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Abstract

In this work, we deal with the following class of fractional differential
equations with fractional derivative boundary conditions:{

−Dαu(t) + a(t)u(t) = w(t)f(t, u(t)), t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0,

where n ≥ 3, n − 1 < α < n, 1 ≤ β ≤ n − 2, Dα and Dβ are the
standard Riemann-Liouville fractional derivatives and a is a continuous
function on [0, 1]. The associated Green’s function is derived in term of
a series of functions by the perturbed approach. Sharp estimates on it
are established. We give sufficient conditions for existence results by the
means of Schauder’s fixed point theorem. Some examples are given to
illustrate our results.
keywords: Nonlinear fractional differential equation, positive solution,
Green’s function.
Mathematics Subject Classification: 34A08, 34B18, 34B27

1 Introduction
In this paper, we study the following problem for the Riemann-Liouville frac-
tional differential equation with fractional derivative boundary conditions{

−Dαu(t) + a(t)u(t) = w(t)f(t, u(t)), t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0,

(1)

where n − 1 < α < n, n > 2, 1 ≤ β ≤ n − 2. a : [0, 1] −→ R be a continuous
function. f and w are appropriate functions to be specified later. Dαh is the
α-th left Riemann-Liouville fractional derivative of h : [0, 1]→ R defined by

Dαh(t) = 1
Γ(n− α)

( d
dt

)n ∫ t

0
(t− s)n−α−1h(s)ds, n = [α] + 1,
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whenever the right-hand side exists and where Γ(.) is the Gamma function.
Fractional calculus has been used to model physical and engineering processes,
which are found to be best described by fractional differential equations. It is
worth noting that the standard mathematical models of integer-order deriva-
tives, including nonlinear models, do not work adequately in many cases. In the
recent years, fractional calculus has been applied in various fields such as me-
chanics, electricity, chemistry, biology, economics. For more details, see [1,15,16].

The Green’s function is a fundamental tool for studying the existence of
solutions of BVPs of fractional order. By using the theory of the fixed point on
cones, the existence of solutions can be shown based on the construction of the
mentioned function and its main properties. More precisely, in the literature,
the Green’s functions are derived by considering of a linear equation with one
term

Dαu(t) = 0, 0 < t < 1,

subject to certain boundary conditions and convert it to an integral equation,
which is the aim of many papers; see for example, [2–5,7]. However, this method
is not applicable in the presence of a perturbed term

−Dαu(t) + a(t)u(t) = 0, 0 < t < 1, (2)

and also it is not possible to show the positivity of the associated Green’s func-
tion. To overcome this difficulty, Graef et al., [8–13] proposed new techniques
for the construction of the related Green’s function of (2) with various kinds
of boundary conditions. By using spectral theory, they obtained the Green’s
function as a series of functions.
In [8], Graef et al. considered the boundary value problem consisting of the
fractional differential equation

−Dαu(t) + a(t)u(t) = w(t)f(u), t ∈ (0, 1),

and subject to boundary conditions

u(0) = u
′
(0) = u

′
(1) = 0,

where 2 < α < 3, a ∈ C([0, 1]), w ∈ C([0, 1]) satisfies w(t) ≥ 0 a.e. on [0, 1]
and f ∈ C(R,R). The authors obtained the Green’s function associated to the
problem as a series of functions and showed its positivity. And then by deriving
certain property of the series, they established the existence and the uniqueness
of solutions of the above problem.
Recently, Zou [19] studied the following problem

−Dαu(t) + a(t)u(t) = f(t, u(t)), t ∈ (0, 1), u(0) = u
′
(0) = u

′
(1) = 0,

where 2 < α < 3, a ∈ C[0, 1], and f ∈ C([0, 1] × [0,∞),R). There, the author
derived new properties of the associated Green’s function than ones given in [8],
to obtain the existence of positive solutions.
On the other hand, in [18], Zhen and Wang considered the following fractional
differential equations:{

−Dαu(t) + a(t)u(t) = w(t)f(u, t), t ∈ (0, 1), α > 2
u(k)(0) = 0, k = 0, 1, ..., [α], u(1) =

∫ 1
0 u(s)dA(s),
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where a ∈ C([0, 1]), w ∈ L1[0, 1] with w(t) 6= 0 a.e on [0, 1] and f ∈ C(R ×
[0, 1],R). The authors used the perturbation approach for deriving the associated
Green’s function. And so, the existence of solutions is established by the fixed
point theorem.

