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Abstract

The lower bound decay rate of global solution to the compressible viscous quantum magne-

tohydrodynamic model in three-dimensional whole space under the H5×H4×H4 framework is

investigated in this paper. We firstly show that the lower bound of decay rate for the density,

velocity and magnetic field converging to the equilibrium state (1,0,0) in L2-norm is (1 + t)−
3
4

when the initial data satisfies some low frequency assumption. Moreover, we prove that the lower

bound of decay rate of k(k ∈ [1, 3]) order spatial derivative for the density, velocity and magnetic

field converging to the equilibrium state (1,0,0) in L2-norm is (1 + t)−
3+2k

4 . Then we show that

the lower bound of decay rate for the time derivatives of density and velocity converging to zero

in L2-norm is (1 + t)−
5
4 , but the lower bound of decay rate for the time derivative of magnetic

field converging to zero in L2-norm is (1 + t)−
7
4 .
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1 Introduction

The purpose of this paper is to consider the lower bounds of decay rate for the global solution

to the following compressible viscous quantum magnetohydrodynamic(in short, vQMHD) model in

three-dimensional whole space:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (µ+ λ)∇divu+∇P (ρ)− h2

2
ρ∇(

∆
√
ρ

√
ρ

) = (∇×B)×B,

∂tB −∇× (u×B) = −∇× (ν∇×B), divB = 0,

(1.1)

where t ≥ 0 is time, x ∈ R3 is spatial coordinate, the unknown functions ρ = ρ(x, t), u =

(u1, u2, u3)(x, t) and B = (B1, B2, B3)(x, t) represent density, velocity and magnetic field respec-

tively. The function P (ρ) which denotes pressure is smooth in a neighborhood of 1 with P ′(1) > 0.
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The constant viscosity coefficients µ and λ satisfy the following physical conditions:

µ > 0, 3λ+ 2µ ≥ 0.

The constant ν > 0 acting as a magnetic diffusion coefficient of the magnetic field is the magnetic

diffusivity. The constant h denotes Planck constant and it satisfies h > 0. The symbol ⊗ denotes

the Kronecker tensor product. As usual, we refer to the first equation of the system (1.1) as the

continuity equation, the second equation of the system (1.1) as the momentum balance equation,

and the third equation of the system (1.1) as the magnetic equation. The expression
∆
√
ρ√
ρ can be

interpreted as a quantum potential, the so-called Bohm potential, which satisfies

2ρ∇(
∆
√
ρ

√
ρ

) = div(ρ∇2ρ) = ∇∆ρ+
|∇ρ|2∇ρ

ρ2
− ∇ρ∆ρ

ρ
− ∇ρ · ∇

2ρ

ρ
= ∇∆ρ− 4div(∇√ρ⊗∇√ρ).

In order to complete the system (1.1), this system is supplemented with initial data

(ρ, u,B)(x, t)|t=0 = (ρ0(x), u0(x), B0(x)). (1.2)

Furthermore, we assume that as the space variable tends to infinity, the initial disturbances satisfy

lim
|x|→∞

(ρ0 − 1, u0, B0)(x) = 0. (1.3)

The quantum fluid model can provide many pieces of information for the particles in the semicon-

ductor simulation and it could be used to describe quantum semiconductors [5], weakly interacting

Bose gases [10], and quantum trajectories of Bohmian mechanics [32]. Madelung [21] found a hydro-

dynamic form of the singlestate Schrödinger equation. Later, the quantum hydrodynamic(QHD)

model, which may be viewed as a quantum corrected version of the classical hydrodynamic equa-

tions, was derived by Ferry and Zhou [5] from the Wigner equation. The quantum hydrodynamic

model for plasmas was introduced in [22]. The quantum magnetohydrodynamic(QMHD) model that

plays an important role in modeling and simulating electron transport was extended by Hass [14]

later from a Wigner-Maxwell system and this model could be used to describe the global properties

of quantum plasmas. It should be noted that system (1.1) will reduce to the compressible MHD

equations without quantum effects.

There are huge literatures on the well-posedness of solutions to the quantum fluid model. The

one-dimensional problems have been studied extensively, refer to [6, 17] and the references therein.

The existence and uniqueness of local and global solutions to one-dimensional isentropic quantum

Euler-Poisson system under a subsonic condition was proved by Jüngel and Li in [17]. Gamba et

al.[6] showed the global existence of weak solution to the viscous quantum hydrodynamic equations.

For the multi-dimensional case, Jüngel [18] used Faedo-Galerkin method and weak compactness

technique to prove the global existence of weak solution to the viscous quantum Euler model in R3

and showed the global existence of weak solution to the barotropic compressible quantum Navier-

Stokes equations in a three-dimensional torus under the condition that the viscosity constant is

smaller then the scaled Planck constant. Later, Yang and Ju [35] applied the same method as in

[18] to obtain the global existence of weak solutions to the viscous quantum magnetohydrodynamic

equations with large data in a three-dimensional torus. Guo and Wang [11] established the local

existence of the smooth solutions to the quantum hydrodynamic models in Rd with d ≥ 1. Recently,
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under the condition that the initial perturbation around a constant state is small enough, Pu and

Li [26] showed the existence of global smooth solutions to the initial boundary value problem for

compressible quantum hydrodynamic model with damping and heat diffusion in a bounded domain

in R3. We also remark that Chen and Dreher [1] proved the local existence of solution to the viscous

model of quantum hydrodynamics in R1 and they showed the local existence of solution in higher

dimensions provided boundary is periodical. For more results about the well-posedness of solutions

to the quantum fluid model, readers can refer to [3, 4, 12, 15, 19, 20, 24] and the references therein.

The study for decay rates of solutions to the quantum magnetohydrodynamic model have at-

tracted much attention of mathematicians. Pu and Guo [25] established the optimal decay rates of

classical solutions near constant states by virtue of spectral method in R3 provided the initial data

belong to L1. Pu and Xu [28] obtained the decay rate of classical solutions to the viscous quantum

magnetohydrodynamic model when the initial perturbation belong to L1, more precisely, the time

decay rates are as follows

‖∇k(ρ− 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3
4
− k

2 , k = 0, 1.

Pu and Xu [27] used the pure energy method as in [13] to obtain the optimal decay rates of higher-

order spatial derivatives of solutions to the full hydrodynamic equations with quantum effects under

the condition that the initial perturbation belongs to (HN+2
⋂
Ḣ−s)×(HN+1

⋂
Ḣ−s)×(HN

⋂
Ḣ−s)

for N ≥ 3 and s ∈ [0, 3
2). Recently, by using Fourier splitting method, Xi et al.[33] established the

optimal time decay rates for the higher-order spatial derivatives of solutions to the viscous quantum

magnetohydrodynamic model when the initial perturbation belongs to L1, which improved the work

in [28], more precisely, they got

‖∇k(ρ− 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3
4
− k

2 , k = 0, 1, 2, 3. (1.4)

For more results about the large time behavior of solutions to the quantum fluid model, interested

readers may refer to [25, 34] and the references therein.

It should be noted that the time decay rate (1.4) is called optimal in the sense that this rate

of solution for the nonlinear part is coincide with the decay rate of linearized one. To the best

knowledge of the authors’, there has been no result of lower bound(coincide with upper rate) of decay

rate of solution to the compressible viscous magnetohydrodynamic model in R3. Thus, the purpose

of this paper is to solve this problem. In other words, the aim of this work is to show that the decay

rate (1.4) obtained in [33] is really optimal.

