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Abstract: In this paper, the solution and validity of the transfer probability den-
sity function for a stochastic dynamical system excited by white Gaussian noise are
discussed. Based on the exponential polynomial closure method, not only the nu-
merical solution of FPK equation is accepted, but also the validity of the method
is shown from different views. On the one hand, the exact solution expression of
the stationary transition probability density of some kind of system is received and
its error compared with the numerical solution is analyzed. On the other hand, by
establishing a kind of potential function to observe the stable region of the state
variables in probabilistic sense, it is found that the stable region of the state vari-
ables determined by the potential function is highly consistent with the stable region
determined by the stationary transition probability density function after long-term
observation.

Keywords: FPK(Fokker−Planck−Kolmogorov) equation; Steady state probabil-
ity density; Smooth potential; Generalized stationary; Stochastic final boundedness;

1. Introduction
When studying stochastic differential dynamical system, studying FPK equation is an im-

portant method to explore the response of nonlinear stochastic dynamical system.By solving
FPK equation, the transition probability density function of state variables can be understood,
which is helpful for effective qualitative and quantitative analysis of state variables.However, the
exact solution of the FPK equation of most systems cannot be directly obtained. Under the
joint efforts of many scholars, many approximate solutions have been developed, such as finite
element method [18], path integration method [3−5], finite difference method [6−10], Gaussian clo-
sure method [11−17], etc. The study on the accuracy of these numerical solutions is worthy of our
further work.This paper for a class of nonlinear stochastic dynamic system, we first establish
the corresponding FPK equation, the approximate solution of the second assumption FPK
equation form as the index of polynomial, then we used the method of undetermined coefficients
for solving the coefficient, and we can get a numerical solution of FPK equations .Finally, we
verify the accuracy of this method from different views.On the one hand, we study the error
between the exact solution of FPK equation and the numerical solution. At the same time,
we are using some sort of potential function analysis the stability of the steady state variables
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in probability sense area.After a long time observation, we found that the potential function
to determine the stability of the state variables of the smooth area and transition probability
density function is to determine the stability of the area with high consistency, which shows that
the method is simple, high precision, and it is an effective method for solving FPK equations.

2. The main content

2.1 Approximate method
For a general nonlinear dynamical system:

dXi

dt
= fi(X) +

m∑
l=1

gil(X)Wl(t), i = 1, . . . , n (1)

Where X(t) = [x1, x2, . . . , xn]
⊤ and Wl(t) are Gaussian white noise, and their correlation

function is
E[Wl(t)Ws(t+ τ)] = 2πKlsδ(τ), s = 1, . . . ,m (2)

If the system has stationary transition probability density p(X), the following simplified
FPK equation can be determined:

n∑
i=1

∂

∂xi
Gi =

n∑
i=1

∂

∂xi
[ai(x)p−

1

2

n∑
j=1

∂

∂xj
[bijp]] = 0 (3)

Where Gi is the probability stream in the i direction. ai, bij is the moment of first and
second derivatives respectively, which can be derived from equation (1) :

ai(x) = fi(x) + π
n∑

k=1

m∑
l,s=1

Klsgks(x)
∂

∂xk
gil(x)

bij(x) = 2π

m∑
l,s=1

Klsgil(x)gjs(x) (4)

In some special cases, we can obtain the exact solution of the system under the generalized
stationary condition. For system (1), we add a set of sufficient conditions for (3), as follows:

Gi = ai(x)p−
1

2

n∑
j=1

∂

∂xj
[bijp] = 0 (5)

In this case, system (1) belongs to the stationary potential class, and we can express the
stationary transition probability density as p(x) = C exp[−φ(x)] . C is the normalized constant,
and φ(x) is called the probability potential function.

However, it is usually difficult to solve general FPK equation. Therefore, based on previous
studies by scholars, we assume that the stationary transition probability density function of the
system is:

pn(x) = C exp[a11x1 + a12x2 + a21x
2
1 + a22x1x2 + a23x

2
2 + . . .+ aijx

i+j−1
1 xj−1

2 + . . .+ ann+1x
n
2 ]

C is the normalized constant, a11, a12, . . . , ann+1(n ≥ 2) is the constant. The approximate
solution is substituted into FPK equation, and the undetermined coefficients are used to solve
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the coefficients on both sides of the equation. We apply this method to two stochastic dynamical
systems and verify its validity from different angles.