Motivated by the cited papers, in this work, we first improve main properties
on the Green’s function G0(t, s) related to the following BVP

−Dαu(t) = h(t), u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0. (3)

Next, by applying the spectral theory, we derive the Green’s function associated
to problem (1) and we establish some estimates. Moreover, we show its positivity
which is the main factor to ensure our main result. Finally, we give sufficient
conditions on the nonlinearity to obtain the existence of solutions of problem
(1).
The paper is developed as follows: In the next Section, we get suitable properties
on the Green’s function G0(t, s). After that, we construct the Green’s function
G(t, s) as a series of functions and we prove some new estimates on it. Section 3
is devoted to show the existence of nontrivial and positive solutions of problem
(1). In the last section, two examples are given to illustrate our results.

2 Estimates on the Green’s function
In this section, we shall construct the explicit expression of the Green’s function
associated to the following BVP{

−Dαu(t) + a(t)u(t) = 0, t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0.

(4)

First, we give the expression of the Green’s function related to problem (3). The
proof of the following lemma is essentially given in [14, Theorem 3.1].

Lemma 1 Let h ∈ C([0, 1]), then the fractional boundary value problem
−Dαu(t) = h(t), t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2,
[Dβu(t)]t=1 = 0,

(5)

has a unique solution

u(t) =
∫ 1

0
G0(t, s)h(s)ds, (6)

where for t, s ∈ [0, 1],

G0(t, s) = tα−1(1− s)α−β−1 − ((t− s)+)α−1

Γ(α) . (7)

Here, for x ∈ R, x+ = max(x, 0).

Next, we recall some properties of the Green’s function G0, presented in [13,
Lemma 2.1].
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Proposition 2 The function G0(t, s) has the following properties:

(i) G0 is continuous on [0, 1]× [0, 1].

(ii) G0(t, s) ≥ 0 for t, s ∈ [0, 1].

(iii) maxt∈[0,1]G0(t, s) = G0(1, s) for s ∈ [0, 1].

Now, we state new sharp estimates on G0 that will be used later.

Lemma 3 (i) Let n ∈ N, n − 1 < α < n and 1 ≤ β ≤ n − 2. Define the
function H(t, s) on [0, 1]× [0, 1] by

H(t, s) = 1
Γ(α) t

α−2(1− s)α−β−1 min(t, s). (8)

Then G0 has the following property

H(t, s) ≤ G0(t, s) ≤ (α− 1)βH(t, s). (9)

(ii) For t, s ∈ [0, 1], we have

tα−1 s(1− s)α−β−1

Γ(α) ≤ G0(t, s) ≤ (α− 1)βtα−2 s(1− s)α−β−1

Γ(α) . (10)

To prove the previous result, we need the following standard lemma.

Lemma 4 (i) Let σ, λ ∈ (0,∞), c, x ∈ [0, 1]. Then

min(1, σ
λ

)(1− cxσ) ≤ (1− cxσ) ≤ max(1, σ
λ

)(1− cxσ).

(ii) For x, t ∈ [0, 1], we have xt ≤ min(x, t) ≤ t.

Proof of Lemma 3:

(i) For t ∈ (0, 1] and s ∈ [0, 1), we have

Γ(α)G0(t, s) = tα−1(1− s)α−β−1[1− ((t− s)+)α−1

tα−1(1− s)α−β−1 ]

From Lemma 4, for λ = 1, σ = α − 1, c = (1 − s)α and x = (t−s)+

t(1−s) , we
obtain

tα−1(1−s)α−β−1(1−(1−s)β (t− s)+

t(1− s) ) ≤ Γ(α)G0(t, s) ≤ (α−1)tα−1(1−s)α−β−1(1−(1−s)β (t− s)+

t(1− s) ).