Notation: Throughout this paper, we use ∇k with an integer k ≥ 0 to represent the usual any

spatial derivatives of order k. The Fourier transform of the function f is denoted by F(f) := f̂ .

The pseudo-differential operator Λs is defined by Λsf = F−1(|ξ|sf̂(ξ)). We denote Hs(R3) by the

sth order Sobolev space with s ≥ 0. Particularly, when s = 0, H0(R3) = L2(R3). For the sake of

simplicity, we write
∫
fdx :=

∫
R3 fdx and ‖(A,B)‖X := ‖A‖X + ‖B‖X .

First of all, we recall the main results obtained in [28], [33] in the following.

Theorem 1.1 ([28] & [33]). Suppose that the initial data (ρ0 − 1, u0, B0) ∈ H5 ×H4 ×H4, there

exists a small constant δ > 0 such that if

‖ρ0 − 1‖H5 + ‖u0‖H4 + ‖B0‖H4 ≤ δ, (1.5)
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then the solution (ρ, u,B) of (1.1)-(1.3) satisfy for all t ≥ 0

‖(ρ− 1, u,B)(t)‖2H4 + ‖h∇ρ(t)‖2H4 +

∫ t

0
‖∇(u,B, hρ)(s)‖2H4ds

≤C(‖ρ0 − 1‖2H5 + ‖u0‖2H4 + ‖B0‖2H4).

(1.6)

Moreover, provided that ‖(ρ0 − 1, u0, B0)‖L1 is finite additionally, then the solution (ρ, u,B) satisfy

‖∇k(ρ− 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3+2k

4 , (1.7)

with k = 0, 1, 2, 3, here the positive constant C is independent of time.

For the sake of simplicity, we only establish the lower bound of time decay rates for global

solution under the H5×H4×H4 framework. Our main results are stated in the following theorems:

Theorem 1.2. Let %0 := ρ0 − 1 and m0 := ρ0u0. Suppose that the Fourier transform of the

functions (%0,m0, B0) satisfy

|%̂0| ≥ c0, m̂0 = 0, |B̂0| ≥ c0, 0 ≤ |ξ| � 1, (1.8)

with c0 a positive constant. Then, the global solution (ρ, u,B) obtained in Theorem 1.1 has the

decay rates for all t ≥ t∗

c1(1 + t)−
3+2k

4 ≤ ‖∇k(ρ− 1)(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k = 0, 1, 2, 3; (1.9)

c1(1 + t)−
3+2k

4 ≤ ‖∇ku(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k = 0, 1, 2, 3; (1.10)

c1(1 + t)−
3+2k

4 ≤ ‖∇kB(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k = 0, 1, 2, 3. (1.11)

Here t∗ is a positive large time, two positive constants c1 and C1 are independent of time.

Remark 1.1. To our best knowledge, there was no the result about the lower bounds of decay rates

(1.9)-(1.11) for the derivatives of density, velocity and magnetic field to the compressible viscous

quantum magnetohydrodynamic model (1.1) before. Thus in this paper, this result was obtained for

the first time.

Remark 1.2. Even though we only establish the time decay rates under the H5×H4×H4 framework

in Theorem 1.2, the method we used here can actually be applied to the HN+2×HN+1×HN+1(N ≥ 3)

framework. If the condition (1.8) holds, the global classical solution (ρ, u,B) of the system (1.1) has

the decay rates for all t ≥ t∗

c1(1 + t)−
3+2k

4 ≤ ‖∇k(ρ− 1)(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k ∈ [0, N ];

c1(1 + t)−
3+2k

4 ≤ ‖∇ku(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k ∈ [0, N ];

c1(1 + t)−
3+2k

4 ≤ ‖∇kB(t)‖L2 ≤ C1(1 + t)−
3+2k

4 , k ∈ [0, N ].

Here t∗ is a positive large time, two positive constants c1 and C1 are independent of time.
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Next, we will establish the lower bound of decay rate for the time derivatives of solution to the

compressible viscous quantum magnetohydrodynamic model (1.1).

Theorem 1.3. If the condition (1.8) holds, the global classical solution (ρ, u,B) obtained in Theo-

rem 1.1 satisfy for all t ≥ t∗

c2(1 + t)−
5
4 ≤ ‖∂tu(t)‖L2 ≤ C2(1 + t)−

5
4 ;

c2(1 + t)−
7
4 ≤ ‖∂tB(t)‖L2 ≤ C2(1 + t)−

7
4 .

(1.12)

Moreover, if the velocity u satisfies ‖u0‖L1 ≤ δ1 with δ1 a small constant, it holds on for all t ≥ t∗

c2(1 + t)−
5
4 ≤ ‖∂tρ(t)‖L2 ≤ C2(1 + t)−

5
4 . (1.13)

Here t∗ is a positive large time, c2 and C2 are two positive constants independent of time.

Remark 1.3. To the best knowledge of the authors’, there has been no result of lower bounds of

decay rates for the time derivatives of density, velocity and magnetic field for the compressible viscous

quantum magnetohydrodynamic model in the L2 norm. That is to say, this result was obtained for

the first time.

Finally, we state two inequalities which play an important role in energy estimates. The first

inequality here is called Sobolev interpolation of the Gagliardo-Nirenberg inequality, see [23].

Lemma 1.4. Let 0 ≤ m,α ≤ l and the function f ∈ C∞0 (Rn), then we have

‖∇αf‖Lp ≤ C‖∇mf‖1−θ
L2 ‖∇lf‖θL2 , (1.14)

where θ satisfies

0 ≤ θ ≤ 1,

and α,m, l satisfy
1

p
− α

n
= (

1

2
− m

n
)(1− θ) + (

1

2
− l

n
)θ.

The following inequality has been shown in [31].

Lemma 1.5. Suppose that ‖%‖L∞ ≤ 1. Let f(%) be a smooth function of % and its derivatives of

any order are bounded, then for any integer l ≥ 1, it holds on∥∥∥∇lf(%)
∥∥∥
L∞
≤ C

∥∥∥∇l%∥∥∥
L∞

. (1.15)

Now we make comments on the analysis in this paper. We firstly give the lower bound of decay

rate for the higher order spatial derivative of solution to the compressible quantum magnetohydro-

dynamic model (1.1). In order to solve this problem, we consider the difference between the lower

bound of decay rate for the solution of the linearized part and the upper bound of decay rate for

the difference between the solution of nonlinear and linearized problem. It is easy to obtain the

lower bound of decay rate for the linearized part by applying the spectral analysis to the semigroup

for the linearized quantum magnetohydrodynamic model (2.4), see Proposition 2.1 in Section 2.

Therefore, it is significant to obtain upper bound of decay rate of the kth order derivative of the

difference between the solution of nonlinear and linearized problem with k ≥ 0. To achieve this
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goal, we establish the energy estimate first of all, see (2.9) and (2.10) in Lemma 2.2. We notice that

under the H5 ×H4 ×H4 framework, Xi et al.[33] deduced the following inequality

d

dt
Fml (t) + C(‖∇l+1%‖2Hm+1−l + ‖∇l+1u‖2Hm−l + ‖∇l+1B‖2Hm−l) ≤ 0, (1.16)

for 0 ≤ l ≤ m, m ≤ 4, where

Fml (t) := ‖∇l%‖2Hm+1−l + ‖∇lu‖2Hm−l + ‖∇lB‖2Hm−l + δ
m∑
k=l

∫
∇ku · ∇k+1%dx,

and δ a small positive constant. By combining Duhamel principle formula, the upper bound decay

estimate (1.7) and the Fourier Splitting method developed by Schonbek [30], we could complete our

proof.

