References
Alvares, C., Stape, J., Sentelhas,
P., Gonçalves, D., Leonardo, J., & Sparovek, G. (2013). Köppen’s
climate classification map for Brazil. Meteorol. Z, 22, 711–728.
Andruschkewitsch, R., Geisseler, D., Koch, H., & Ludwig, B. (2013).
Effects of tillage on contents of organic carbon, nitrogen, water-stable
aggregates and light fraction for four different long-term trials.
Geoderma, 192, 368–3677.
Anghinoni, I., Carvalho, P.C.F., & Costa, S.E.V.G.A. (2013). Tópicos em
ciência do solo, in: Araújo, A.P., Avelar, B.J.R. (Eds.), Abordagem
Sistêmica do Solo em Sistemas Integrados de Produção Agrícola e Pecuária
no Subtrópico Brasileiro. UFV, Viçosa, MG, pp, 221–278.
Baldock, J.A., & Skjemstad, J.O. (2000). Role of the matrix and
minerals in protecting natural organic materials against biological
attack. Organic Geochemistry, 31, 697–710.
Basche, A.D., Kaspar, T.C., Archontoulis, S.V., Jaynes, D., Sauer, T.J.,
Parkin, T.B., & Miguez, F.E. (2016). Soil water improvements with the
long-term use of a winter rye cover crop. Agric. Water Manag, 172,
40–50. https://doi.org/10.1016/j.agwat.2016.04.006.
Benjamin, J.G., & Karlen, D.L. (2014). Techniques for quantifying
potential soil compaction consequences of crop residue removal.
Bioenergy Res, 7, 468–480. doi: 10.1007/s12155-013-9400-x
Caires, E., Haliski, A., Bini, A., & Scharr, D. (2015). Scharr surface
liming and nitrogen fertilization for crop grain production under
no-till management in Brazil. Eur. J. Agron, 66, 41–53.
https://doi.org/10.1016/j.eja.2015.02.008.
Calonego, J.C., Raphael, J.P., Rigon, J.P., Neto, L.D.O., & Rosolem,
C.A. (2017). Soil compaction management and soybean yields with cover
crops under no-till and occasional chiseling. Eur. J. Agron, 85, 31–37.
https://doi.org/10.1016/j.eja.2017.02.001.
Cambardella, C.A., & Elliott, E.T. (1992). Particulate soil
organic-matter changes across a grassland cultivation sequence. Soil
Sci. Soc. Am. J, 56, 777–783.
https://doi.org/10.2136/sssaj1992.03615995005600030017x.
Cantarella, H., Quaggio, J.A., & Van Raij, B. (2001). Determinação da
matéria orgânica, in: Van Raij, B., Andrade, J.C., Cantarella, H.,
Quaggio, J.A. (Eds.), Análise química para avaliação da fertilidade de
solos tropicais. Unicamp, Campinas, pp, 173-180.
Carducci, C., Vitorino, A.T., Serafm, M., & da Silva, E. (2016).
Aggregates morphometry in a Latosol (Oxisol) under different soil
management systems. Sist. Inform. Cienc, 37, 33–42.
https://doi.org/10.5433/1679-0359.2016v37n1p33.
Cecagno, D., Costa, S.E.V.G.D., Anghinoni, I., Kunrath, T.R., Martins,
A.P., Reichert, M., Gubiani, P.I., Balerini, F., Fink, J.R., &
Carvalho, P.C.D.C. (2016). Least limiting water range and soybean yield
in a long-term, no-till, integrated crop-livestock system under
different grazing intensities. Soil Till. Res, 156, 54–62.
Cerri, C.C., Carvalho, J.L.N., Nascimento, A.M., & Miranda, S.H.G.
(2012). Agricultura de baixo carbono. O que a ciência do solo tem a ver
com isso. B. Inf. SBCS, 37, 13–19.
Cherubin, M., Eitelwein, M., Fabbris, C., Weirich, S., Silva, R., Silva,
V., & Basso, C. (2015). Qualidade física, química e biológica de um
latossolo com diferentes manejos e fertilizantes. Rev. Bras. Cienc.
Solo, 39, 615–625.
