References:
1 Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet (London,
England) 386 , 896-912, doi:10.1016/s0140-6736(14)61393-3
(2015).
2 Schneider, R. B., Iourinets, J. & Richard, I. H. Parkinson’s disease
psychosis: presentation, diagnosis and management. Neurodegener
Dis Manag 7 , 365-376, doi:10.2217/nmt-2017-0028 (2017).
3 Qiao, C. et al. Inhibition of the hepatic Nlrp3 protects
dopaminergic neurons via attenuating systemic inflammation in a MPTP/p
mouse model of Parkinson’s disease. J Neuroinflammation15 , 193, doi:10.1186/s12974-018-1236-z (2018).
4 Mao, Z. et al. The NLRP3 Inflammasome is Involved in the
Pathogenesis of Parkinson’s Disease in Rats. Neurochem Res42 , 1104-1115, doi:10.1007/s11064-017-2185-0 (2017).
5 Chen, Y. C. Beware of docking! Trends Pharmacol Sci36 , 78-95, doi:10.1016/j.tips.2014.12.001 (2015).
6 Tsai, T. Y., Chang, K. W. & Chen, C. Y. iScreen: world’s first
cloud-computing web server for virtual screening and de novo drug design
based on TCM database@Taiwan. J Comput Aided Mol Des 25 ,
525-531, doi:10.1007/s10822-011-9438-9 (2011).
7 Chang, K. W. et al. iSMART: an integrated cloud computing web
server for traditional Chinese medicine for online virtual screening, de
novo evolution and drug design. J Biomol Struct Dyn 29 ,
243-250, doi:10.1080/073911011010524988 (2011).
8 Chen, C. Y. TCM Database@Taiwan: the world’s largest traditional
Chinese medicine database for drug screening in silico. PLoS One6 , e15939, doi:10.1371/journal.pone.0015939 (2011).
9 Li, S. & Zhang, B. Traditional Chinese medicine network pharmacology:
theory, methodology and application. Chin J Nat Med 11 ,
110-120, doi:10.1016/s1875-5364(13)60037-0 (2013).
10 Ye, H., Wei, J., Tang, K., Feuers, R. & Hong, H. Drug Repositioning
Through Network Pharmacology. Curr Top Med Chem 16 ,
3646-3656 (2016).
11 Hopkins, A. L. Network pharmacology. Nat Biotechnol25 , 1110-1111, doi:10.1038/nbt1007-1110 (2007).
12 Morris, G. M. & Lim-Wilby, M. Molecular docking. Methods Mol
Biol 443 , 365-382, doi:10.1007/978-1-59745-177-2_19 (2008).
13 Wainberg, M., Merico, D., Delong, A. & Frey, B. J. Deep learning in
biomedicine. Nat Biotechnol 36 , 829-838,
doi:10.1038/nbt.4233 (2018).
14 Verissimo, G. C. et al. HQSAR and random forest-based QSAR
models for anti-T. vaginalis activities of nitroimidazoles derivatives.J Mol Graph Model 90 , 180-191,
doi:10.1016/j.jmgm.2019.04.007 (2019).
15 Gini, G. QSAR: What Else? Methods Mol Biol 1800 ,
79-105, doi:10.1007/978-1-4939-7899-1_3 (2018).
16 Krzywinski, M. & Altman, N. Multiple linear regression. Nat
Methods 12 , 1103-1104 (2015).
17 Nedaie, A. & Najafi, A. A. Support vector machine with Dirichlet
feature mapping. Neural Netw 98 , 87-101,
doi:10.1016/j.neunet.2017.11.006 (2018).
18 Verma, J., Khedkar, V. M. & Coutinho, E. C. 3D-QSAR in drug
design–a review. Curr Top Med Chem 10 , 95-115 (2010).
19 Szklarczyk, D. et al. The STRING database in 2017:
quality-controlled protein-protein association networks, made broadly
accessible. 45 , D362-d368, doi:10.1093/nar/gkw937 (2017).
20 Burley, S. K. et al. RCSB Protein Data Bank: Sustaining a
living digital data resource that enables breakthroughs in scientific
research and biomedical education. 27 , 316-330,
doi:10.1002/pro.3331 (2018).
21 Fromme, R. et al. A monovalent mutant of cyanovirin-N provides
insight into the role of multiple interactions with gp120 for antiviral
activity. Biochemistry 46 , 9199-9207,
doi:10.1021/bi700666m (2007).