Next, we use the second and third equation of (2.31) and the lower bound of first order spatial

derivative to obtain the upper and lower bounds of decay rate for the time derivative of velocity and

magnetic field. By combining transport equation and the assumption that the L1 norm of initial

velocity is small enough(i.e.,‖u0‖L1 < δ with δ small enough), the upper and lower bounds of decay

rates for the time derivative of density are obtained.

The rest of this paper is organized as follows. Section 2 is devoted to establishing the lower

bound of decay rate for the solution itself and its derivatives, then we establish the lower bound of

decay rate for the time derivative of solution. Section 3 is devoted to proving technical estimates

used in Section 2.

2 Lower Bounds of Decay for Spatial Derivative

This section is concerned with the lower bound of decay rate for the solution itself and its

derivative. In order to achieve this goal, we establish the upper decay rate for the difference

between the nonlinear and linearized parts. Then, we address the upper decay rate of solution for

the higher order spatial derivative.

2.1. Lower Bounds of Decay for Spatial Derivative

In this subsection, we will establish optimal time decay rates of solution for the compressible quan-

tum magnetohydrodynamic model (1.1)-(1.3). Without loss of generality, we assume that P ′(1) = 1.

Let us denote % := ρ− 1,m := ρu, then we rewrite (1.1) in the perturbation form as
∂t%+ divm = 0,

∂tm− µ∆m− (µ+ λ)∇divm+∇%− h2

4
∇∆% = −divS1,

∂tB − ν∆B = ∇× S2, divB = 0,

(2.1)

where the functions S1 = S1(%, u,B) and S2 = S2(u,B) are defined as

S1 =(%+ 1)u⊗ u+ µ∇(%u) + (µ+ λ)div(%u)I3×3

+ (P (1 + %)− P (1)− %)I3×3 +
1

2
|B|2I3×3 −B ⊗B

+ h2(∇
√

1 + %⊗∇
√

1 + %) ;

S2 =u×B.

(2.2)
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The initial data is given as

(%,m,B)(x, t)|t=0 = (%0,m0, B0)(x)→ (0, 0, 0) as |x| → ∞. (2.3)

In order to obtain the lower decay estimate, it is sufficient to analysis the linearized part:
∂t%l + divml = 0,

∂tml − µ∆ml − (µ+ λ)∇divml +∇%l −
h2

4
∇∆%l = 0,

∂tBl − ν∆Bl = 0, divBl = 0,

(2.4)

with the initial data

(%l,ml, Bl)(x, t)|t=0 = (%0,m0, B0)(x)→ (0, 0, 0) as |x| → ∞. (2.5)

Notice that the first and second equation of linearized part (2.4) are similar to the linearized system

of compressible fluid models of Korteweg type in [8]. We still use the method in [8] to obtain the

lower bound of decay rate of solution to the system (2.4)-(2.5), which is stated as follows. For the

sake of simplicity, we omit the proof here.

Proposition 2.1. Let %0 ∈ H5(R3)
⋂
L1(R3), m0 ∈ H4(R3)

⋂
L1(R3) and B0 ∈ H4(R3)

⋂
L1(R3).

Assume that the Fourier transform F(%0,m0, B0) = (%̂0, m̂0, B̂0) satisfies |%̂0| ≥ c0, |m̂0| = 0, |B̂0| ≥
c0, 0 ≤ |ξ| � 1 with c0 a positive constant, then we have for k = 0, 1, 2, 3, it holds on

‖∇k%l(t)‖L2 ≥ c(1 + t)−( 3
4

+ k
2

);

‖∇kml(t)‖L2 ≥ c(1 + t)−( 3
4

+ k
2

);

‖∇kBl(t)‖L2 ≥ c(1 + t)−( 3
4

+ k
2

),

(2.6)

here c is a positive constant that independent of time t.

In the sequel, we give the upper decay rate for the difference between the nonlinear and lin-

earized part so that we can obtain the lower bound for the solution of the compressible quantum

magnetohydrodynamic model (2.1). Hence, we denote

%δ := %− %l,mδ := m−ml, Bδ := B −Bl,

then the functions (%δ,mδ, Bδ) satisfy the following system
∂t%δ + divmδ = 0,

∂tmδ − µ∆mδ − (µ+ λ)∇divmδ +∇%δ −
h2

4
∇∆%δ = −divS1,

∂tBδ − ν∆Bδ = ∇× S2, divBδ = 0,

(2.7)

and the initial data satisfy

(%δ,mδ, Bδ)(x, t)|t=0 = (0, 0, 0). (2.8)

Here the functions S1 and S2 are defined in (2.2). Now we will establish the energy estimate of

solution (%δ,mδ, Bδ) of equation (2.7) in the following.
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Lemma 2.2. For any smooth solution (%δ,mδ) of the equation (2.7), it holds on

d

dt
(‖∇l(%δ,mδ)‖2H4−l +

h2

4
‖∇l+1%δ‖2H4−l) + µ‖∇l+1mδ‖2H4−l + (µ+ λ)‖∇ldivmδ‖2H4−l

≤C‖∇l(%, u,B)‖2H4−l(‖∇%‖2H2 + ‖∇(u,B)‖2H1) + C‖∇(%, u)‖2H1(‖∇5%‖2H1 + ‖∇5u‖2L2),

(2.9)

and
4∑
k=l

d

dt

∫
∇lmδ · ∇l+1%δdx+ ‖∇l+1%δ‖2H4−l +

h2

4
‖∇l+2%δ‖2H4−l

≤C‖∇l+1mδ‖2H4−l + C‖∇l(%, u,B)‖2H4−l(‖∇%‖2H2 + ‖∇(u,B)‖2H1)

+ C‖∇(%, u)‖2H1(‖∇5%‖2H1 + ‖∇5u‖2L2),

(2.10)

where l = 0, 1, 2, 3, C is a positive constant that independent of time.

The above inequalities (2.9) and (2.10) in Lemma 2.2 will be proved later in Section 3. By

multiplying inequality (2.10) by a small constant δ and adding with (2.9), for all t ≥ 0, it holds on

d

dt
E4
l (t) + δ‖∇l+1%δ‖2H4−l +

h2

4
δ‖∇l+2%δ‖2H4−l +

µ

2
‖∇l+1mδ‖2H4−l

≤C(1 + t)−(4+l) + C(1 + t)−
5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2),

(2.11)

where l = 0, 1, 2, 3. Here the energy E4
l (t) is defined by

E4
l (t) := ‖∇l(%δ,mδ)‖2H4−l +

h2

4
‖∇l+1%δ‖2H4−l + δ

4∑
k=l

∫
∇kmδ · ∇k+1%δdx. (2.12)

Due to the smallness of δ, there are two constants C∗ and C∗(independent of time) such that

C∗(‖∇l%δ(t)‖2H5−l + ‖∇lmδ(t)‖2H4−l) ≤ E4
l (t) ≤ C∗(‖∇l%δ(t)‖2H5−l + ‖∇lmδ(t)‖2H4−l). (2.13)

Now we establish the upper bound decay rate of solution (%δ,mδ) for the equation (2.7).