Applying again Lemma 4, for λ = 1, σ = β ≥ 1, x = (1−s) and c = (t−s)+

t(1−s) ,
we get

tα−1(1−s)α−β−1(1− (t− s)+

t
) ≤ Γ(α)G0(t, s) ≤ (α−1)tα−1(1−s)α−β−1β(1− (t− s)+

t
).

By using the fact that (1− (t−s)+

t ) = 1
t min(t, s), we conclude that

H(t, s) ≤ G0(t, s) ≤ (α− 1)βH(t, s).
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(ii) From Lemma 4, (ii), formula (10) holds.

The proof is completed.

In the next lemma, we derive an important property of Green’s function G0.

Lemma 5 For t, τ, s ∈ (0, 1), we have

G0(t, τ)G0(τ, s)
G0(t, s) ≤ ((α− 1)β)2

Γ(α) τα−1(1− τ)α−β−1. (11)

Proof. By Lemma 3 (i), for t, τ, s ∈ (0, 1), we obtain

G0(t, τ)G0(τ, s)
G0(t, s) ≤ ((α− 1)β)2

Γ(α) τα−2(1− τ)α−β−1 min(t, τ) min(τ, s)
min(t, s) .

If t ≤ s. Then
min(t, τ) min(τ, s)

min(t, s) ≤ tmin(τ, s)
t

≤ τ.

On the other hand, if s ≤ t we have

min(t, τ) min(τ, s)
min(t, s) ≤ smin(t, τ)

s
≤ τ,

which completes the proof.

Now, let G : [0, 1]× [0, 1] −→ R be defined by

G(t, s) =
∞∑
k=0

(−1)kGk(t, s), (12)

where G0 is given by (7) and Gk : [0, 1]× [0, 1] −→ R,

Gk(t, s) =
∫ 1

0
a(τ)G0(t, τ)Gk−1(τ, s)dτ, a ∈ C[0, 1], k ≥ 1. (13)

In order to express the Green’s function associated with the linear problem (4),
we shall use the spectral theory in Banach spaces. To this end, we require the
following lemma.

Lemma 6 [17] Let X be a Banach space and A : X −→ X be a linear operator
with the operator norm ‖A‖ and spectral radius r(A) of A. Then

(i) r(A) ≤ ‖A‖;

(ii) if r(A) < 1, then (I − A)−1 exists and (I − A)−1 =
∞∑
n=0
An, where I

stands for the identity operator.

Let X denotes the Banach space (C([0, 1]), ‖.‖) where ‖u‖ = max
0≤t≤1

|u(t)|, and
let

σ = (α− 1)β
Γ(α)(α− β)(α− β + 1) . (14)

The next theorem, which is our main contribution in this paper, presents a
careful analysis of Green’s function which allows us to deduce the existence
results of our problem (1).
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Theorem 7 Let a = maxt∈[0,1] |a(t)| < 1
σ . Then, G, defined by (12) as a series

of functions, is uniformly convergent for (t, s) ∈ [0, 1]× [0, 1] and continuous on
[0, 1]× [0, 1]. Furthermore, G is the Green’s function for the problem{

−Dαu(t) + a(t)u(t) = 0, t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0.

(15)

Moreover, if σa < 1, we obtain

|G(t, s)| ≤ σ

1− σas(1− s)
α−β−1 on [0, 1]× [0, 1], (16)

Proof. Let y ∈ X, assume that u is the solution of problem{
−Dαu(t) + a(t)u(t) = y(t), t ∈ (0, 1),
u(j)(0) = 0, 0 ≤ j ≤ n− 2, [Dβu(t)]t=1 = 0.