Ciotta, M.N., Bayer, C., Ernani, P.R., Fontoura, S.M.V., Albuquerque,
J.A., & Wobeto, C. (2002). Acidification of a south Brazilian oxisol
under no-tillage. Rev. Bras. Ciênc. Solo, 26, 1055–1064.
https://doi.org/10.1590/S0100-06832002000400023.
Conab (Companhia Nacional de Abastecimento), (2018). Acompanhamento da
safra brasileira grãos. v.5 - Safra 2017/18, n. 5. Quinto Levantamento,
Brasília.
http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_02_08_17_09_36_fevereiro_2018.pdf
(accessed 03.09.18).
Conte, O., Levien, R., Trein, C., Xavier, A.A.P., & Debiasi, H. (2009).
Demanda de tração, mobilização de solo na linha de semeadura e
rendimento da soja, em plantio direto. Pesq. Agropec. Bras, 44,
1254–1261. https://doi.org/10.1590/S0100-204X2009001000007.
Daigh, A.L., Helmers, M.J., Kladivko, E., Zhou, X., Goeken, R., Cavdini,
J., Barker, D., & Sawyer, J. (2014). Soil water during the drought of
2012 as affected by rye cover crops in fields in Iowa and Indiana. J.
Soil Water Conserv, 69, 564–573.
de Moraes, M.T., Debiasi, H., Carlesso, R., Franchini, J.C., da Silva,
V.R., & da Luz, F.B. (2016). Soil physical quality on tillage and
cropping systems after two decades in the subtropical region of Brazil.
Soil Till. Res, 155, 351–362.
https://doi.org/10.1016/j.still.2015.07.015.
Denef, K., & Six, J.(2005). Clay mineralogy determines the importance
of biological versus abiotic processes for macro aggregate formation and
stabilization. European Journal of Soil Science, 56, 469–479.
Derpsch, R., Franzluebbers, A.J., Duiker, S.W., Reicosky, D.C., Koeller,
K., Friedrich, T., Sturny, W.G., Sá, J.C.M., & Weiss, K. (2014). Why do
we need to standardize no-tillage research? Soil Till. Res, 137, 16–22.
https://doi.org/10.1016/j.still.2013.10.002.
Dexter, A.R. (2004). Soil physical quality: part I. Theory, effects of
soil texture, density, and organic matter, and effects on root growth.
Geoderma, 120, 201–214. https://doi.org/10.1016/j.geoderma.2003.09.004.
Haines, W. (1930). Studies in the physical properties of soil. V.
Thehysteresis effect in capillary properties, and the modes of moisture
distribution associated therewith. J. Agric. Sci, 10, 96–105.
https://doi.org/10.1017/S002185960008864X.
He, J., Du, Y.-L., Wang, T., Turner, N.C., Yang, R.-P., & Jin, Y.
(2016). Conserved water use improves the yield performance of soybean
(Glycine max (L.) Merr .) under drought. Agric. Water Manag, 179,
236–245. https://doi.org/10.1016/j.agwat.2016.07.008.
Imea (Instituto Mato-grossense de economia agropecuária), (2017). 6º
Estimativa da safra de soja
2016/17.Cuiabá.http://www.imea.com.br/upload/publicacoes/arquivos/06112017183627.pdf
(accessed 03.09.18).
Kögel Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz,
K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo‐mineral
associations in temperate soils: integrating biology, mineralogy, and
organic matter chemistry. Journal of Plant Nutrition and Soil Science,
171, 61–82.
Klute A (ed). (1986). Methods of soil analysis. Part 1, 2nd edn,
Agronomy Monograph 9. ASA and SSSA: Madison, WI.
Krebstein, K., von Janowsky, K., Kuht, J., & Reintam, E. (2014). The
effect of tractor wheeling on the soil properties and root growth of
smooth brome. Soil Plant Environ, 60, 74–79.
Lal, R. (2015). Sequestering carbon and increasing productivity by
conservation agriculture. J. Soil Water Conserv, 70, pp. 55A-62ª.
Martínez, A., Chervet, P., Weisskopf, W.G., Sturny, A., Etana, M.,
Stettler, J., & Forkmann, T. (2016). Keller two decades of no-till in
the oberacker long-term field experiment: Part 1. Crop yield, soil
organic carbon and nutrient distribution in the soil. Soil Till. Res,
163, 141–151. https://doi.org/10.1016/j.still.2016.05.021.