Lemma 2.3. Suppose that the conditions in Theorem 1.1 hold on, then the smooth solution (%δ,mδ)

of equation (2.7) satisfy

‖∇l%δ(t)‖H5−l + ‖∇lmδ(t)‖H4−l ≤ C(1 + t)−
5+2l
4 , (2.14)

where l = 0, 1, 2, 3.

Proof. We will take the strategy of induction to prove the estimate (2.14) in the following. Taking

l = 0 in (2.11), then we have

d

dt
E4

0 (t) + C(‖∇%δ‖2H5 + ‖∇mδ‖2H4) ≤ C(1 + t)−4 + C(1 + t)−
5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2).

We notice that the term E4
0 (t) is equivalent to ‖%δ‖2H5 +‖mδ‖2H4 . Due to the fact that the dissipation

term ‖∇%δ‖2H5 +‖∇mδ‖2H4 could not control the energy term E4
0 (t) in above inequality, we add both

sides of the above inequality with term ‖(%δ,mδ)‖2L2 to obtain

d

dt
E4

0 (t) + C(‖%δ‖2H5 + ‖mδ‖2H4)

≤C‖(%δ,mδ)‖2L2 + C(1 + t)−4 + C(1 + t)−
5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2).

(2.15)
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In order to estimate the term ‖(%δ,mδ)(t)‖L2 , we utilize the Duhamel principle formula and estimate

(1.7) to arrive at

‖(%δ,mδ)(t)‖L2 ≤
∫ t

0
(1 + t− τ)−

5
4 (‖|ξ|−1F(divS1)‖L∞ + ‖divS1‖L2)dτ

≤
∫ t

0
(1 + t− τ)−

5
4 (‖S1‖L1 + ‖divS1‖L2)dτ

≤ C
∫ t

0
(1 + t− τ)−

5
4 (1 + τ)−

3
2dτ

≤ C(1 + t)−
5
4 ,

(2.16)

where we apply Hölder inequality, use decay rate (1.7) and take k = 1 in (3.4) to obtain

‖S1‖L1 + ‖divS1‖L2

≤C‖(1 + %)u⊗ u‖L1 + C‖∇(%u)‖L1 + C‖P (1 + %)− P (1)− %‖L1 + C‖B ·B‖L1

+ C‖|∇%|
2

1 + %
‖L1 + C‖∇S1‖L2

≤C‖1 + %‖L∞‖u‖2L2 + C‖∇%‖L2‖u‖L2 + C‖%‖L2‖∇u‖L2 + C‖%‖2L2 + C‖B‖2L2

+ C‖ 1

1 + %
‖L∞‖∇%‖2L2 + C‖∇S1‖L2

≤C‖(%, u)‖L2‖∇(%, u)‖L2 + C‖%‖2H2 + C‖(u,B)‖2L2 + C‖∇%‖H1‖∇3%‖L2

+ C‖∇(%, u,B)‖H1(‖∇%‖H2 + ‖∇(u,B)‖H1)

≤C(1 + t)−
3
2 .

Using (2.15), (2.16) and equivalent relation (2.13), one arrives at

d

dt
E4

0 (t) +
C

C∗
E4

0 (t) ≤ C(1 + t)−
5
2 + C(1 + t)−4 + C(1 + t)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2),

then we can get

E4
0 (t) ≤ C

∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2dτ + C

∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)dτ.

It is easy to obtain that ∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2dτ ≤ C(1 + t)−

5
2 ,

one can refer to [8] for the detail. In the sequel, we only need to deal with the term∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)dτ.

We claim the following estimate(which will be proved in Section 3),∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)dτ ≤ C(1 + t)−

5
2 . (2.17)

Then we can easily obtain that

‖%δ(t)‖2H5 + ‖mδ(t)‖2H4 ≤ C(1 + t)−
5
2 .

9
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We now assume that the decay rate (2.14) holds on for the case k = l, i.e.,

‖∇l%δ(t)‖H5−l + ‖∇lmδ(t)‖H4−l ≤ C(1 + t)−
5+2l
4 , (2.18)

for l = 1, 2. Then, we should verify that the estimate (2.14) holds on for the case k = l+ 1. Indeed,

we replace l by l + 1 in (2.11) to obtain that

d

dt
E4
l+1(t) + C(‖∇l+2%δ‖2H4−l + ‖∇l+2mδ‖2H3−l)

≤C(1 + t)−(5+l) + C(1 + t)−
5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2).

(2.19)

For some constant R that will be defined below, let us denote the time sphere(see [30])

S0 :=

{
ξ ∈ R3

∣∣ |ξ| ≤ ( R

1 + t

) 1
2

}
,

it follows immediately

‖∇l+2%δ‖2H4−l ≥
R

1 + t
‖∇l+1%δ‖2H4−l −

R2

(1 + t)2
‖∇l%δ‖2H4−l ;

‖∇l+2mδ‖2H3−l ≥
R

1 + t
‖∇l+1mδ‖2H3−l −

R2

(1 + t)2
‖∇lmδ‖2H3−l .

(2.20)

By substituting (2.20) into (2.19), we can easily get

d

dt
E4
l+1(t) +

CR

1 + t
(‖∇l+1%δ‖2H4−l + ‖∇l+1mδ‖2H3−l)

≤ CR2

(1 + t)2
(‖∇l%δ‖2H4−l +‖∇lmδ‖2H3−l) + C(1 + t)−(5+l) + C(1 + t)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)

≤CR2(1 + t)−
9+2l
2 + C(1 + t)−(5+l) + C(1 + t)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2),

where we have used the assumption (2.18). Notice that the term E4
l+1(t) is equivalent to the norm

‖∇l+1%δ‖2H4−l + ‖∇l+1mδ‖2H3−l , hence, we obtain

d

dt
E4
l+1(t) +

CR

C∗(1 + t)
E4
l+1(t)

≤CR2(1 + t)−
9+2l
2 + C(1 + t)−(5+l) + C(1 + t)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2).

We choose R = C∗(l + 4)/C and then multiply the above inequality by (1 + t)l+4 to obtain that

d

dt
[(1 + t)l+4E4

l+1(t)] ≤ C(1 + t)−
1
2 + C(1 + t)l+

3
2 (‖∇5%‖2H1 + ‖∇5u‖2L2). (2.21)

We claim that the following estimate holds on(which will be proved in Section 3),∫ t

0
(1 + τ)l+

3
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)dτ ≤ C, (2.22)

which together with (2.21) yield directly

E4
l+1(t) ≤ C(1 + t)−

7+2l
2 .

10
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Then, due to the fact that the term E4
l+1(t) is equivalent to the norm ‖∇l+1%δ‖2H4−l +‖∇l+1mδ‖2H3−l ,

by integrating the inequality (2.21) about time over [0, t], we obtain

‖∇l+1%δ‖2H4−l + ‖∇l+1mδ‖2H3−l ≤ C(1 + t)−
7+2l
2 .

Thus, by the general step of induction, we have given the proof for (2.14).

Next, we give the energy estimate for the the magnetic field, we claim the following inequality

holds on(which will be proved in Section 3).