(17)

Then, u satisfies

u(t) =
∫ 1

0
G0(t, s)[y(s)− a(s)u(s)]ds,

which implies

u(t) +
∫ 1

0
a(s)G0(t, s)u(s)ds =

∫ 1

0
G0(t, s)y(s)ds. (18)

Define A and B : X −→ X by

(Ay)(t) =
∫ 1

0
G0(t, s)y(s)ds, t ∈ [0, 1], (19)

(Bu)(t) =
∫ 1

0
a(s)G0(t, s)u(s)ds, t ∈ [0, 1]. (20)

Then, equation (18) becomes

(I + B)u = Ay. (21)

First, let us verify that ‖B‖ < 1. For any u ∈ X with ‖u‖ = 1 and t ∈ [0, 1], by
(10), we have

|Bu(t)| = |
∫ 1

0
G0(t, s)a(s)u(s)ds| ≤ (α− 1)β

Γ(α) a

∫ 1

0
s(1− s)α−β−1ds‖u‖ ≤ σa.

Thus, since a < 1
σ , we have ‖B‖ < 1. And by Lemma 6, we deduce that

u = (I + B)−1Ay =
∞∑
k=0

(−B)kAy. (22)

Next, we shall prove that

(−B)kAy(t) =
∫ 1

0
(−1)kGk(t, s)y(s)ds, k = 0, 1, 2, ... (23)
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It is clear that, for k = 0, (23) holds. Assume that (23) holds for k = m − 1.
Then, by (13), (19), (20), (23) and Fubini’s Theorem, we have

(−B)mAy(t) = (−B(−B)m−1Ay)(t)

=
∫ 1

0
−a(τ)G0(t, τ)

∫ 1

0
(−1)m−1Gm−1(τ, s)y(s)dsdτ

=
∫ 1

0
(−1)my(s)

∫ 1

0
a(τ)G0(t, τ)Gm−1(τ, s)dτds

=
∫ 1

0
(−1)mGm(t, s)y(s)ds.

Thus, (23) holds for k = m. And so, (23) holds for any k = 0, 1, 2, ...
Now, we show that for k = 0, 1, 2, ...

|(−1)kGk(t, s)| ≤ σk+1aks(1− s)α−β−1. (24)

For k = 0, (24) holds. Assume that (24) holds for k = m ≥ 0. Then, for
t, s ∈ [0, 1], we have

|(−1)m+1Gm+1(t, s)| =
∣∣∣ ∫ 1

0
(−1)m+1G0(t, τ)Gm(τ, s)dτ

∣∣∣
≤ σm+1am

(∫ 1

0
|a(τ)|G0(t, τ)dτ

)
s(1− s)α−β−1

= σm+2am+1s(1− s)α−β−1.

So, (24) holds for k = m+1. Then, by induction, for any k = 0, 1, 2, ..., we have
that (24) holds.
Since σa < 1, then, for (t, s) ∈ [0, 1]× [0, 1], we obtain

|G(t, s)| =
∣∣∣ ∞∑
k=0

(−1)kGk(t, s)
∣∣∣

≤
∞∑
k=0

σk+1aks(1− s)α−β−1 <∞.

Thus, G is uniformly convergent on [0, 1]× [0, 1]. And, G satisfies (16).
In addition, from (12), (22) and (23), we get

u(t) =
∞∑
k=0

(−1)k
∫ 1

0
Gk(t, s)y(s)ds =

∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1]. (25)

Finally, we shall verify that u, defined by (25), is a solution of problem (17).
From (12), (19) and (20), we deduce that u satisfies (22). Moreover, by (19)
and (20), u satisfies (18).
Therefore, u is a solution of problem (17) and so G is the Green’s function of
problem (4).