2.2
Consider the following two degree of freedom nonlinear systems that are both excited by

random parameters and externally excited:

ẍ+ 2α[1 +W1(t)]ẋ+ ω2[1 +W2(t)]x+ β1(x
2 +

ẋ2

ω2
)ẋ = W3(t) (6)

Where W1(t),W2(t),W3(t) is a process of zero mean Gaussian white noise in the sense of
independent Stratonovich, and its spectral density constants are respectively k1, k2, k3. α, ω, β1
is a constant.

Letx1 = x, x2 = ẋ , and the corresponding stochastic differential equation of Stratonovich
is:

dx1 = x2dt

dx2 = [−2αx2 − ω2x1 − β1(x
2
1 +

x2
2

ω2 )x2]dt− 2αx2
√
2πk1 ◦ dB1(t)− ω2x1

√
2πk2 ◦ dB2(t)

+
√
2πk3 ◦ dB3(t)

(7)
By adding the correction term of Wong − Zakai , the corresponding stochastic differential

equation of Itó can be converted into:

dx1 = x2dt

dx2 = [−2αx2 − ω2x1 − β1(x
2
1 +

x2
2

ω2 )x2 + 4α2x2πk1]dt− 2αx2
√
2πk1dB1(t)− ω2x1

√
2πk2dB2(t)

+
√
2πk3dB3(t)

(8)
Then the moment of the first and second derivatives is obtained as follows:

a1 = x2; a2 = −2αx2 − ω2x1 − β1(x
2
1 +

x22
ω2

)x2 + 4α2x2πk1

b11 = b12 = b21 = 0; b22 = 8α2x22πk1 + 2ω4x21πk2 + 2πk3 (9)

The simplified FPK equation is obtained as follows:

∂x2p

∂x1
+
∂[−2αx2 − ω2x1 − β1(x

2
1 +

x2
2

ω2 )x2 + 4α2x2πk1]p

∂x2
−1

2

∂2[8α2x22πk1 + 2ω4x21πk2 + 2πk3]p

∂x22
= 0

(10)
By dividing the moment of first derivative into reversible and irreversible components, the

exact solvable class can be extended from stationary potential to detailed equilibrium. Similarly,
we not only separate the moment of the first derivative, but also the moment of the second
derivative, so as to further expand the exact solvable class to obtain the exact solution of the
FPK equation of the system. The last item on the left end of equation (10) can be written as:

∂2[8α2x22πk1 + 2ω4x21πk2 + 2πk3]p

∂x22
=

∂[8α2x22πk1p]

∂x2
+

∂[(8α2x22πk1 + 2ω4x21πk2 + 2πk3)
∂p
∂x2

]

∂x2
(11)
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By substituting the above equation into FPK equation (10), we can get:

∂x2p

∂x1
+

∂[−2αx2 − ω2x1 − β1(x
2
1 +

x2
2

ω2 )x2 − 4α2x2πk1]p

∂x2

−1

2

∂[(8α2x22πk1 + 2ω4x21πk2 + 2πk3)
∂p
∂x2

]

∂x2
= 0 (12)

That is:

∂x2p

∂x1
− ω2x1

∂p

∂x1
+

∂[−2αx2 − β1(x
2
1 +

x2
2

ω2 )x2 − 4α2x2πk1]p

∂x2

−1

2

∂[(8α2x22πk1 + 2ω4x21πk2 + 2πk3)
∂p
∂x2

]

∂x2
= 0 (13)

If the following sufficient conditions are satisfied:
∂x2p
∂x1

− ω2x1
∂p
∂x2

= 0

(−2αx2 − β1(x
2
1 +

x2
2

ω2 )x2 − 4α2x2πk1)p− 1
2(8α

2x22πk1 + 2ω4x21πk2 + 2πk3)
∂p
∂x2

= 0

(14)

Then, equation (13) is satisfied.Using the idea of the probability potential function, let’s say
p(x) = C exp[−φ(x)],where φ(x1, x2) = φ(λ), λ = 1

2x
2
2+

1
2ω

2x21 and C are normalized constants.
Then equation (14) is equivalent to:

x2
∂φ
∂x1

− ω2x1
∂φ
∂x2

= 0

(2αx2 + β1(x
2
1 +

x2
2

ω2 )x2 + 4α2x2πk1) +
1
2 [(8α

2x22πk1 + 2ω4x21πk2 + 2πk3)
∂φ
∂x2

] = 0

(15)

The following simplification can be obtained:

dφ

dλ
=

2α+ β1(x
2
1 +

x2
2

ω2 ) + 4α2πk1

(4α2x22πk1 + ω4x21πk2 + πk3)
(16)

