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1 INTRODUCTION

In the last few decades, the field of fractional calculus has obtained significant popularity and influence due mainly
to its practical applications in many areas of engineering and sciences. On the work of12,15,19 the reader can refer to
important sources of various applications and examples in aerodynamics, chemistry, physics and thermo-elasticity. In
recent years, there has been a rapid evolution in the theoretical features, for example asymptotic behavior, periodic-
ity, controllability, observability, and many others.
Analogical to the qualitative particular of the non-integer and fractional differential equations, the generation of the
Lyapunov theory, fixed point theory and the Mittag-Leffler function allows to construct many and remarkable results
in the stability, the exponential stability, and the Mittag-Leffler stability2,4,5,6,7,8,9,10,13,14,16,20,21,24,25,26,27,28. Indeed,
Authors in4 have studied a converse Lyapunov theorem for the notion of uniform practical exponential stability of
parametric differential equations in presence of small perturbation. In5, Abdellatif ben Makhlouf has described the
stability with respect to part of the variables of nonlinear Caputo fractional differential equations. On the other hand,
the authors in6 have introduced a practical Mittag-Leffler stability for fractional-order nonlinear systems depending
on a parameter. In addition, authors in13 has introduced a smooth solutions to the mixed-order fractional differential
systems with applications to stability analysis. Furthermore, Boulbaba Ghanmi in14 has studied the practical expo-
nential stability result for impulsive dynamic systems depending on a parameter.
To the best of our knowledge, there is no works in literature treats the same subject on the fractional-order nonlinear
systems.
In the present paper, the notion of partial practical asymptotic stability of nonlinear fractional-order systems depend-
ing on a parameter is introduced and described. Such stability ensures the convergence of a part of the solutions
towards a ball containing the origin of the state space as the radius of the ball can be made arbitrarily small. The main
objective of the work is to investigate the partial practical stability of nonlinear fractional-order systems depending
on a parameter by using the Lyapunov techniques. Precisely, sufficient conditions are given to ensures the partial
practical stability of such systems.
The present paper is organized as follows. In Section 2, some necessary definitions and Lemmas are presented. In
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section 3, some sufficient conditions on practical stability of nonlinear fractional differential equations are given. In
section 4, some classes of triangular fractional systems are studied in point of view of stability. Three examples are
provided in Section 5. Finally, in Section 6 some conclusions are given.

2 PRELIMINARIES

In this section, some notations and preliminaries results are introduced.

Definition 1. 11 Given an interval [a, b] of R, the Riemann-Liouville fractional integral of a function x ∈ L1([a, b])

of order α > 0 is defined by

Iαa x(t) =
1

Γ(α)

t∫
a

(t− τ)α−1x(τ)dτ, t ∈ [a, b],

where Γ is the Gamma function.
For α = 0, I0a := I, the identity operator.
Definition 2. 11 Given an interval [a, b] of R, the Caputo fractional derivative of a function x of order α > 0 is
defined by

CDα
a,tx(t) = Im−αa x(m)(t), t ∈ [a, b],

where 0 < m− 1 < α ≤ m.

When 0 < α < 1, then the Caputo fractional derivative of order α of an absolutely continuous function x on [a, b]

reduces to

CDα
t0,tx(t) =

1

Γ(1− α)

t∫
t0

(t− τ)−αx′(τ)dτ, t ∈ [a, b]. (1)

Lemma 1. 1 Let α ∈ (0, 1) and P ∈ Rn×n a constant, square, symmetric and positive definite matrix. Then the
following relationship holds

1

2
CDα

t0,t(x
T (t)Px(t)) ≤ xT (t)P CDα

t0,tx(t), t ≥ t0.
Definition 3. 17 The Mittag-Leffler function with two parameters is defined as

Eα,β(z) =

+∞∑
k=0

zk

Γ(kα+ β)
,

where α > 0, β > 0, z ∈ C.
When β = 1, we have Eα(z) = Eα,1(z).

We consider the nonhomogeneous linear fractional differential equation with Caputo fractional derivative
CDα

t0,tx(t) = λx+ h(t), t ≥ t0
x(t0) = x0. (2)

The problem (2) has been studied by Kilbas et al.17 (see pp. 295, (5.2.83)), and its solution has the form

x(t; t0, x0) = x0Eα(λ(t− t0)α) +

t∫
t0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds. (3)

Lemma 2. 8 If one sets h(t) = d in (2) with a constant d, then the solution reduces to

x(t; t0, x0) = x0Eα(λ(t− t0)α) + d(t− t0)αEα,α+1(λ(t− t0)α). (4)

Lemma 3. 23 For 0 < α < 1, we have Eα(−t) is nonincreasing in t.
Lemma 4. 8 Let 0 < α < 1 and |arg(λ)| > πα

2 . Then, one has

tαEα,α+1(λtα) = − 1

λ
− 1

Γ(1− α)λ2tα
+O

( 1

λ3t2α
)
as t −→∞.
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Definition 4. A continuous function ψ : R+ −→ R+ is said to belong to class K if it is strictly increasing and
ψ(0) = 0. It is to belong to class K∞ if in addition lim

s−→+∞
ψ(s) = +∞.

Lemma 5. 27 If ψ ∈ K, then for all a1, a2 ∈ R+, we have

ψ(a1 + a2) ≤ ψ(2a1) + ψ(2a2).