The following result ensures the positivity of the related Green’s function.
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Proposition 8 Let γ = ((α−1)β)2

Γ(α)
∫ 1

0 τ
α−1(1−τ)α−β−1dτ. Assume that γa < 1

2 .
Then for (t, s) ∈ [0, 1]× [0, 1], we have

(1− γa

1− γa )G0(t, s) ≤ G(t, s) ≤ G0(t, s). (26)

Proof. Since γa < 1
2 . Then by Lemma 5, we obtain

|G(t, s)| ≤
∞∑
k=0
|(−1)kGk(t, s)| ≤ 1

1− γaG0(t, s). (27)

And, from the expression of G given by (12), we get

G(t, s) = G0(t, s) +
∞∑
k=1

(−1)kGk(t, s)

= G0(t, s)−
∞∑
k=0

(−1)kGk+1(t, s)

= G0(t, s)−
∞∑
k=0

(−1)k
∫ 1

0
a(τ)G0(t, τ)Gk(τ, s)dτ

= G0(t, s)−
∫ 1

0
a(τ)G0(t, τ)(

∞∑
k=0

(−1)kGk(τ, s))dτ

= G0(t, s)−
∫ 1

0
a(τ)G0(t, τ)G(τ, s)dτ.

By (11) and (27), we have∫ 1

0
a(τ)G0(t, τ)G(τ, s)dτ ≤ 1

1− γa

∫ 1

0
a(τ)G0(t, τ)G0(τ, s)

G0(t, s) dτ G0(t, s)

≤ a

1− γa
((α− 1)β)2

Γ(α)

∫ 1

0
τα−1(1− τ)α−β−1dτ G0(t, s)

= γa

1− γaG0(t, s).

This implies that

G(t, s) ≥ G0(t, s)− γa

1− γφaG0(t, s) = 1− 2γa
1− γa G0(t, s) ≥ 0.

So, it follows that 0 ≤ G(t, s) ≤ G0(t, s). This completes the proof.

An immediate consequence of Proposition 8 and Lemma 3 (ii) is the follow-
ing result.

Corollary 9 For (t, s) ∈ [0, 1]× [0, 1], we have

(1− γa

1− γa ) t
α−1

Γ(α)s(1− s)
α−β−1 ≤ G(t, s) ≤ (α− 1)β

Γ(α) s(1− s)α−β−1. (28)
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3 Existence Results
In this section, using the estimates of G(t, s) derived above, sufficient conditions
on the non-linearity f are discussed to guarantee the existence of solutions of
problem (1).
Hereinafter, we suppose the following assumption:

(H) w : (0, 1)→ R such that w(t) ≥ 0 for a.e t ∈ [0, 1] and
0 < σw =

∫ 1
0 s(1− s)

α−β−1w(s)ds <∞.

Theorem 10 Assume that (H) holds. In addition if the following conditions
hold:

(C1) f : [0, 1]× R −→ R is a continuous function.

(C2) f(t, 0) 6= 0 on [0, 1] and

lim
|u|→∞

max
t∈[0,1]

|f(t, u)|
|u|

= 0.

Then Problem (1) has at least nontrivial solution.

Proof. From (C2), for ε =
(

(α−1)β
Γ(α) σw

)−1
> 0, there exists B > 0 such that for

each t ∈ [0, 1] and |u| ≥ B, we have |f(t, u)| ≤ ε|u|.
Moreover, by (C1), there exists M > 0 such that

|f(t, u)| ≤M on [0, 1]× [−B,B].

Let R = max{B, Mε }. Then

|f(t, u)| ≤ εR on [0, 1]× [−R,R]. (29)

Let
Ω = {u ∈ X : ‖u‖ ≤ R}.

