q 2a0ap0
r qVs
Nevertheless, other more complex capacitive mechanisms actually occurs, and extra terms could be added to equation
3,
Cacc = γ
kBT exp
γkBT
, (7)
such as
VdC/dt. That’s why linear trends in
Jcap as a function of scan rate
s =
dV/dt can be only obtained at short-circuit or low applied voltages. The thing is that time-changing capacitance was also pointed by Almora et al. [
124] to behave similarly to the hysteresis in the curve, i.e. the capacitance evolve with the applied voltage. This, for instance, particularly hinders the performance of Mott-Schottky analysis. But despite this approach was clarifying, the nature of the processes that rule the capacitive features need further explanations.
Moreover, Tress and co-workers [
172] argued, from their study on
J −
V curve rate dependency and transient
being p0 the background hole density, a0a the dielectric permittivity and γ a parameter ideally close to 2. Moreover, Vs is a function of the constant built-in voltage and the applied voltage, Vs = V − Vbi, hence dV/dt = dVs/dt.
V. CONCLUSIONS
The inclusion of hybrid lead halide perovskites like MAPbI3 has been the key element for the fast emergence of perovskites solar cells. Next imminent steps are oriented to the optimizations of selective contact materials and structure
in general seeking the proper balance between performance, stability and production costs pursuing industrial scalability. About the origins of the current density-voltage curve hysteresis, further investigation needs to be done in order to clarify it. However, it seems that capacitive currents related with both electronic and ionic processes are the main responsible for such behavior.
ACKNOWLEDGEMENTS
We thank financial support by Ministerio de Econom´ıa y Competitividad (MINECO) of Spain under projects (MAT2016-76892-C3-1-R), and Generalitat Valenciana (Prometeo/2014/020). O. A. acknowledges Generalitat Valenciana for a grant (GRISOLIAP2014/035).
REFERENCES
[1] M. A. Green, Nat. Energy 1, 15015 (2016).
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E.
D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 25, 3 (2017).
[3] R. M. Swanson, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005. (IEEE, Lake buena Vista, FL, USA, 2005), pp. 889.
[4] Y. Song, S. Lv, X. Liu, X. Li, S. Wang, H. Wei, D. Li, Y. Xiao, and Q. Meng, Chem. Commun. 50, 15239 (2014).
[5] M. Grätzel, J. Photochem. Photobiol., C 4, 145 (2003).
[6] J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S.
H. Lee, H. Kang, and K. Lee, J. Mater. Chem. A 2, 17291 (2014).
[7] W. E. I. Sha, X. Ren, L. Chen, and W. C. H. Choy, Appl. Phys. Lett. 106, 221104 (2015).
[8] P. Gao, M. Gratzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
[9] F. S. Galasso, R. Smoluchowski, and N. Kurti, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon, London, 1969), International Series of Monographs in Solid State Physics.
[10] H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
[11] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3, 4088 (2011).
[12] H.-S. Kim et al., Scientific Reports 2, 591 (2012).
[13] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
[14] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. Lett. 5, 2390 (2014).
[15] R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 5, 2662 (2014).
[16] P. Wang et al., Res. Chem. Intermed., 1 (2015).
[17] L. Wang, G.-R. Li, Q. Zhao, and X.-P. Gao, Energy Storage Materials 7, 40 (2017).
[18] L. Meng, J. You, T.-F. Guo, and Y. Yang, Acc. Chem. Res. 49, 155 (2016).
[19] N.-G. Park, M. Gra¨tzel, and T. Miyasaka, Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures (Springer, Switzerland, 2016).
[20] Z. Zhou, S. Pang, Z. Liu, H. Xu, and G. Cui, J. Mater. Chem. A 3, 19205 (2015).
[21] L. Martinu and D. Poitras, J. Vac. Sci. Technol., A 18, 2619 (2000).
[22] N. G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B 104, 8989 (2000).
[23] Z. Wang, U. Helmersson, and P.-O. Ka¨ll, Thin Solid Films 405, 50 (2002).
[24] A. Janotti, J. B. Varley, J. L. Lyons, and C. G. Van de Walle, in Functional Metal Oxide Nanostructures (Springer, New York, USA, 2012), pp. 23.
[25] B. S. Jeong, D. P. Norton, and J. D. Budai, Solid-State Electron. 47, 2275 (2003).
[26] A. Guerrero, E. J. Juarez-Perez, J. Bisquert, I. Mora-Sero, and G. Garcia-Belmonte, App. Phys. Lett. 105, 133902 (2014).