Lemma 2.4. For any smooth solution (%δ,mδ, Bδ) of the equation (2.7), it holds on

d

dt

∫
|∇lBδ|2dx+ ν

∫
|∇l+1Bδ|2dx ≤ C‖(u,B)‖2L∞‖∇l(u,B)‖2L2 , (2.23)

for l = 0, 1, 2, 3.

Now, we will establish the upper decay rate for the difference of magnetic field between the

nonlinear and linearized parts in what follows.

Lemma 2.5. Under the conditions of Theorem 1.1, the smooth solution Bδ of equation (2.7) satisfies

‖∇lBδ(t)‖L2 ≤ C(1 + t)−
5+2l
4 , (2.24)

where l = 0, 1, 2, 3.

Proof. We will take the strategy of induction to prove the estimate (2.24) in the following. Similar

with the estimate for the term ‖Bδ(t)‖L2 obtained in [7], with the help of the Duhamel principle

formula and estimate (1.7), we have

‖Bδ(t)‖L2 ≤
∫ t

0
(1 + t− τ)−

5
4 (‖|ξ|−1F(∇× S2)‖L∞ + ‖∇S2‖L2)dτ

≤
∫ t

0
(1 + t− τ)−

5
4 (‖S2‖L1 + ‖∇S2‖L2)dτ

≤ C
∫ t

0
(1 + t− τ)−

5
4 (1 + t)−

3
2dτ

≤ C(1 + t)−
5
4 ,

(2.25)

where we have used the basic fact that

‖S2‖L1 + ‖∇S2‖L2

≤C‖u×B‖L1 + C‖∇(u×B)‖L2

≤C‖u‖L2‖B‖L2 + C‖∇u ·B‖L2 + C‖u · ∇B‖L2

≤C‖u‖L2‖B‖L2 + C‖∇u‖L3‖B‖L6 + C‖u‖L6‖∇B‖L3

≤C‖u‖H2‖B‖H2

≤C(1 + t)−
3
2 .

We now assume that the decay rate (2.24) holds on for the case k = l, i.e.,

‖∇lBδ(t)‖L2 ≤ C(1 + t)−
5+2l
4 , (2.26)

11
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for l = 1, 2. Then, we verify that the estimate (2.24) holds on for the case k = l+ 1. Replacing l by

l + 1 in (2.23), we can easily obtain that

d

dt

∫
|∇l+1Bδ|2dx+ ν

∫
|∇l+2Bδ|2dx ≤ C‖(u,B)‖2L∞‖∇l+1(u,B)‖2L2 ≤ C(1 + t)−(5+l), (2.27)

where we used the decay estimate (1.7). For some constant R that will be defined below, let us

denote the time sphere(see [30])

S0 :=

{
ξ ∈ R3

∣∣ |ξ| ≤ ( R

1 + t

) 1
2

}
,

it follows immediately

‖∇l+2Bδ‖2L2 ≥
R

1 + t
‖∇l+1Bδ‖2L2 −

R2

(1 + t)2
‖∇lBδ‖2L2 . (2.28)

Substituting (2.28) into inequality (2.27), which together with (2.26), we can get

d

dt
‖∇l+1Bδ‖2L2 +

νR

1 + t
‖∇l+1Bδ‖2L2

≤ CR2

(1 + t)2
‖∇lBδ‖2L2 + C(1 + t)−(5+l)

≤C(1 + t)−( 9
2

+l),

(2.29)

where we have used the assumption (2.26). By choosing R = (l + 4)/ν and multiplying the above

inequality by (1 + t)l+4, one arrives at

d

dt
[(1 + t)l+4‖∇l+1Bδ‖2L2 ] ≤ C(1 + t)−

1
2 ,

then by integrating the above inequality about time over [0, t], we obtain

‖∇l+1Bδ‖2L2 ≤ C(1 + t)−( 7
2

+l).

Hence, we have verified that (2.24) holds on for the case k = l+1. By the general step of induction,

we complete the proof of the lemma.

Finally, we establish the lower bound estimates.

Lemma 2.6. Under the conditions of Theorem 1.2, the solution (ρ, u,B) of equation (1.1) have the

following estimates

‖∇k(ρ− 1)(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3;

‖∇ku(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3;

‖∇kB(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3,

(2.30)

for all t ≥ T∗, here T∗ is a positive constant.

12
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Proof. Remember the definition

%δ := %− %l, mδ := m−ml, Bδ := B −Bl.

By virtue of triangle inequality, we have

‖%l‖L2 = ‖%− %δ‖L2 ≤ ‖%‖L2 + ‖%δ‖L2 ,

which, together with estimates (2.6) and (2.14), yield directly

‖%(t)‖L2 ≥ ‖%l(t)‖L2 − ‖%δ(t)‖L2

≥ C1(1 + t)−
3
4 − C2(1 + t)−

5
4

≥ C(1 + t)−
3
4 ,

here C1, C2 and C are positive constants independent of time. Similarly, using estimates (2.6) and

(2.14), together with triangle inequality, we also have

‖∇k%(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 1, 2, 3;

‖∇km(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3;

‖∇kB(t)‖L2 ≥ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3.

Finally, we establish the lower bound decay rate for the velocity u. We use the decay rate (1.7) and

apply Sobolev’s inequality to get

‖∇km‖L2 ≤ ‖∇ku‖L2 + ‖∇k(%u)‖L2

≤ ‖∇ku‖L2 + ‖%‖L∞‖∇ku‖L2 + ‖u‖L∞‖∇k%‖L2

≤ ‖∇ku‖L2 + C(1 + t)−
9+2k

4 ,

which, together with (2.6), yield directly

‖∇ku‖L2 ≥ ‖∇km‖L2 − C(1 + t)−
9+2k

4 ≥ C(1 + t)−
3+2k

4 − C(1 + t)−
9+2k

4 ≥ C(1 + t)−
3+2k

4 .

Therefore, we complete the proof of lemma.

2.2. Upper and Lower Bounds of Decay for Time Derivative

This subsection is devoted to establishing the lower bound for the time derivative of density, velocity

and magnetic field. Denoting % := ρ− 1, Xi et al.[33] have rewritten (1.1) in the perturbation form

as 
∂t%+ divu = G1,

∂tu− µ∆u− (µ+ λ)∇divu+∇%− h2

4
∇∆% = G2,

∂tB − ν∆B = G3,

(2.31)

where the function Gi(i = 1, 2, 3) is defined as

G1 = −%divu− u · ∇%,

G2 = −u · ∇u− %

%+ 1
(µ∆u+ (µ+ λ)∇divu)− (

P ′(%+ 1)

%+ 1
− 1)∇%− h2

4

%

%+ 1
∇∆%

+
h2

4
(
|∇%|2∇%
(1 + %)3

− ∇%∆%

(1 + %)2
− ∇% · ∇

2%

(1 + %)2
) +

1

1 + %
((∇×B)×B),

G3 = ∇× (u×B).

13
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The initial data are given as

(%, u,B)(x, t)|t=0 = (%0, u0, B0)(x)→ (0, 0, 0) as |x| → ∞. (2.32)

Now, we establish the upper and lower bound decay rates for the time derivative of solution

(ρ, u,B) in the L2 norm. The lower bound decay rate for the time derivative of density, velocity and

magnetic field can be obtained by using the method in [7, 8]. Nevertheless, we still give the estimate

in detail due to the appearance of the quantum potential and magnetic field simultaneously.