If 4α2k1 = k2ω
2,then

dφ

dλ
=

2α+ β1(x
2
1 +

x2
2

ω2 ) + 4α2πk1

(πk2ω2x22 + ω4x21πk2 + πk3)
(17)

If β1 =
(2α+4α2πk1)ω4k2

k3
,Then

dφ

dλ
=

(2α+ 4α2πk1)(1 +
ω4k2
k3

(x21 +
x2
2

ω2 ))

πk3(1 +
ω4k2
k3

(x21 +
x2
2

ω2 ))
=

2α+ 4α2πk1
πk3

(18)

Therefore, under the generalized stationary condition, the exact solution of FPK equation
of the system can be obtained as follows:

pe(X) = C exp[−2α+ 4α2πk1
πk3

(
1

2
x22 +

1

2
ω2x21)] (19)
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The numerical solution of the system is solved based on the closed exponential polynomial
method. Assume that the stationary transition probability density function of the system is:

pn(x) = C exp[a11x1+a12x2+a21x
2
1+a22x1x2+a23x

2
2+. . .+aijx

i+j−1
1 xj−1

2 +. . .+ann+1x
n
2 ] (20)

Substitute equation (20) into FPK equation (10) above, fix n first, and we have

∂x2pn
∂x1

+
∂[−2αx2 − ω2x1 − β1(x

2
1 +

x2
2

ω2 )x2 + 4α2x2πk1]pn

∂x2
−1

2

∂2[8α2x22πk1 + 2ω4x21πk2 + 2πk3]pn
∂x22

= 0

(21)
The undetermined coefficient method is used to determine the coefficient of pn.Thus the

numerical solution of the FPK equation of the system can be obtained.When ω = 1, k1 = k2 =
k3 = 1,α = 0.5, β1 = 0.28.

When we solve for n = 2, we get a11 = a12 = a22 = 0, a21 = −0.579577, a23 = −0.579577.
So p2(X) = −0.579577x21 − 0.579577x22.
When we solve for n = 6, we geta11 = a12 = a22 = a31 = a32 = a33 = a34 = a42 = a44 = 0.
a51 = a52 = a53 = a54 = a55 = a56 = a62 = a64 = a66 = 0.
a21 = −0.579577, a23 = −0.579577, a41 = 0.000126739, a43 = 0.000253479, a45 = 0.000126739
a61 = −0.0000844929, a63 = −0.000253479, a65 = −0.000253479, a66 = −0.0000844929.
So
p6(X) = −0.579577x21+0.000126739x41− 0.0000844929x61− 0.579577x22+0.000253479x21x

2
2−

0.000253479x41x
2
2 + 0.000126739x42 − 0.000253479x21x

4
2 − 0.0000844929x62

Simulation results are as follows:

(a) Graph of function p2(X). (b) Graph of function p6(X). (c) Graph of function pe(X).

Figure 1: Schematic diagram of the steady state transition probability density function.

Figure 2: In the disk of x2
1 + x2

2 ≤ 1,
error diagram of p6(X) and pe(X)

Figure 3: In the |x1| ≤ 1; |x2| ≤ 1 region,
error diagram of p6(X) and pe(X)
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Fig 4: Stability zone accuracy diagram.

Table 1: List of joint stationary probability densities of numerical and exact solutions in
different regions near the equilibrium state

p(x) x2
1 + x2

2 ≤ 1 x2
1 + x2

2 ≤ 0.25 |x1| ≤ 1; |x2| ≤ 1 |x1| ≤ 0.5; |x2| ≤ 0.5
n = 2 0.439865 0.134886 0.516040 0.167808
n = 6 0.440668 0.135130 0.516982 0.168112
Exact solution 0.439865 0.134886 0.516040 0.167808

We can find that in the diagram (1) the probability of system state variables to around 0.5
concentrated near the equilibrium state, when time is infinite, basically stable in 2 for the center
with the origin as the radius of a circle domain, and we can see from figure (4) the precision
of this method is the highest in the region,which shows that the numerical results highly close
to the precise value. Figure (2) and (3) give the error graph of the accurate solution and the
numerical solution. Table (1) and (2) give the error value of the joint steady-state probability
density corresponding to the numerical solution and the accurate solution in the corresponding
region. We find that the numerical solution calculated from (3) is highly consistent with the
accurate solution obtained from a group of sufficient conditions (5).