[27] J. Bisquert, Nanostructured Energy Devices: Equilibrium Concepts and Kinetics (CRC Press Taylor & Francis Group, Boca Raton, 2014).
[28] Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, and P. Wang, Chem. Rev. 114, 10095 (2014).
[29] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Adv. Mater. 18, 2807 (2006).
[30] Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, and Y. Xia, Nano Letters 9, 2455 (2009).
[31] M. He, D. Zheng, M. Wang, C. Lin, and Z. Lin, J. Mater. Chem. A 2, 5994 (2014).
[32] Y. Numata, Y. Sanehira, and T. Miyasaka, ACS Appl. Mater. Interfaces 8, 4608 (2016).
[33] A. Akbari, J. Hashemi, E. Mosconi, F. De Angelis, and M. Hakala, J. Mater. Chem. A 5, 2339 (2017).
[34] J.-M. Cha, J.-W. Lee, D.-Y. Son, H.-S. Kim, I.-H. Jang, and N.-G. Park, Nanoscale 8, 6341 (2016).
[35] G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, and G. Fang, J. Mater. Chem. A 5, 1658 (2017).
[36] Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K. Y. Jen, Adv. Mater. 28, 6478 (2016).
[37] Q. Liu et al., Adv. Funct. Mater. 26, 6069 (2016).
[38] H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, J. Phys. Chem. C 119, 4600 (2015).
[39] M. A. Mahmud, N. K. Elumalai, M. B. Upama, D. Wang, K. H. Chan, M. Wright, C. Xu, F. Haque, and A. Uddin, Sol. Energy Mater. Sol. Cells 159, 251 (2017).
[40] J. Duan, Q. Xiong, H. Wang, J. Zhang, and J. Hu, J. Mater. Sci. Mater. Electron. 28, 60 (2017).
[41] J. You et al., Nat. Nanotechnol. 11, 75 (2016).
[42] D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, RSC Adv. 3, 18762 (2013).
[43] M. A. Mejía Escobar, S. Pathak, J. Liu, H. J. Snaith, and F. Jaramillo, ACS Appl. Mater. Interfaces 9, 2342 (2017).
[44] M. Acik and S. B. Darling, J. Mater. Chem. A 4, 6185 (2016).
[45] M. Hadadian et al., Adv. Mater. 28, 8681 (2016).
[46] S. Collavini and J. L. Delgado, Adv. Energy Mater., 1601000, 1601000 (2016).
[47] F. Zhang et al., Sol. Energy Mater. Sol. Cells 97, 71 (2012).
[48] G. Yang, H. Tao, P. Qin, W. Ke, and G. Fang, J. Mater. Chem. A 4, 3970 (2016).
[49] Y. Liu et al., Nano Lett. 15, 662 (2015).
[50] S. Fantacci, F. De Angelis, M. K. Nazeeruddin, and M. Gra¨tzel, J. Phys. Chem. C 115, 23126 (2011).
[51] R. Scho¨ lin, M. H. Karlsson, S. K. Eriksson, H. Siegbahn,
E. M. J. Johansson, and H. Rensmo, J. Phys. Chem. C 116, 26300 (2012).
[52] L. Calio´, S. Kazim, M. Gra¨tzel, and S. Ahmad, Angew. Chem. Int. Ed. 55, 14522 (2016).
[53] G. A. Sepalage, S. Meyer, A. R. Pascoe, A. D. Scully, U. Bach, Y.-B. Cheng, and L. Spiccia, Nano Energy 32, 310 (2017).
[54] I. S. Yang, M. R. Sohn, S. D. Sung, Y. J. Kim, Y. J. Yoo, J. Kim, and W. I. Lee, Nano Energy 32, 414 (2017).
[55] H. Rao, S. Ye, W. Sun, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, Y. Li, and C. Huang, Nano Energy 27, 51 (2016).
[56] Z. Zhu et al., Angew. Chem. Int. Ed. 53, 12571 (2014).
[57] P. Schulz, J. O. Tiepelt, J. A. Christians, I. Levine, E. Edri, E. M. Sanehira, G. Hodes, D. Cahen, and A. Kahn, ACS Appl. Mater. Interfaces 8, 31491 (2016).
[58] H. Sun, X. Hou, Q. Wei, H. Liu, K. Yang, W. Wang, Q. An, and Y. Rong, Chem. Commun. 52, 8099 (2016).