Lemma 2.7. Under all the assumptions of Theorem 1.2, the global solution (%, u,B) of equation

(2.31) has the following estimate

C(1 + t)−
5
4 ≤ ‖∂t%(t)‖L2 ≤ C(1 + t)−

5
4 ;

C(1 + t)−
5
4 ≤ ‖∂tu(t)‖L2 ≤ C(1 + t)−

5
4 ;

C(1 + t)−
7
4 ≤ ‖∂tB(t)‖L2 ≤ C(1 + t)−

7
4 ,

(2.33)

for all t ≥ T∗. Here C is a positive constant independent of time.

Proof. At first, we establish upper bound of time decay rate for ∂t%, ∂tu and ∂tB in the L2 norm.

With the help of the equation (2.31), we can easily obtain

‖∂t%‖L2 ≤ C‖divu‖L2 + ‖G1‖L2 ,

‖∂tu‖L2 ≤ C‖∆u‖L2 + C‖∇divu‖L2 + C‖∇%‖L2 + C‖∇∆%‖L2 + ‖G2‖L2 ,

and

‖∂tB‖L2 ≤ C‖∆B‖L2 + ‖G3‖L2 .

By virtue of Sobolev’s inequality and time decay rate (1.7), we have

‖G1‖L2 ≤ C‖% · divu‖L2 + C‖u · ∇%‖L2

≤ C‖%‖L∞‖divu‖L2 + C‖u‖L∞‖∇%‖L2

≤ C‖(%, u)‖L∞‖∇(%, u)‖L2

≤ C(1 + t)−
5
2 ,

‖G2‖L2 ≤C‖u · ∇u‖L2 + C‖ %

1 + %
∇2u‖L2 + C‖(P

′(1 + %)

1 + %
− 1)∇%‖L2 + C‖ %

1 + %
∇∆%‖L2

+ C‖|∇%|
2∇%

(1 + %)3
‖L2 + C‖ ∇%∆%

(1 + %)2
‖L2 + C‖ ∇%∇

2%

(1 + %)2
‖L2 + C‖ 1

1 + %
(∇×B)×B‖L2

≤C‖(%, u)‖L∞‖∇(%, u)‖L2 + C‖%‖L∞‖∇2u‖L2 + C‖%‖L∞‖∇3%‖L2 + C‖∇%‖L∞‖∇2%‖L2

+ C‖B‖L∞‖∇B‖L2

≤C(1 + t)−
5
2 ,

(2.34)

and

‖G3‖L2 ≤C‖∇ × (u×B)‖L2

≤C‖∇u ·B‖L2 + C‖B · ∇u‖L2

≤C‖(u,B)‖L∞‖∇(u,B)‖L2

≤C(1 + t)−
5
2 .

14



Decay Estimates for the Compressible Viscous Quantum Magnetohydrodynamic Model

Then, we can easily derive that

‖∂t%‖L2 ≤ C(1 + t)−
5
4 ,

‖∂tu‖L2 ≤ C(1 + t)−
5
4 ,

and

‖∂tB‖L2 ≤ C(1 + t)−
7
4 .

Next, we establish lower bound time decay rate for ∂tu and ∂tB in the L2 norm. Using the second

equation in (2.31), we have

‖∇%‖L2 ≤ ‖∂tu‖L2 + C‖∇2u‖L2 + C‖∇∆%‖L2 + ‖G2‖L2 .

And hence, we get

‖∂tu‖L2 ≥ ‖∇%‖L2 − C‖∇2u‖L2 − C‖∇∆%‖L2 − ‖G2‖L2

≥ C(1 + t)−
5
4 − C(1 + t)−

7
4 − C(1 + t)−

9
4 − C(1 + t)−

5
2

≥ C(1 + t)−
5
4 ,

(2.35)

for some large time t. Using the third equation in (2.31), we have

‖∆B‖L2 ≤ C‖∂tB‖L2 + C‖G3‖L2 .

Then we have for some large time t,

‖∂tB‖L2 ≥ C‖∆B‖L2 − C‖G3‖L2

≥ C(1 + t)−
7
4 − C(1 + t)−

5
2

≥ C(1 + t)−
5
2 .

(2.36)

Finally, we establish lower bound time decay rate for ∂t% in the L2 norm. In order to achieve this

target, we use the transport equation in equation (2.31) to obtain

‖divu‖L2 ≤ ‖∂t%‖L2 + ‖G1‖L2 .

Hence, we obtain

‖∂t%‖L2 ≥ ‖divu‖L2 − C(1 + t)−
11
4 . (2.37)

Now, we need to establish the lower bound decay rate for ‖divu‖L2 . We can get

‖divu‖L2 ≥ C‖∇u‖L2 − C‖∇ × u‖L2 ≥ C(1 + t)−
5
4 − C‖∇ × u‖L2 , (2.38)

due to the differential relation ∆ = ∇div−∇×∇×. It is sufficient to establish upper bound decay

rate for ‖∇ × u‖L2 . To achieve this target, we apply the operator ∇× to the second equation in

(2.31) to get

∂t(∇× u)− µ∆(∇× u) = ∇×G2.
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Using Sobolev’s inequality, uniform bound (1.6) and decay rate (1.7), we have

‖G2‖L1 + ‖G2‖L2 ≤ C‖u · ∇u‖L1 + C‖ %

1 + %
∇2u‖L1 + C‖(P

′(1 + %)

1 + %
− 1)∇%‖L1 + C‖ %

1 + %
∇∆%‖L1

+ C‖|∇%|
2∇%

(1 + %)3
‖L1 + C‖ ∇%∆%

(1 + %)2
‖L1 + C‖ ∇%∇

2%

(1 + %)2
‖L1 + C‖ 1

1 + %
(∇×B)×B‖L1

+ ‖G2‖L2

≤C‖(%, u)‖L2(‖∇(%, u)‖L2 + ‖∇2u‖L2 + ‖∇3%‖L2) + C‖∇%‖L2‖∇%‖H1

+ C‖B‖L2‖∇B‖L2 + C‖(%, u)‖L∞‖∇(%, u)‖L2 + C‖%‖L∞‖∇2u‖L2

+ C‖%‖L∞‖∇3%‖L2 + C‖∇%‖L∞‖∇2%‖L2 + C‖B‖L∞‖∇B‖L2

≤Cδ(1 + t)−
5
2 .

(2.39)

By virtue of the Duhamel principle formula and (2.39), we get

‖∇ × u‖L2 ≤C(1 + t)−
5
4 (‖Λ−1F(∇× u0)‖L∞ + ‖Λ−1F(∇× u0)‖L2)

+ C

∫ t

0
(1 + t− τ)−

5
4 (‖Λ−1F(∇×G2)‖L∞ + ‖Λ−1F(∇×G2)‖L2)dτ

≤C(1 + t)−
5
4 (‖u0‖L1 + ‖u0‖L2) + C

∫ t

0
(1 + t− τ)−

5
4 (‖G2‖L1 + ‖G2‖L2)dτ

≤C(δ + δ1)(1 + t)−
5
4 + Cδ

∫ t

0
(1 + t− τ)−

5
4 (1 + τ)−

5
4dτ

≤C(δ + δ1)(1 + t)−
5
4 ,

(2.40)

which, together with estimates (2.37) and (2.38), yields directly

‖∂t%‖L2 ≥ C(1 + t)−
5
4 − C(δ + δ1)(1 + t)−

5
4 − C(1 + t)−

5
2 .