Mello, C.D., Oliveira, G.D., Resck, D.V.S., Lima, J., & Dias, J.M.
(2002). Estimativa da capacidade de campo baseada no ponto de inflexão
da curva característica. Ciênc. Agrotecnol, 26, 836–841.
Minasny, B., & McBratney, A.B. (2018). Limited effect of organic
matteron soil available water capacity. J. Soil Sci, 69, 39–47.
https://doi.org/10.1111/ejss.12475.
Mota, J.C.A., Alves, C.V.O., Freire, A.G., & de Assis, R.N. (2014). Uni
and multivariate analyses of soil physical quality indicators of a
cambisol from apodi plateau — CE, Brazil. Soil Till. Res, 140, 66–73.
https://doi.org/10.1016/j.still.2014.02.004.
Muneer, M., & Oades, J.M. (1989). The role of Ca–organic interactions
in soil aggregate stability. III. Mechanisms and models. Australian
Journal of Soil Research, 27, 411–423.
Quére, C.L., Moriarty, R., Andrew, R.M., Canadell, J.G., Sitch, S.,
Korsbakken, J.I., et al. Global carbon budget 2015. Earth Syst. Sci.
Data 2015; 7:349–396. doi:10.5194/essd-7-349-2015
Qi, Z., Helmers, M.J., & Kaleita, A.L. (2011). Soil water dynamics
under various agricultural land covers on a subsurface drained field in
north-central Iowa, USA. Agric. Water Manage, 98, 665–674.
/https://doi.org/10.1016/j.agwat.2010.11.004.
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.J. (2018). Soil
structure as an indicator of soil functions: a review. Geoderma, 314,
122–137. https://doi.org/10.1016/j.geoderma.2017.11.009.
Reichert, M., da Rosa, V., Vogelmann, E.S., da Rosa, D.P., Horn, R.,
Reinert, D.J., Sattler, A., & Denardin, J.E. (2016). Conceptual
framework for capacity and intensity physical soil properties affected
by short and long-term (14 years) continuous no-tillage and controlled
traffic. Soil Till. Res, 158, 123–136.
https://doi.org/10.1016/j.still.2015.11.010.
Roger-Estrade, J., Richard, G., & Manichon, H. (2000). A compartmental
model to simulate temporal changes in soil structure under two cropping
systems with annual moldboard ploughing in a silt loam. Soil Till Res,
54, 41-53. https://doi.org/10.1016/S0167-1987(99)00111-7.
Ryschawy, J., Choisis, N., Choisis, J.P., Joannon, A., & Gibon, A.
(2012). Mixed crop-livestock systems: an economic and
environmental-friendly way of farming? Animal, 6, 1722–1730.
https://doi.org/10.1017/s1751731112000675.
Sa, J.C.D., Tivet, F., Lal, R., Briedis, C., Hartman, D.C., & dos
Santos, J.Z. (2014). Long-term tillage systems impacts on soil C
dynamics, soil resilience and agronomic productivity of a Brazilian
oxisol. Soil Till. Res, 136, 38–50.
https://doi.org/10.1016/j.still.2013.09.010.
Sá, J.C.M.D., Séguy, L., Tivet, F., Lal, R., Bouzinac, S., Borszowskei,
P.R., Briedis, C., Santos, J.B., Hartman, D.C., Bertoloni, C.G., Rosa,
J., & Friedrich, T. (2015). Carbon depletion by plowing and its
restoration by no-till cropping systems in oxisols of sub-tropical and
tropical agro-ecoregions in Brazil. Land Degrad. Dev, 26, 531–543.
https://doi.org/10.1002/ldr.2218.
Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A.,
Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Cunha, T.J.F., &
Oliveira, J.B. (2018). Brazilian System of Soil Classification. =
Sistema Brasileiro de Classificação de Solos. 5ed. Embrapa, Brasília,
DF, Brazil (in Portuguese), pp. 590
Serafim, M.E., De Oliveira, G.C., Vitorino, A.C.T., Silva, B.M., &
Carducci, C.E. (2013). Qualidade física e intervalo hídrico ótimo em
latossolo e cambissolo, cultivados com cafeeiro, sob manejo
conservacionista do solo. Rev. Bras. Ciênc. Solo, 37, 733–742.
https://doi.org/10.1590/S0100-06832013000300020.