[59] R. Rajeswari, M. Mrinalini, S. Prasanthkumar, and L. Giribabu, Chem. Rec., n/a (2017).
[60] G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, and W. R. Salaneck, J. Electron. Spectrosc. Relat. Phenom. 121, 1 (2001).
[61] Q. Pei, G. Zuccarello, M. Ahlskog, and O. Ingana¨s, Polymer 35, 1347 (1994).
[62] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
[63] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, J. Electroanal. Chem. 369, 87 (1994).
[64] W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend, and A.
K. Cheetham, Nat. Rev. Mater. 2, 16099, 16099 (2017).
[65] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
[66] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
[67] Y. Yasuhiro, N. Toru, E. Masaru, W. Atsushi, and K. Yoshihiko, Appl. Phys. Express 7, 032302 (2014).
[68] T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, and J. You, J. Mater. Chem. A 3, 9032 (2015).
[69] Y. Wang, Y. Zhang, P. Zhang, and W. Zhang, Phys. Chem. Chem. Phys. 17, 11516 (2015).
[70] S. Luo and W. A. Daoud, J. Mater. Chem. A 3, 8992 (2015).
[71] D. Song et al., J. Phys. Chem. C 119, 22812 (2015).
[72] W.-J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
[73] S.-H. L. Jongseob Kim, Jung Hoon Lee, and Ki-Ha Hong, J. Phys. Chem. Lett. 5, 1312 (2014).
[74] W.-J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).
[75] J. Nelson, The Physics of Solar Cells (Imperial College Press, UK, 2003).
[76] P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, and A. Kahn, Energy Environ. Sci. 7, 1377 (2014).
[77] J. Liu et al., J. Mater. Chem. A 3, 11750 (2015).
[78] R. Lindblad et al., J. Phys. Chem. C 119, 1818 (2015).
[79] J. H. Heo et al., Nat. Photon. 7, 486 (2013).
[80] S. Aharon, S. Gamliel, B. E. Cohen, and L. Etgar, Phys. Chem. Chem. Phys. (2014).
[81] X. Liu, C. Wang, L. Lyu, C. Wang, Z. Xiao, C. Bi, J. Huang, and Y. Gao, Phy. Chem. Chem. Phys. 17, 896 (2015).
[82] A. Dymshits, A. Henning, G. Segev, Y. Rosenwaks, and L. Etgar, Sci. Rep. 5, 8704 (2015).
[83] Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, Appl. Phys. Lett. 105, 163508 (2014).
[84] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
[85] W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. M´ıguez, and H. J. Snaith, Nano Lett. 15, 1698 (2015).
[86] E. S. Arinze, B. Qiu, N. Palmquist, Y. Cheng, Y. Lin, G. Nyirjesy, G. Qian, and S. M. Thon, Opt. Express 25, A101 (2017).
[87] G. E. Eperon, D. Bryant, J. Troughton, S. D. Stranks, M. B. Johnston, T. Watson, D. A. Worsley, and H. J. Snaith, J. Phys. Chem. Lett. 6, 129 (2015).
[88] L. Zhang, M. T. Hörantner, W. Zhang, Q. Yan, and H. J. Snaith, Sol. Energy Mater. Sol. Cells 160, 193 (2017).
[89] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, Journal of Materials Chemistry A 3, 8926 (2015).
[90] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015).
[91] Q. Chen et al., Nat. Commun. 6 (2015).
[92] J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, Adv. Mater. 26, 4991 (2014).
[93] Y. Ogomi et al., J. Phys. Chem. Lett. 5, 1004 (2014).
[94] N. K. Noel et al., Energy Environ. Sci. 7, 3061 (2014).
[95] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, Sol. Energy Mater. Sol. Cells 90, 2952 (2006).
[96] P. V. Kamat, J. Bisquert, and J. Buriak, ACS Energy Lett. 2, 904 (2017).
[97] Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, and W. Huang, Adv. Mater., 1605005, 1605005 (2017).
[98] A. I. Martínez, L. Huerta, J. M. O. R. d. León, D. Acosta, O. Malik, and M. Aguilar, Journal of Physics D: Applied Physics 39, 5091 (2006).
[99] A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, Journal of Applied Physics 83, 1049 (1998).
[100] M. G. Helander, M. T. Greiner, Z. B. Wang, W. M. Tang, and Z. H. Lu, J. Vac. Sci. Technol., A 29, 011019 (2011).
[101] A. Andersson, N. Johansson, P. Bro¨ ms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. 10, 859 (1998).