Then, by virtue of the smallness of δ and δ1, we have

‖∂t%‖L2 ≥ C(1 + t)−
5
4 ,

for some large time t. Therefore, we complete the proof of this lemma.

3 Proof of Some Technical Estimates

In this section, we will prove the estimates which have been claimed in Section 2 . In other words, we

will establish the claim estimates (2.9), (2.10), (2.17), (2.22) and (2.23) in the sequel. Even though

the proof process of several claim estimates below are similar to the claim estimates in [7, 8], we

still give proof in detail for completeness.

Proof of inequality (2.9): By multiplying the first and second equation of (2.7) by %δ and mδ

respectively, we can obtain that

1

2

d

dt

∫
(|%δ|2+|mδ|2)dx+µ

∫
|∇mδ|2dx+(µ+λ)

∫
|divmδ|2dx−

h2

4

∫
∇∆%δ ·mδdx =

∫
S1 ·∇mδdx.

16



Decay Estimates for the Compressible Viscous Quantum Magnetohydrodynamic Model

By virtue of the Taylor expression formula, it holds on

P (1 + %)− P (1)− % ∼ %2,

which, together with Sobolev’s inequality, yield directly

‖S1‖L2 ≤ C‖(%, u,B)‖H2(‖∇%‖H1 + ‖∇(u,B)‖L2),

here we have used the fact that P ′(1) = 1 and the symbol ∼ represents the equivalent relation. By

using integration by parts, together with the transport equation, it is easy to arrive at∫
∇∆%δ ·mδdx = −1

2

d

dt

∫
|∇%δ|2dx.

Then, we obtain that

d

dt
(‖(%δ,mδ)‖2L2 +

h2

4

∫
|∇%δ|2dx) + µ‖∇mδ‖2L2 + (µ+ λ)‖divmδ‖2L2

≤C‖(%, u,B)‖2H2(‖∇%‖2H1 + ‖∇(u,B)‖2L2).

(3.1)

Applying the operator ∇k to the first and second equation (2.7), then multiplying both sides by

∇k%δ and ∇kmδ respectively, it is easy to obtain for k = 1, 2, 3, 4,

d

dt
‖∇k(%δ,mδ)‖2L2 + µ‖∇k+1mδ‖2L2 + (µ+ λ)‖∇kdivmδ‖2L2 −

h2

4

∫
∇k+1∆%δ · ∇kmδdx

≤‖∇kS1‖L2‖∇k+1mδ‖L2 .

(3.2)

At first, we estimate the term
∫
∇k+1∆%δ · ∇kmδdx for k = 1, 2, 3, 4. Using integration by parts

and the first equation in (2.7), we can obtain∫
∇k+1∆%δ · ∇kmδdx = −1

2

d

dt

∫
|∇k+1%δ|2dx. (3.3)

Now we give the estimates for ‖∇kS1‖2L2 , k = 1, 2, 3, 4. Indeed, we can easily apply Sobolev’s

inequality to obtain

‖∇k((1 + %)u⊗ u)‖L2 ≤ C‖1 + %‖L∞‖u‖L∞‖∇ku‖L2 + ‖u‖2L∞‖∇k%‖L2

≤ C(1 + ‖∇u‖H1)‖∇u‖H1‖∇k(%, u)‖L2

≤ C‖∇u‖H1‖∇k(%, u)‖L2 ,

Similarly, we also have for k = 1, 2, 3, 4,

‖∇k+1(%u)‖L2 + ‖∇kdiv(%u)‖L2 ≤ C‖∇(%, u)‖H1‖∇k+1(%, u)‖L2 .

Due to the fact that P ′(1) = 1, by virtue of the Taylor expression formula, we get

∇(P (1 + %)− P (1)− %) ∼ %∇%;

∇2(P (1 + %)− P (1)− %) ∼ ∇%∇%+ %∇2%;

∇3(P (1 + %)− P (1)− %) ∼ ∇%∇%∇%+∇%∇2%+ %∇3%;

∇4(P (1 + %)− P (1)− %) ∼ |∇%|4 + |∇%|2∇2%+∇%∇3%+ |∇2%|2 + %∇4%.
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Then, we use Sobolev’s inequality to obtain for k = 1, 2, 3, 4,

‖∇k(P (1 + %)− P (1)− %)‖L2 ≤ C‖∇%‖H1‖∇k%‖L2 .

Next, we only have to estimate the terms ‖∇k(∇
√

1 + %⊗∇
√

1 + %)‖L2 for k = 1, 2, 3, 4. Applying

Newton-Leibniz inequality, Sobolev’s inequality and Cauchy inequality, it holds on

‖∇k(∇
√

1 + %⊗∇
√

1 + %)‖L2

≤C‖∇k( |∇%|
2

1 + %
)‖L2

≤C
k∑
l=0

k−l∑
m=0

‖∇l( 1

1 + %
)∇m+1%∇k−l−m+1%‖L2 .

For the case l = k, with the aid of (1.14), (1.15) and Cauchy inequality, one arrives at

‖∇k( 1

1 + %
)|∇%|2‖L2

≤C‖∇k%‖L∞‖∇%‖L∞‖∇%‖L2

≤C‖∇k+1%‖
1
2

L2‖∇k+2%‖
1
2

L2‖∇2%‖
1
2

L2‖∇3%‖
1
2

L2‖∇%‖L2

≤C‖∇%‖L2‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .

For the case 0 ≤ l ≤ k − 1, applying Newton-Leibniz formula, it is easy to see that

‖∇k−1(
|∇%|2

1 + %
)‖L2

≤C
k−1∑
l=0

‖∇l( 1

1 + %
)∇%∇k−l+1%‖L2 + C

k−1∑
l=0

k−l−1∑
m=1

‖∇l( 1

1 + %
)∇m+1%∇k−l−m+1%‖L2

= : I1 + I2.

We deal with the term I1 first of all. For the case l = 0, we use (1.15), Hölder inequality and

Sobolev’s inequality to obtain

‖ 1

1 + %
· ∇%∇k+1%‖L2

≤C‖ 1

1 + %
‖L∞‖∇%‖L3‖∇k+1%‖L6

≤C‖∇%‖H1‖∇k+2%‖L2 .

For the case 1 ≤ l ≤ k − 1, by combining the estimate obtained in [9] and Cauchy inequality, one

arrives at

‖∇l( 1

1 + %
)∇%∇k−l+1%‖L2 ≤ C‖∇%‖L2‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .

By combining above two inequalities, we get

I1 ≤ C‖∇%‖H1‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .
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Next, we estimate the term I2. For the case l = 0, by virtue of the estimate obtained in [9], it is

easy to attain the estimate

k−1∑
l=1

‖ 1

1 + %
· ∇m+1%∇k−m+1%‖L2

≤C
k−1∑
l=1

‖∇%‖
1
2

L2‖∇2%‖
1
2

L2‖∇k+2%‖L2

≤C‖∇%‖H1‖∇k+2%‖L2 ,

where we have used the interpolation inequality (1.14) as follows,

‖∇
3
2 %‖L2 ≤ C‖∇%‖

1
2

L2‖∇2%‖
1
2

L2 .