22 Fahr, B. T. et al. Tethering identifies fragment that yields
potent inhibitors of human caspase-1. Bioorg Med Chem Lett16 , 559-562, doi:10.1016/j.bmcl.2005.10.048 (2006).
23 Verba, K. A. et al. Atomic structure of Hsp90-Cdc37-Cdk4
reveals that Hsp90 traps and stabilizes an unfolded kinase.Science 352 , 1542-1547, doi:10.1126/science.aaf5023
(2016).
24 UniProt: the universal protein knowledgebase. Nucleic Acids
Res 45 , D158-d169, doi:10.1093/nar/gkw1099 (2017).
25 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for
automated protein structure and function prediction. Nat Protoc5 , 725-738, doi:10.1038/nprot.2010.5 (2010).
26 Yang, J. et al. The I-TASSER Suite: protein structure and
function prediction. Nat Methods 12 , 7-8,
doi:10.1038/nmeth.3213 (2015).
27 Zhang, Y. I-TASSER server for protein 3D structure prediction.BMC Bioinformatics 9 , 40, doi:10.1186/1471-2105-9-40
(2008).
28 Venkatachalam, C. M., Jiang, X., Oldfield, T. & Waldman, M.
LigandFit: a novel method for the shape-directed rapid docking of
ligands to protein active sites. J Mol Graph Model 21 ,
289-307 (2003).
29 Jo, S. et al. CHARMM-GUI 10 years for biomolecular modeling
and simulation. Journal of computational chemistry 38 ,
1114-1124, doi:10.1002/jcc.24829
10.1002/jcc.24660 (2017).
30 Kim, S. et al. CHARMM-GUI ligand reader and modeler for CHARMM
force field generation of small molecules. 38 , 1879-1886,
doi:10.1002/jcc.24829 (2017).
31 Speybroeck, N. Classification and regression trees. Int J
Public Health 57 , 243-246, doi:10.1007/s00038-011-0315-z
(2012).
32 Sheridan, R. P. Three Useful Dimensions for Domain Applicability in
QSAR Models Using Random Forest. Journal of Chemical Information
& Modeling 52 , 814-823 (2012).
33 Hoerl, A. E. & Kennard, R. W. Ridge Regression: Biased Estimation
for Nonorthogonal Problems. Technometrics 12 , 55-67,
doi:10.1080/00401706.1970.10488634 (1970).
34 Choi, S. H., Jung, H.-Y. & Kim, H. Ridge Fuzzy Regression Model.International Journal of Fuzzy Systems ,
doi:10.1007/s40815-019-00692-0 (2019).
35 Smith, S. L. & Le, Q. V. A Bayesian Perspective on Generalization
and Stochastic Gradient Descent. (2018).
36 Hui, Z. & Hastie, T. Addendum: Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society67 , 768-768 (2005).
37 Goodfellow, I. J. et al. in International Conference on
Neural Information Processing Systems.
38 Sutton, C. D. 11 – Classification and Regression Trees, Bagging, and
Boosting. Handbook of Statistics 24 , 303-329 (2005).
39 Zhang, S., Li, X., Zong, M., Zhu, X. & Wang, R. Efficient kNN
Classification With Different Numbers of Nearest Neighbors. IEEE
transactions on neural networks and learning systems 29 ,
1774-1785, doi:10.1109/tnnls.2017.2673241 (2018).
40 Fulp, J. et al. Structural Insights of Benzenesulfonamide
Analogues as NLRP3 Inflammasome Inhibitors: Design, Synthesis, and
Biological Characterization. J Med Chem 61 , 5412-5423,
doi:10.1021/acs.jmedchem.8b00733 (2018).
41 Pronk, S. et al. GROMACS 4.5: a high-throughput and highly
parallel open source molecular simulation toolkit. Bioinformatics
(Oxford, England) 29 , 845-854,
doi:10.1093/bioinformatics/btt055 (2013).
42 Van Der Spoel, D. et al. GROMACS: fast, flexible, and free.Journal of computational chemistry 26 , 1701-1718,
doi:10.1002/jcc.20291 (2005).
43 Zoete, V., Cuendet, M. A., Grosdidier, A. & Michielin, O.
SwissParam: a fast force field generation tool for small organic
molecules. Journal of computational chemistry 32 ,
2359-2368, doi:10.1002/jcc.21816 (2011).