2.2
Considering the following system

Ẍ + [a+ (bX + cẊ)2]Ẋ +X = (dX + eẊ)W1(t) +W2(t) (22)

Table 2: List of joint stationary probability density errors of numerical and accurate
solutions in different regions near the equilibrium state

Compare p6(X) to pe(X) x2
1 + x2

2 ≤ 1 x2
1 + x2

2 ≤ 0.25 |x1| ≤ 1; |x2| ≤ 1 |x1| ≤ 0.5; |x2| ≤ 0.5
Error 0.000803 0.000244 0.000942 0.000304
Relative error 0.1825% 0.1808% 0.1825% 0.1811%
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Where a, b, c, d, e is a constant, W1(t),W2(t) is an independent Gaussian white noise whose
power spectral density constant is k1, k2 respectively.

Assuming X1 = X,X2 = Ẋ, the stochastic differential equation of Stratonovich of the
system can be obtained as follows:

dX1 = X2dt

dX2 = {−[a+ (bX1 + cX2)
2]X2 −X1}dt+ (dX1 + eX2)

√
2πk1 ◦ dB1(t) +

√
2πk2 ◦ dB2(t)

(23)
Where B1(t), B2(t)is the unit Wiener process.The Itó stochastic differential equation of the

system is:
dX1 = X2dt

dX2 = {−[a+ (bX1 + cX2)
2]X2 −X1 + πk1e(dX1 + eX2)}dt+ (dX1 + eX2)

√
2πk1dB1(t)

+
√
2πk2dB2(t)

(24)
Where πk1e(dX1+ eX2) is the correction term for Wong−Zakai.The corresponding steady

state FPK equation is:

∂[x2p]

∂x1
+
∂{−[a+ (bX1 + cX2)

2]X2 −X1 + πk1e(dX1 + eX2)}p
∂x2

−∂2[(dx1 + ex2)
2πk1 + πk2]p

∂x22
= 0

(25)
We assume that the stationary transition probability density function of system (22) is:

pn(x) = C exp[a11x1 + a12x2 + a21x
2
1 + a22x1x2 + a23x

2
2 + . . .+ aijx

i+j−1
1 xj−1

2 + . . .+ ann+1x
n
2 ]

C is the normalized constant. Substitute the approximate solution into the FPK equation:

∂[x2pn]

∂x1
+
∂{−[a+ (bX1 + cX2)

2]X2 −X1 + πk1e(dX1 + eX2)}pn
∂x2

−∂2[(dx1 + ex2)
2πk1 + πk2]pn

∂x22
= 0

(26)
Let a = 4, b = 5

4 , c = −15
4 , d = 1

2 , e = −3
2 , k1 = k2 = 1

π .Firstly,the coefficient of stationary
transition probability density function is solved by undetermined coefficient method, and the
numerical solution of stationary FPK equation of the system is obtained:

pn(X) =
25

16π
exp[−25

32
(x21 + 4x22)] (27)

The simulation results are shown in the following figures:
Then Milsteins discretization method was adopted to consider the discretization system

corresponding to model (22):

X1(tj+1) = X1(tj) +X2(tj)∆t

X2(tj+1) = X2(tj) + {−[a+ (bX1(tj) + cX2(tj))
2]X2(tj)−X1(tj) + πk1e(dX1(tj) + eX2(tj))}∆t

+(dX1(tj) + eX2(tj))
√
2πk1∆W1(t) +

√
2πk2∆W2(t)

+1
2{[d(dX1(tj) + eX2(tj))2πk1](∆W1(t)

2 −∆t) + [e(dX1(tj) + eX2(tj))2πk1](∆W2(t)
2 −∆t)}

(28)
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(a) Graph of function p2(X). (b) Graph of function p4(X). (c) Graph of function p6(X).

Figure 5: Schematic diagram of the steady state transition probability density function.
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Figure 6: Phase diagram of system (22)

∆W1(t),∆W2(t) is a Gaussian random variable that obeys N(0,∆t). The motion track of
the state variable is simulated by Mathematica as shown in the following figure: From figure
(5 − 6), we can see that the numerical solution result of the stationary transition probability
density function is consistent with the simulation result of discretization of system state variables.
When we observe for a long time, the state variables are concentrated near the origin with high
probability.

