References
Alvares, C., Stape, J., Sentelhas, P., Gonçalves, D., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorol. Z, 22, 711–728.
Andruschkewitsch, R., Geisseler, D., Koch, H., & Ludwig, B. (2013). Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma, 192, 368–3677.
Anghinoni, I., Carvalho, P.C.F., & Costa, S.E.V.G.A. (2013). Tópicos em ciência do solo, in: Araújo, A.P., Avelar, B.J.R. (Eds.), Abordagem Sistêmica do Solo em Sistemas Integrados de Produção Agrícola e Pecuária no Subtrópico Brasileiro. UFV, Viçosa, MG, pp, 221–278.
Baldock, J.A., & Skjemstad, J.O. (2000). Role of the matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31, 697–710.
Basche, A.D., Kaspar, T.C., Archontoulis, S.V., Jaynes, D., Sauer, T.J., Parkin, T.B., & Miguez, F.E. (2016). Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag, 172, 40–50. https://doi.org/10.1016/j.agwat.2016.04.006.
Benjamin, J.G., & Karlen, D.L. (2014). Techniques for quantifying potential soil compaction consequences of crop residue removal. Bioenergy Res, 7, 468–480. doi: 10.1007/s12155-013-9400-x
Caires, E., Haliski, A., Bini, A., & Scharr, D. (2015). Scharr surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil. Eur. J. Agron, 66, 41–53. https://doi.org/10.1016/j.eja.2015.02.008.
Calonego, J.C., Raphael, J.P., Rigon, J.P., Neto, L.D.O., & Rosolem, C.A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur. J. Agron, 85, 31–37. https://doi.org/10.1016/j.eja.2017.02.001.
Cambardella, C.A., & Elliott, E.T. (1992). Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J, 56, 777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x.
Cantarella, H., Quaggio, J.A., & Van Raij, B. (2001). Determinação da matéria orgânica, in: Van Raij, B., Andrade, J.C., Cantarella, H., Quaggio, J.A. (Eds.), Análise química para avaliação da fertilidade de solos tropicais. Unicamp, Campinas, pp, 173-180.
Carducci, C., Vitorino, A.T., Serafm, M., & da Silva, E. (2016). Aggregates morphometry in a Latosol (Oxisol) under different soil management systems. Sist. Inform. Cienc, 37, 33–42. https://doi.org/10.5433/1679-0359.2016v37n1p33.
Cecagno, D., Costa, S.E.V.G.D., Anghinoni, I., Kunrath, T.R., Martins, A.P., Reichert, M., Gubiani, P.I., Balerini, F., Fink, J.R., & Carvalho, P.C.D.C. (2016). Least limiting water range and soybean yield in a long-term, no-till, integrated crop-livestock system under different grazing intensities. Soil Till. Res, 156, 54–62.
Cerri, C.C., Carvalho, J.L.N., Nascimento, A.M., & Miranda, S.H.G. (2012). Agricultura de baixo carbono. O que a ciência do solo tem a ver com isso. B. Inf. SBCS, 37, 13–19.
Cherubin, M., Eitelwein, M., Fabbris, C., Weirich, S., Silva, R., Silva, V., & Basso, C. (2015). Qualidade física, química e biológica de um latossolo com diferentes manejos e fertilizantes. Rev. Bras. Cienc. Solo, 39, 615–625.
Ciotta, M.N., Bayer, C., Ernani, P.R., Fontoura, S.M.V., Albuquerque, J.A., & Wobeto, C. (2002). Acidification of a south Brazilian oxisol under no-tillage. Rev. Bras. Ciênc. Solo, 26, 1055–1064. https://doi.org/10.1590/S0100-06832002000400023.
Conab (Companhia Nacional de Abastecimento), (2018). Acompanhamento da safra brasileira grãos. v.5 - Safra 2017/18, n. 5. Quinto Levantamento, Brasília. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_02_08_17_09_36_fevereiro_2018.pdf (accessed 03.09.18).
Conte, O., Levien, R., Trein, C., Xavier, A.A.P., & Debiasi, H. (2009). Demanda de tração, mobilização de solo na linha de semeadura e rendimento da soja, em plantio direto. Pesq. Agropec. Bras, 44, 1254–1261. https://doi.org/10.1590/S0100-204X2009001000007.
Daigh, A.L., Helmers, M.J., Kladivko, E., Zhou, X., Goeken, R., Cavdini, J., Barker, D., & Sawyer, J. (2014). Soil water during the drought of 2012 as affected by rye cover crops in fields in Iowa and Indiana. J. Soil Water Conserv, 69, 564–573.
de Moraes, M.T., Debiasi, H., Carlesso, R., Franchini, J.C., da Silva, V.R., & da Luz, F.B. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil Till. Res, 155, 351–362. https://doi.org/10.1016/j.still.2015.07.015.