[102] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, Applied Physics Letters 78, 2595 (2001).
[103] R. Singh, K. Rajkanan, D. E. Brodie, and J. H. Morgan, IEEE Transactions on Electron Devices 27, 656 (1980).
[104] J. S. Kim, B. La¨gel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. H. Friend, and F. Cacialli, Synthetic Metals 111–112, 311 (2000).
[105] I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986).
[106] A. Imanishi, E. Tsuji, and Y. Nakato, J. Phys. Chem. C 111, 2128 (2007).
[107] K. Akaike, K. Kanai, H. Yoshida, J. y. Tsutsumi, T. Nishi, N. Sato, Y. Ouchi, and K. Seki, J. Appl. Phys. 104, 023710 (2008).
[108] Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Ingana¨s, Appl. Phys. Lett. 92, 233308 (2008).
[109] M.-C. Wu, Y.-Y. Lin, S. Chen, H.-C. Liao, Y.-J. Wu, C.-W. Chen, Y.-F. Chen, and W.-F. Su, Chem. Phys. Lett. 468, 64 (2009).
[110] B. W. Larson, J. B. Whitaker, X.-B. Wang, A. A. Popov, G. Rumbles, N. Kopidakis, S. H. Strauss, and O. V. Boltalina, J. Phys. Chem. C 117, 14958 (2013).
[111] K. Kanai, K. Akaike, K. Koyasu, K. Sakai, T. Nishi, Y. Kamizuru, T. Nishi, Y. Ouchi, and K. Seki, Appl. Phys. A 95, 309 (2009).
[112] V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Phys. Rev. Lett. 93, 216601 (2004).
[113] V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 13, 43 (2003).
[114] P. Qin et al., Nanoscale 6, 1508 (2014).
[115] G. Y. Margulis, M. G. Christoforo, D. Lam, Z. M. Beiley, A. R. Bowring, C. D. Bailie, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3, 1657 (2013).
[116] D. Poplavskyy and J. Nelson, J. Appl. Phys. 93, 341 (2003).
[117] H. J. Spencer, P. J. Skabara, M. Giles, I. McCulloch, S. J. Coles, and M. B. Hursthouse, J. Mater. Chem. 15, 4783 (2005).
[118] R. A. Hatton, N. P. Blanchard, L. W. Tan, G. Latini, F. Cacialli, and S. R. P. Silva, Org. Electron. 10, 388 (2009).
[119] Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Org. Electron. 10, 205 (2009).
[120] A. Marutaphan, Y. Seekaew, and C. Wongchoosuk, Nanoscale Research Letters 12, 90 (2017).
[121] F.-C. Chen, C.-W. Chu, J. He, Y. Yang, and J.-L. Lin, Appl. Phys. Lett. 85, 3295 (2004).
[122] J. Emara, T. Schnier, N. Pourdavoud, T. Riedl, K. Meerholz, and S. Olthof, Adv. Mater. 28, 553 (2016).
[123] C. Ludmila, U. Satoshi, J. A. Kumar, M. Tsutomu, N. Jotaro, K. Takaya, and S. Hiroshi, Chemistry Letters 44, 1089 (2015).
[124] O. Almora, C. Aranda, E. Mas-Marza´, and G. Garcia-Belmonte, Appl. Phys. Lett. 109, 173903 (2016).
[125] A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).
[126] J. Chae, Q. Dong, J. Huang, and A. Centrone, Nano Letters 15, 8114 (2015).
[127] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
[128] M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H. A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal, Applied Physics Letters 105, 153502 (2014).
[129] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, J. Phys. Chem. C 118, 16458 (2014).
[130] A. A. Zhumekenov et al., ACS Energy Letters 1, 32 (2016).
[131] Q. Han et al., Adv. Mater. 28, 2253 (2016).
[132] H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
[133] N. D. Orf, I. D. Baikie, O. Shapira, and Y. Fink, Appl. Phys. Lett. 94, 113504 (2009).
[134] M. Habibi, F. Zabihi, M. R. Ahmadian-Yazdi, and M. Eslamian, Renewable and Sustainable Energy Rev. 62, 1012 (2016).
[135] M. Xinzhe, P. Zhu, G. Shuai, and J. Zhu, J. Semicond. 38, 011004 (2017).
[136] M. Shirayama, M. Kato, T. Miyadera, T. Sugita,
T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, and H. Fujiwara, J. Appl. Phys. 119, 115501 (2016).