Next, we observe the stable region of state variables in probabilistic sense by establish-
ing a kind of potential function of the system.For model d(X) = f(X)dt + g(X)dB(t), X =
(x1, x2, . . . , xn), B(t) is a Unit Wiener process, and the solution of the model is called random
and finally bounded. If there is a positive number for α, such that for ∀ε ∈ (0, 1),the solution of
the model satisfies:

lim
t→∞

supP{|X(t)| > α} < ε

Lemma 1.When 2πk1d
2 + 3πk1de ≤ −1, 1 − 2a + 4πk1e

2 + 3πk1de ≤ 0,positive H = 4πk2
exists, independent of the initial value X0 = (x1,0, x2,0) ∈ R2 , so that the solution of the model
satisfies:

lim
t→∞

supE∥(x1(t), x2(t))∥2 ≤ H

.
Proof:Defining

V (x1, x2) = x21 + x22, (x1, x2) ∈ R2

From the Itó formula, we can get:

dV (x1, x2) = LV (x1, x2)dt+ 2x2(dx1 + ex2)
√

2πk1dB1(t) + 2x2
√

2πk2dB2(t) (29)
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Among them:

LV = 2x1x2 − 2x22[a+ (bx1 + cx2)
2]− 2x1x2 + 2πk1ex2(dx1 + ex2) + 2πk1(dx1 + ex2)

2 + 2πk2

≤ 2x1x2 − 2x22a− 2x1x2 + 2πk1ex2(dx1 + ex2) + 2πk1(dx1 + ex2)
2 + 2πk2 + x21 + x22 − V (x1, x2)

≤ x21(2πk1d
2 + 1) + x22(−2a+ 4πk1e

2 + 1) + x1x2(2πk1de+ 4πk1de) + 2πk2 − V (x1, x2)

≤ x21(2πk1d
2 + 1) + x22(−2a+ 4πk1e

2 + 1) + 3πk1de(x
2
1 + x22) + 2πk2 − V (x1, x2)

≤ x21(2πk1d
2 + 1 + 3πk1de) + x22(−2a+ 4πk1e

2 + 1 + 3πk1de) + 2πk2 − V (x1, x2)
(30)

Thus, it can be concluded that:

dV (x1, x2) ≤ [2πk2 − V (x1, x2)]dt+ 2x2(dx1 + ex2)
√

2πk1dB1(t) + 2x2
√

2πk2dB2(t) (31)

Using the Itó formula again:

d(etV (x1, x2)) = et[V (x1, x2)dt+dV (x1, x2)] ≤ et[2πk2dt+2x2(dx1+ex2)
√

2πk1dB1(t)+2x2
√

2πk2dB2(t)]
(32)

By integrating both sides of the above equation and calculating the mean value, we can get:

etEV (x1, x2) ≤ V (x1,2, x2,0) + (et − 1)2πk2 (33)

Thus,
lim
t→∞

supEV (x1(t), x2(t)) ≤ 2πk2 (34)

On the other hand,

∥(x1(t), x2(t))∥2 = x21 + x22 ≤ 2max{x21, x22} ≤ 2V (x1, x2) (35)

From this we can conclude:

lim
t→∞

supE∥(x1(t), x2(t))∥2 ≤ 2 lim
t→∞

supEV (x1(t), x2(t)) ≤ 4πk2 (36)

.
That’s true with respect to H = 4πk2.
It is proved that the model is stochastic and finally bounded.According to Chebyshev in-

equality, for ∀ε > 0, let θ =
√

4πk2
ε , then:

lim
t→∞

supP{|X(t)| ≥ θ} ≤ ε (37)

That is, the model is stochastic and ultimately bounded.
When we take ε = 0.01,θ = 20. In this case, the state variable is mainly stable in the region

whose modulus is less than θ near the equilibrium state, which is highly consistent with the
stable region determined by the stationary transition probability density function (27) obtained
by system FPK equation, indicating that this method is an effective algorithm for calculating
the FPK equation.

3.The conclusion
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In this paper, we solve the problem of transfer probability density function and the validity
of the solution for a class of nonlinear stochastic differential dynamical systems. For the more
general and complex stochastic differential dynamical system, we can make a submodule of the
system conform to the idea of this paper by simplifying, and then we can use the undetermined
coefficient method to find the coefficient by assuming that the stationary transition probability
density function of the system is of exponential polynomial form. In this paper, the method
is applied to the two systems, we not only find out in such a system under the condition of
generalized steady transition probability density function of the exact solutions, and through
the establishment of such a system of a kind of potential function, through long time observation,
we obtained the stable state variables in probability sense the stability of the region, the results
of the above analysis, respectively, compared with numerical solution of transition probability
density function, we found that both have high consistency, thanks in large part proved the
effectiveness of the method and feasibility.
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