It is clear that Ω is a non-empty, convex and closed set.
Define the operator T : Ω −→ X by

Tu(t) =
∫ 1

0
G(t, s)w(s)f(s, u(s))ds, t ∈ [0, 1], (30)

where G(t, s) is defined by (12). Oviously, u is a solution of problem (1) if and
only if u is a fixed point of T .
By (C1) and Theorem 7, we get that T : Ω −→ X is continuous.
Let u ∈ Ω, then by Corollary 9 and (29), we have for t ∈ [0, 1],

|Tu(t)| ≤
∫ 1

0
G(t, s)w(s)|f(s, u(s))|ds

≤ (α− 1)β
Γ(α)

∫ 1

0
s(1− s)α−β−1w(s)|f(s, u(s))|ds

≤ εR
(α− 1)β

Γ(α) σw ≤ R.
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Thus, ‖Tu‖ ≤ R. And so, T (Ω) ⊂ Ω.
Next, we will show that T is uniformly bounded. Let S be bounded set of Ω,
then there exists a positive constant N such that ‖u‖ = N , for all u ∈ S.
Let N1 = 1 + max

t∈[0,1],u∈[−N,N ]
|f(t, u)|. Then, by (H), (C1) and Corollary 9, we

obtain for all u ∈ S and t ∈ [0, 1]

|Tu(t)| ≤ (α− 1)β
Γ(α)

∫ 1

0
s(1− s)α−β−1w(s)|f(s, u)|ds

≤ (α− 1)βN1

Γ(α) σw <∞.

Hence, T (S) is uniformly bounded. Now, let us prove that T (S) is equicontin-
uous on [0, 1]. Using Theorem 7, we obtain that G is uniformly continuous on
[0, 1]× [0, 1]. Then for t1, t2 ∈ [0, 1] such that t1 ≤ t2 and for each s ∈ [0, 1], we
obtain |G(t2, s)−G(t1, s)| → 0 as t2 −→ t1 and

|G(t2, s)−G(t1, s)| ≤
2(α− 1)β

Γ(α) M1s(1− s)α−β−1w(s) := g(s).

Since g is a nonnegative integtrable function on (0, 1), the Lebesgue control
convergence guarantee that T (S) is equicontinuous. Consequently by Ascoli’s
theorem, we conclude that T (S) is relatively compact. Therefore, by Schauder
fixed point theorem, T has at least one fixed point in Ω. Hence, problem (1) has
a solution u in Ω.

Now, let prove that u is a nontrivial solution.
Fix δ ∈ (0, 1). From (C2), let ε = (1− δ)f(t, 0) be such that

f(t, u) ≥ δf(t, 0), for 0 ≤ t ≤ 1, 0 ≤ u ≤ R. (31)

Again, since f(t, 0) 6= 0, ∀t ∈ [0, 1], there exists [a, b] ⊂ [0, 1] such that

min
t∈[a,b]

|f(t, 0)| > 0. (32)

Suppose, on contrary, that there exists t0 ∈ (0, 1): u(t0) ≡ 0. From Corollary
9, (H), (31) and (32), we get

u(t0) =
∫ 1

0
G(t0, s)w(s)f(s, u(s))ds

≥
(

1− γa

1− γa ) t
α−1
0

Γ(α)

)∫ 1

0
s(1− s)α−β−1w(s)f(s, u(s))ds

≥
(

1− γa

1− γa ) t
α−1
0

Γ(α)

)
δ

∫ 1

0
s(1− s)α−β−1w(s)f(s, 0)ds

≥
(

1− γa

1− γa ) t
α−1
0

Γ(α)

)
δ min
t∈[a,b]

|f(t, 0)|
∫ 1

0
s(1− s)α−β−1w(s)ds

> 0,

which is a contradiction. Thus, we deduce that problem (1) has at least one
nontrivial solution in Ω.

Now, we will be concerned with the existence of positive solution to the problem
(1) under the following conditions:
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(C′1) f : [0, 1]× [0,∞) −→ R is a continuous function.

(C3) There exist d2 > d1 > 0 such that

inf
u∈P

∫ 1

0
s(1− s)α−β−1w(s)f(s, u(s))ds ≥ d1Γ(α)

(
1− γa

1− γa

)−1
(33)

and
sup
u∈P

∫ 1

0
s(1− s)α−β−1w(s)f(s, u(s))ds ≤ d2

Γ(α)
(α− 1)β , (34)

where
P = {u ∈ X : tα−1d1 ≤ u ≤ d2}. (35)

Theorem 11 Under assumptions (H), (C ′
1 ) and (C3) Problem (1) has at least

one positive solution in P .