[137] W. Huang, J. S. Manser, P. V. Kamat, and S. Ptasinska, Chem. Mater. 28, 303 (2016).
[138] N. N. Toan, S. Saukko, and V. Lantto, Physica B 327, 279 (2003).
[139] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5 (2014).
[140] N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. Chem. Solids 53, 935 (1992).
[141] T. J. Jacobsson, W. Tress, J.-P. Correa-Baena, T. Edvinsson, and A. Hagfeldt, J. Phys. Chem. C 120, 11382 (2016).
[142] G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2015).
[143] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
[144] S. N. Habisreutinger, D. P. McMeekin, H. J. Snaith, and R. J. Nicholas, APL Materials 4, 091503 (2016).
[145] A. Guerrero, J. You, C. Aranda, Y. S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, and Y. Yang, ACS Nano 10, 218 (2016).
[146] J. Carrillo, A. Guerrero, S. Rahimnejad, O. Almora, I. Zarazua, E. Mas-Marza, J. Bisquert, and G. Garcia-Belmonte, Adv. Energy Mater. 6, 1502246 (2016).
[147] D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, and S. A. Haque, Energy Environ. Sci. 9, 1655 (2016).
[148] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, Nat. Commun. 4 (2013).
[149] J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).
[150] S. Y. Li et al., Phys. Rev. B: Condens. Matter 64, 132505 (2001).
[151] S. Aharon, A. Dymshits, A. Rotem, and L. Etgar, J. Mater. Chem. A 3, 9171 (2015).
[152] C. Manspeaker, S. Venkatesan, A. Zakhidov, and K. S. Martirosyan, Curr. Opin. Chem. Eng. 15, 1 (2017).
[153] M. Shahbazi and H. Wang, Sol. Energy 123, 74 (2016). [154] D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, Solar Energy Materials and Solar Cells 147, 255 (2016).
[155] Q. Xiaojun, Z. Zhiguo, W. Yidan, W. Junbo, J. Qi, and Y. Jingbi, J. Semicond. 38, 011002 (2017).
[156] M. A. Green, Solar Cells. Operating principles, Technology and System Applications (Prentice-Hall, 1992).
[157] A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic Press, UK, 1983). [158] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014).
[159] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, and M. D. McGehee, Energy Environ. Sci. 7, 3690 (2014).
[160] S. Ravishankar, O. Almora, C. Echeverría-Arrondo, E. Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-Santiago, A. Zaban, G. Garcia-Belmonte, and J. Bisquert, J. Phys. Chem. Lett. 8, 915 (2017).
[161] J. A. Christians, J. S. Manser, and P. V. Kamat, J. Phys. Chem. Lett. 6, 852 (2015).
[162] E. Zimmermann et al., APL Mater. 4, 091901 (2016).
[163] H.-W. Chen, N. Sakai, M. Ikegami, and T. Miyasaka, J. Phys. Chem. Lett., 164 (2014).
[164] K. T. B. Jarvist M. Frost, Federico Brivio, Christopher H. Hendon, Mark van Schilfgaarde, and Aron Walsh, Nano Lett. 14, 2584 (2014).
[165] K. T. B. Jarvist M. Frost, and AronWalsh, APL Mater. 2 (2014).
[166] J.Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, and D. Yu, J. Phys. Chem. Lett. 5, 3937 (2014).
[167] H.-S. Kim and N.-G. Park, J. Phys. Chem. Lett. 5, 2927 (2014).
[168] R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. Lett. 5, 2357 (2014).
[169] O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, and G. Garcia-Belmonte, J. Phys. Chem. Lett. 6, 1645 (2015).
[170] O. Almora, C. Aranda, I. Zarazua, A. Guerrero, and G. Garcia-Belmonte, ACS Energy Lett. 1, 209 (2016).
[171] O. Almora, A. Guerrero, and G. Garcia-Belmonte, Appl. Phys. Lett. 108, 043903 (2016).
[172] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Gratzel, Energy Environ. Sci. 8, 995 (2015).
[173] J. Beilsten-Edmands, G. E. Eperon, R. D. Johnson, H. J. Snaith, and P. G. Radaelli, Appl. Phys. Lett. 106, 173502 (2015).
[174] S. van Reenen, M. Kemerink, and H. J. Snaith, J. Phys. Chem. Lett. 6, 3808 (2015).
[175] G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, Energy Environ. Sci. 9, 1476 (2016).
[176] B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, and S. Priya, J. Phys. Chem. Lett. 6, 4693 (2015).