For the case 1 ≤ l ≤ k − 1, we use the estimate in [9] once again and Cauchy inequality to obtain

k−1∑
l=1

k−l−1∑
m=1

‖∇l%‖L∞‖∇m+1%‖L3‖∇k−l−m+1%‖L6

≤C‖∇%‖L2‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .

By combining above two inequalities, it holds on

I2 ≤ C‖∇%‖H1‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .

Then, we deduce that

‖∇k(∇
√

1 + %⊗∇
√

1 + %)‖L2 ≤ C‖∇%‖H1‖∇k+2%‖L2 + C‖∇2%‖L2‖∇k+1%‖L2 .

Thus, it holds on for k = 1, 2, 3, 4,

‖∇kS1‖L2 ≤C‖∇k(%, u,B)‖H1(‖∇%‖H2 + ‖∇(u,B)‖H1) + C‖∇%‖H1‖∇k+2%‖L2

+ C‖∇2%‖L2‖∇k+1%‖L2 .
(3.4)

Which together with (3.2), (3.3) and Cauchy inequality yields directly

d

dt
(‖∇k(%δ,mδ)‖2L2 +

h2

4
‖∇k+1%δ‖2L2) + µ‖∇k+1mδ‖2L2 + (µ+ λ)‖∇kdivmδ‖2L2

≤C‖∇k(%, u,B)‖2H1(‖∇%‖2H2 + ‖∇(u,B)‖2H1)+ C‖∇%‖2H1‖∇k+2%‖2L2 + C‖∇2%‖2L2‖∇k+1%‖2L2 .

Therefore, we complete the proof of claim estimate (2.9).

Proof of inequality (2.10): By taking k(k = 0, 1, 2, 3, 4)−th spatial derivatives to the second

equation of (2.7) and then multiplying both side of the equation by ∇k+1%δ, it is easily to derive

that ∫
∂t∇kmδ · ∇k+1%δdx+

∫
|∇k+1%δ|2dx−

h2

4

∫
∇k+1∆%δ · ∇k+1%δdx

=

∫
(µ∇k∆mδ + (µ+ λ)∇k+1divmδ) · ∇k+1%δdx−

∫
∇kdivS1 · ∇k+1%δdx.
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Using the first equation of (2.7), by virtue of integration by parts, it holds on∫
∂t∇kmδ · ∇k+1%δdx =

d

dt

∫
∇kmδ · ∇k+1%δdx−

∫
∇kmδ · ∇k+1∂t%δdx

=
d

dt

∫
∇kmδ · ∇k+1%δdx+

∫
∇kmδ · ∇k+1divmδdx

=
d

dt

∫
∇kmδ · ∇k+1%δdx−

∫
|∇kdivmδ|2dx.

After integration by parts, it holds on∫
∇k+1∆%δ · ∇k+1%δdx = −

∫
|∇k+2%δ|2dx.

Thus, by combining the above three equalities, we arrive at

d

dt

∫
∇kmδ · ∇k+1%δdx+

∫
|∇k+1%δ|2dx+

h2

4

∫
|∇k+2%δ|2dx

=

∫
|∇kdivmδ|2dx−

∫
∇kdivS1 · ∇k+1%δdx+

∫
(µ∇k∆mδ + (µ+ λ)∇k+1divmδ) · ∇k+1%δdx,

which, together with integration by parts and Cauchy inequality, yield directly

d

dt

∫
∇kmδ · ∇k+1%δdx+

∫
|∇k+1%δ|2dx+

h2

4

∫
|∇k+2%δ|2dx ≤ C(‖∇k+1mδ‖2L2 + ‖∇kS1‖2L2).

This and the estimate (3.4) implies (2.10). Therefore, we complete proof of claim estimate (2.10).

Proof of inequality (2.17): It is obvious to obtain that∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

5
2 (‖∇5%‖2H1 + ‖∇5u‖2L2)dτ ≤

∫ t

0
e−

C
C∗ (t−τ)(‖∇5%‖2H1 + ‖∇5u‖2L2)dτ.

By multiplying the inequality (1.16) with l = 4 and m = 4 by e
C
C∗ t, it holds on

d

dt
[e

C
C∗ tF4

4 (t)] + Ce
C
C∗ t(‖∇5%‖2H1 + ‖∇5u‖2L2) ≤ Ce

C
C∗ tF4

4 (t),

then by integrating about time over [0, t], due to the fact that the equivalence of the term F4
4 (t) is

‖∇5%(τ)‖2H1 + ‖∇5u(τ)‖2L2 , one arrives at

F4
4 (t) + C

∫ t

0
e−

C
C∗ (t−τ)(‖∇5%(τ)‖2H1 + ‖∇5u(τ)‖2L2)dτ

≤Ce−
C
C∗ tF4

4 (0) + C

∫ t

0
e−

C
C∗ (t−τ)F4

4 (τ)dτ

≤Ce−
C
C∗ t + C

∫ t

0
e−

C
C∗ (t−τ)(1 + τ)−

9
2dτ

≤Ce−
C
C∗ t + C(1 + t)−

9
2

≤C(1 + t)−
9
2 ,

here we utilize decay estimate (1.7), and we have used the fact that e−
C
C∗ t ≤ C(1+ t)−

9
2 . Therefore,

we complete proof of claim estimate (2.17).

20



Decay Estimates for the Compressible Viscous Quantum Magnetohydrodynamic Model

Proof of inequality (2.22): Replacing l by l + 1 in (1.16) with m = 4, and then multiplying

both sides by (1 + t)l+
3
2 , we arrive at

d

dt
[(1 + t)l+

3
2F4

l+1(t)] + C(1 + t)l+
3
2 (‖∇l+2%‖2H4−l + ‖∇l+2u‖2H3−l) ≤ C(1 + t)l+

1
2F4

l+1(t).

The integration of above inequality about time over [0, t] implies that∫ t

0
(1 + τ)l+

3
2 (‖∇l+2%(τ)‖2H3−l + ‖∇l+2u(τ)‖2H2−l)dτ

≤CF4
l+1(0) + C

∫ t

0
(1 + τ)l+

1
2F4

l+1(τ)dτ

≤C + C

∫ t

0
(1 + τ)l+

1
2 (1 + τ)−

5+2l
2 dτ

≤C,

where we used the estimate F4
l (t) ≤ C(1 + t)−

3+2l
2 for l = 0, 1, 2, 3. Therefore, we complete proof of

claim estimate (2.22).

Proof of inequality (2.23): Multiplying both sides of the third equation of (2.7) by ∇lB and

then integrating, we obtain for l = 0, 1, 2, 3,

1

2

d

dt

∫
|∇lBδ|2dx+ ν

∫
|∇l+1Bδ|2dx ≤ ‖∇lS2‖L2‖∇l+1Bδ‖L2 . (3.5)

Using Sobolev’s inequality, we find

‖∇l(u×B)‖L2 ≤ C‖(u,B)‖L∞‖∇l(u,B)‖L2 . (3.6)

Then using Cauchy inequality, one arrives at

d

dt

∫
|∇lBδ|2dx+ ν

∫
|∇l+1Bδ|2dx ≤ C‖(u,B)‖2L∞‖∇l(u,B)‖2L2 . (3.7)

Therefore, we complete the proof of claim estimate (2.23).
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