Proof. Define the operator T : P → X by

Tu(t) =
∫ 1

0
G(t, s)w(s)f(s, u(s))ds.

It is clear that u is a fixed point of T if and only if u is a solution of problem
(1).
Let’s prove that T (P ) ⊂ P . Let t ∈ [0, 1] and u ∈ P . Then, by Corollary 9,
(C ′1 ) and (C3), we have

Tu(t) ≥
(

1− γa

1− γa

)
tα−1

Γ(α) inf
u∈P

∫ 1

0
s(1− s)α−β−1w(s)f(s, u(s))ds ≥ d1t

α−1

and
Tu(t) ≤ (α− 1)β

Γ(α) sup
u∈P

∫ 1

0
s(1− s)α−β−1w(s)f(s, u(s))ds ≤ d2.

Thus, T (P ) ⊂ P . Using standard arguments, we conclude, by Schauder fixed
point theorem, that T has at least one fixed point u ∈ P . Since u(t) > 0,
t ∈ [0, 1], this implies the existence of a positive solution of problem (1) in P .

As a consequence of Theorem 11, we deduce the following corollaries.

Corollary 12 Assume that (H) holds. Moreover, if there exist d2 > d1 > 0
such that for t ∈ [0, 1], f(t, .) is non-decreasing on [0, d2], satisfying∫ 1

0
s(1− s)α−β−1w(s)f(s, sα−1d1)ds ≥ d1Γ(α)

(
1− γa

1− γa

)−1

and ∫ 1

0
s(1− s)α−β−1w(s)f(s, d2)ds ≤ d2

Γ(α)
(α− 1)β .

Then problem (1) has at least one positive solution in P .
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Corollary 13 Assume that (H) holds. In addition, if there exist d2 > d1 > 0
such that for t ∈ [0, 1], f(t, .) is non-increasing on [0, d2], satisfying∫ 1

0
s(1− s)α−β−1w(s)f(s, d2)ds ≥ d1Γ(α)

(
1− γa

1− γa

)−1

and ∫ 1

0
s(1− s)α−β−1w(s)f(s, sα−1d1)ds ≤ d2

Γ(α)
(α− 1)β .

Then problem (1) has at least one positive solution in P .

4 Examples
In this section, we give two examples to illustrate the applicability of the ob-
tained results.

Example 14 Consider the following problem{
−D 9

2u(t) + a(t)u(t) = w(t)f(t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(0) = u′′′(0) = 0, [D 5

2u(t)]t=1 = 0.
(36)

Set a(t) = −et

3 , w(t) = 1
1−t and f(t, u) = ln(t+ 2)(u+ 1)e−u. It is not difficult

to verify that (C1) and (C2) are satisfied. By direct calculation, we obtain a '
0.906093, σ ' 0.10746118, σw = 1

2 and γ ' 0.265947.
Hence, γa ' 0.240972 < 1

2 and aσ ' 0.0973698 < 1. From Theorem 10, problem
(36) has at least one nontrivial solution.

Example 15 Consider the following problem{
−D 7

2u(t) + a(t)u(t) = w(t)f(t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(0) = 0, [D 3

2u(t)]t=1 = 0,
(37)

where a(t) = − t
2

2 , w(t) = 1
t and f(t, u) = ln( 1

2 + t) cos(
√
u). A simple cal-

culation yields to a = 1
2 , σw = 1

2 , σ ' 0.188063 and γ ' 0.2686619. So,
assumptions (H) and (C ′

1 ) are satisfied. In addition, a < 1
σ ' 5.31735 and

γa ' 0.134331 < 1
2 .

Thus, for d1 small enough and d2 large enough, hypothesis (C3) holds and so,
by Theorem 11, the problem (37) has at least one positive solution.
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