Silva, B., Silva, É., Oliveira, G., Ferreira, M., & Serafim, M. (2014).
Plant-available soil water capacity: estimation methods and
implications. Rev. Bras. Ciênc. Solo, 38, 464–475.
https://doi.org/10.1590/S0100-06832014000200011.
Silva, S., Silva, A., Giarola, N., Tormena, C., & Sá, J. (2012).
Temporary effect of chiseling on the compaction of a rhodic hapludox
under no-tillage. Rev. Bras. Ciênc. Solo, 36.
https://doi.org/10.1590/S0100-06832012000200024.
Six, J., & Paustian, K. (2014). Paustian aggregate-associated soil
organic matter as an ecosystem property and a measurement tool. Soil
Biol. Biochem, 68, A4–A9.
Steele, M.K., Coale, F.J., & Hill, R.L. (2012). Winter annual cover
crop impacts on no-tillsoil physical properties and organic matter. Soil
Sci. Soc. Am. J, 76, 2164–2173. https://doi.org/10.2136/sssaj2012.0008.
Tan, Z., Lal, R., Owens, L., & Izaurralde, R.C. (2007). Distribution of
light and heavy fractions of soil organic carbon as related to land use
and tillage practice. Soil Till. Res, 92, 53–59.
https://doi.org/10.1016/j.still.2006.01.003.
Tavares Filho, J., Feltran, C.T.M., Oliveira, J.F., & Almeida, E.
(2012). Modelling of soil penetration resistancefor an Oxisol under
no-tillage. R. Bras. Ci. Solo, 36,89-95.
Taylor, H.M., Roberson, G.M., & Parker Jr, J.J. (1966). Soil
strength-root penetration relations for medium-to coarse-textured soil
materials. Soil Sci. Soc. Am. J, 102, 18–22.
Teixeira, P.C., Donagemma, G.K., Fontana, A., & Teixeira, W.G. (2017).
Manual de Métodos de Análise de Solos. Embrapa, Brasília.
Tewari, S., & Arora, N. (2016). Soybean production under flooding
stress and its mitigation using plant growth-promoting microbes. In:
Mohammad M (ed) Environmental Stresses in Soybean Production: Soybean
Production 2, Academic press, San Diego pp 23–40
Tormena, C.A., Silva, A.P., & Libard, P.L. (1998). Caracterização do
intervalo hídrico ótimo de um latossolo roxo sob plantio. Rev. Bras.
Ciênc. Solo, 22, 573–581.
https://doi.org/10.1590/S0100-06831998000400002.
Tormena, C.A., Karlen, D.L., Logsdon, S., & Cherubin, M.R. (2017). Corn
stover harvest and tillage impacts on near-surface soil physical
quality. Soil and Tillage Research, 166, 122-130.
Van Genuchten, M. (1980). A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J, 44,
892–897. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vezzani, f.m., & mielniczuk, J. (2011). Agregação e estoque de carbono
em Argissolo submetido a diferentes práticas de manejo agrícola. R.
Bras. Ci. Solo, 35, 213-223.
Vogel, C., Babin, D., Pronk, G.J., Heister, K., Smalla, K., &
Kögel-Knabner, I. (2014). Establishment of macro-aggregates and organic
matter turnover by microbial communities in long-term incubated
artificial soils. Soil Biol Biochem, 79, 57-67.
Williams, A., Hunter, M.C., Kammerer, M., Kane, D.A., Jordan, N.R., &
Mortensen, D.A. (2016). Soil water holding capacity mitigates downside
risk and volatility in US rainfed maize: time to invest in soil organic
matter? PLoS One, 11, e0160974.
https://doi.org/10.1371/journal.pone.0160974.
Wingeyer, A.B., Amado, T.J.C., Pérez-Bidegain, M., Studdert, G.A.,
Varela, C.H.P., Garcia, F.O., & Karlen, D.L. (2015). Soil quality
impacts of current South American agricultural practices.
Sustainability, 7, 2213–2242. https://doi.org/10.3390/su7022213.
Zhao, L., Wang, L., Liang, X., Wang, J., & Wu, F. (2013). Soil surface
roughness effects on infiltration process of a cultivated slopes on the
loess plateau of China. Water Res. Manage, 27, 4759–4771.
https://doi.org/10.1007/s11269-013-0428-7.