Denef, K., & Six, J.(2005). Clay mineralogy determines the importance of biological versus abiotic processes for macro aggregate formation and stabilization. European Journal of Soil Science, 56, 469–479.
Derpsch, R., Franzluebbers, A.J., Duiker, S.W., Reicosky, D.C., Koeller, K., Friedrich, T., Sturny, W.G., Sá, J.C.M., & Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil Till. Res, 137, 16–22. https://doi.org/10.1016/j.still.2013.10.002.
Dexter, A.R. (2004). Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120, 201–214. https://doi.org/10.1016/j.geoderma.2003.09.004.
Haines, W. (1930). Studies in the physical properties of soil. V. Thehysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci, 10, 96–105. https://doi.org/10.1017/S002185960008864X.
He, J., Du, Y.-L., Wang, T., Turner, N.C., Yang, R.-P., & Jin, Y. (2016). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr .) under drought. Agric. Water Manag, 179, 236–245. https://doi.org/10.1016/j.agwat.2016.07.008.
Imea (Instituto Mato-grossense de economia agropecuária), (2017). 6º Estimativa da safra de soja 2016/17.Cuiabá.http://www.imea.com.br/upload/publicacoes/arquivos/06112017183627.pdf (accessed 03.09.18).
Kögel Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo‐mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61–82.
Klute A (ed). (1986). Methods of soil analysis. Part 1, 2nd edn, Agronomy Monograph 9. ASA and SSSA: Madison, WI.
Krebstein, K., von Janowsky, K., Kuht, J., & Reintam, E. (2014). The effect of tractor wheeling on the soil properties and root growth of smooth brome. Soil Plant Environ, 60, 74–79.
Lal, R. (2015). Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv, 70, pp. 55A-62ª.
Martínez, A., Chervet, P., Weisskopf, W.G., Sturny, A., Etana, M., Stettler, J., & Forkmann, T. (2016). Keller two decades of no-till in the oberacker long-term field experiment: Part 1. Crop yield, soil organic carbon and nutrient distribution in the soil. Soil Till. Res, 163, 141–151. https://doi.org/10.1016/j.still.2016.05.021.
Mello, C.D., Oliveira, G.D., Resck, D.V.S., Lima, J., & Dias, J.M. (2002). Estimativa da capacidade de campo baseada no ponto de inflexão da curva característica. Ciênc. Agrotecnol, 26, 836–841.
Minasny, B., & McBratney, A.B. (2018). Limited effect of organic matteron soil available water capacity. J. Soil Sci, 69, 39–47. https://doi.org/10.1111/ejss.12475.
Mota, J.C.A., Alves, C.V.O., Freire, A.G., & de Assis, R.N. (2014). Uni and multivariate analyses of soil physical quality indicators of a cambisol from apodi plateau — CE, Brazil. Soil Till. Res, 140, 66–73. https://doi.org/10.1016/j.still.2014.02.004.
Muneer, M., & Oades, J.M. (1989). The role of Ca–organic interactions in soil aggregate stability. III. Mechanisms and models. Australian Journal of Soil Research, 27, 411–423.
Quére, C.L., Moriarty, R., Andrew, R.M., Canadell, J.G., Sitch, S., Korsbakken, J.I., et al. Global carbon budget 2015. Earth Syst. Sci. Data 2015; 7:349–396. doi:10.5194/essd-7-349-2015
Qi, Z., Helmers, M.J., & Kaleita, A.L. (2011). Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA. Agric. Water Manage, 98, 665–674. /https://doi.org/10.1016/j.agwat.2010.11.004.
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.J. (2018). Soil structure as an indicator of soil functions: a review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009.
Reichert, M., da Rosa, V., Vogelmann, E.S., da Rosa, D.P., Horn, R., Reinert, D.J., Sattler, A., & Denardin, J.E. (2016). Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Till. Res, 158, 123–136. https://doi.org/10.1016/j.still.2015.11.010.
Roger-Estrade, J., Richard, G., & Manichon, H. (2000). A compartmental model to simulate temporal changes in soil structure under two cropping systems with annual moldboard ploughing in a silt loam. Soil Till Res, 54, 41-53. https://doi.org/10.1016/S0167-1987(99)00111-7.
Ryschawy, J., Choisis, N., Choisis, J.P., Joannon, A., & Gibon, A. (2012). Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal, 6, 1722–1730. https://doi.org/10.1017/s1751731112000675.
Sa, J.C.D., Tivet, F., Lal, R., Briedis, C., Hartman, D.C., & dos Santos, J.Z. (2014). Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian oxisol. Soil Till. Res, 136, 38–50. https://doi.org/10.1016/j.still.2013.09.010.
