaf-to-label pipeline presented here could be of use in different research areas with the383

need for stomatal count data of many specimens. It will allow ecologists to focus on the ecological384

questions rather than on the technical aspects of data analysis and more specifically deep learning,385

and computer scientists to pave new roads on some of the biological world’s most complex units,386

such as ecosystems (Christin et al., 2019). Large-scale studies using stomata of fossils to reconstruct387

a changing environment in deep time (e.g. McElwain et al., 1999; Franks et al., 2017)), as well as388

work on the anthropogenic effect on stomatal density and size in agricultural crops (Zheng et al.,389

2013) could benefit from such an approach i.e. the use of a general deep learning model that can390

be tweaked and expanded for the detection of other objects such as epidermal cells. Especially391
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the information locked in the archives of herbaria, the result of century-long efforts of collecting,392

has shown to be of great value in several studies, as the digitization of herbaria specimens has the393

potential to produce data to facilitate the study of the natural world (Goodwin et al., 2015). The394

leaf-to-image approach described here, is easy to perform and, given that imaging technology is395

becoming faster and can be partially automated, the exploration of these sleeping beauties is within396

reach.397
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