Sá, J.C.M.D., Séguy, L., Tivet, F., Lal, R., Bouzinac, S., Borszowskei, P.R., Briedis, C., Santos, J.B., Hartman, D.C., Bertoloni, C.G., Rosa, J., & Friedrich, T. (2015). Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of sub-tropical and tropical agro-ecoregions in Brazil. Land Degrad. Dev, 26, 531–543. https://doi.org/10.1002/ldr.2218.
Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Cunha, T.J.F., & Oliveira, J.B. (2018). Brazilian System of Soil Classification. = Sistema Brasileiro de Classificação de Solos. 5ed. Embrapa, Brasília, DF, Brazil (in Portuguese), pp. 590
Serafim, M.E., De Oliveira, G.C., Vitorino, A.C.T., Silva, B.M., & Carducci, C.E. (2013). Qualidade física e intervalo hídrico ótimo em latossolo e cambissolo, cultivados com cafeeiro, sob manejo conservacionista do solo. Rev. Bras. Ciênc. Solo, 37, 733–742. https://doi.org/10.1590/S0100-06832013000300020.
Silva, B., Silva, É., Oliveira, G., Ferreira, M., & Serafim, M. (2014). Plant-available soil water capacity: estimation methods and implications. Rev. Bras. Ciênc. Solo, 38, 464–475. https://doi.org/10.1590/S0100-06832014000200011.
Silva, S., Silva, A., Giarola, N., Tormena, C., & Sá, J. (2012). Temporary effect of chiseling on the compaction of a rhodic hapludox under no-tillage. Rev. Bras. Ciênc. Solo, 36. https://doi.org/10.1590/S0100-06832012000200024.
Six, J., & Paustian, K. (2014). Paustian aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem, 68, A4–A9.
Steele, M.K., Coale, F.J., & Hill, R.L. (2012). Winter annual cover crop impacts on no-tillsoil physical properties and organic matter. Soil Sci. Soc. Am. J, 76, 2164–2173. https://doi.org/10.2136/sssaj2012.0008.
Tan, Z., Lal, R., Owens, L., & Izaurralde, R.C. (2007). Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res, 92, 53–59. https://doi.org/10.1016/j.still.2006.01.003.
Tavares Filho, J., Feltran, C.T.M., Oliveira, J.F., & Almeida, E. (2012). Modelling of soil penetration resistancefor an Oxisol under no-tillage. R. Bras. Ci. Solo, 36,89-95.
Taylor, H.M., Roberson, G.M., & Parker Jr, J.J. (1966). Soil strength-root penetration relations for medium-to coarse-textured soil materials. Soil Sci. Soc. Am. J, 102, 18–22.
Teixeira, P.C., Donagemma, G.K., Fontana, A., & Teixeira, W.G. (2017). Manual de Métodos de Análise de Solos. Embrapa, Brasília.
Tewari, S., & Arora, N. (2016). Soybean production under flooding stress and its mitigation using plant growth-promoting microbes. In: Mohammad M (ed) Environmental Stresses in Soybean Production: Soybean Production 2, Academic press, San Diego pp 23–40
Tormena, C.A., Silva, A.P., & Libard, P.L. (1998). Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio. Rev. Bras. Ciênc. Solo, 22, 573–581. https://doi.org/10.1590/S0100-06831998000400002.
Tormena, C.A., Karlen, D.L., Logsdon, S., & Cherubin, M.R. (2017). Corn stover harvest and tillage impacts on near-surface soil physical quality. Soil and Tillage Research, 166, 122-130.
Van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J, 44, 892–897. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vezzani, f.m., & mielniczuk, J. (2011). Agregação e estoque de carbono em Argissolo submetido a diferentes práticas de manejo agrícola. R. Bras. Ci. Solo, 35, 213-223.
Vogel, C., Babin, D., Pronk, G.J., Heister, K., Smalla, K., & Kögel-Knabner, I. (2014). Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils. Soil Biol Biochem, 79, 57-67.
Williams, A., Hunter, M.C., Kammerer, M., Kane, D.A., Jordan, N.R., & Mortensen, D.A. (2016). Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: time to invest in soil organic matter? PLoS One, 11, e0160974. https://doi.org/10.1371/journal.pone.0160974.
Wingeyer, A.B., Amado, T.J.C., Pérez-Bidegain, M., Studdert, G.A., Varela, C.H.P., Garcia, F.O., & Karlen, D.L. (2015). Soil quality impacts of current South American agricultural practices. Sustainability, 7, 2213–2242. https://doi.org/10.3390/su7022213.
Zhao, L., Wang, L., Liang, X., Wang, J., & Wu, F. (2013). Soil surface roughness effects on infiltration process of a cultivated slopes on the loess plateau of China. Water Res. Manage, 27, 4759–4771. https://doi.org/10.1007/s11269-013-0428-7.