Lemma 6. 18 For all p ≥ 1 and a, b ≥ 0, we have (a+ b)p ≤ 2p−1(ap + bp) and (a+ b)
1
p ≤ (a

1
p + b

1
p ).

3 PARTIAL PRACTICAL STABILITY

Consider a parameterized family of fractional differential equations with a Caputo derivative for 0 < α < 1 having
the following form:

CDα
t0,tx(t) = f(t, x, ε), t ≥ t0, (5)

x ∈ Rn, x = (y, z) , y ∈ Rm, z ∈ Rp, m > 0,

with initial condition x(t0) = x0 = (y0, z0), where α ∈ (0, 1), t0 ∈ R+, ε ∈ R∗+ and f(., ., ε) : R+ ×Rn −→ Rn.
Suppose that f(., ., ε) is smooth enough to ensure the existence and uniqueness of global solutions for each
initial condition (t0, x0). Some sufficient conditions for the existence and uniqueness of global solutions
xε(t; t0, x0) ∈ C[t0,+∞) ∩ C1(t0,+∞) are given in3,9,22,13.

Definition 5. The fractional-order system (5) is said to be

(i) ε∗-practically uniformly stable with respect to y, if for every c2 > 0 there exist c1 > 0 and ε̂ ∈]0, ε∗] such that
for all t0 ∈ R+, for all x0 ∈ Rn with ‖x0‖ < c1 and for all ε ∈]0, ε̂], ‖yε(t; t0, x0)‖ < c2 for all t ≥ t0.

(ii) ε∗-practically uniformly bounded with respect to y, if for every c1 > 0, there exist c2 > 0 and ε̂ ∈]0, ε∗] such
that for all t0 ∈ R+, for all x0 ∈ Rn with ‖x0‖ < c1 and for all ε ∈]0, ε̂], ‖yε(t; t0, x0)‖ < c2 for all t ≥ t0.

(iii) ε∗-globally uniformly practically attractive with respect to y, if for every c1 > 0, c2 > 0 there exists T > 0 and
ε̂ ∈]0, ε∗] such that for all t0 ∈ R+, for all x0 ∈ Rn with ‖x0‖ < c1 and for all ε ∈]0, ε̂], ‖yε(t; t0, x0)‖ < c2 for
all t ≥ t0 + T .

(iv) ε∗-practically globally uniformly asymptotically stable with respect to y, if it is ε∗-practically uniformly stable
with respect to y, ε∗-practically uniformly bounded with respect to y and ε∗-globally uniformly practically
attractive with respect to y.

(v) ε∗-practically uniformly Mittag Leffler stable with respect to y, if for all 0 < ε ≤ ε∗ there exist positive scalars
K(ε), λ(ε) and ρ(ε) such that:

‖yε(t; t0, x0)‖ ≤
[
K(ε)m

(
x0
)
Eα
(
− λ(ε)(t− t0)α

)]b
+ ρ(ε), ∀t ≥ t0 ≥ 0, (6)

with b > 0, ρ(ε) −→ 0 as ε −→ 0+ and there exist K, λ1, λ2 > 0 such that λ1 ≤ λ(ε) ≤ λ2, 0 < K(ε) ≤ K for
all ε ∈]0, ε∗], m(0) = 0, m(x) ≥ 0 and m is locally Lipschitz.

Theorem 1. Let ε∗ > 0. Assume that for all 0 < ε ≤ ε∗, there exist a continuously differentiable function Vε :

R+ × Rn −→ R, a continuous function µ : R+ −→ R+, class K functions αi, (i = 1, 2) and positive constants scalar
a1(ε), a2(ε), r1(ε) and r2(ε) such that

1.
a1(ε)α1(‖y‖) ≤ Vε(t, x) ≤ a2(ε)α2(‖w‖) + r1(ε), ∀t ≥ 0, x ∈ Rn. (7)

2.
CDα

t0,tVε(t, xε(t; t0, x0)) ≤ µ(t)r2(ε), ∀t ≥ t0, (8)

where w = (x1, x2, ..., xk), k ∈ {m,m+ 1, ...n}.
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with

• ∀ε ∈]0, ε∗], 0 < a2(ε)
a1(ε)

≤ K, where K > 0.

• t 7→
t∫

0

(t− s)α−1µ(s)ds is a bounded function.

• d(ε) −→ 0 as ε −→ 0+ where

d(ε) =

(
r1(ε) +Mr2(ε)

)
a1(ε)

,

with

M = sup
t≥0

t∫
0

(t− s)α−1µ(s)ds.

Then, the system (5) is ε∗-practically uniformly stable with respect to y.
Moreover, if αi ∈ K∞, (i = 1, 2), then, the system (5) is ε∗-practically uniformly bounded with respect to y.

Proof. Let c2 > 0.
We consider c1 > 0 and ε̂ ∈]0, ε∗] such that

α2(c1) <
α1(c2)

2K
and

r1(ε) + r2(ε)M

a1(ε)
<
α1(c2)

2
, ∀ε ∈]0, ε̂].

It follows from (8) and (7) that

Vε(t, xε(t; t0, x0)) ≤ Vε(t0, x0) + r2(ε)
1

Γ(α)

t∫
t0

(t− s)α−1µ(s)ds

≤ a2(ε)α2(‖x0‖) + r1(ε) + r2(ε)M. (9)

Then,

α1(‖yε(t; t0, x0)‖) ≤ a2(ε)

a1(ε)
α2(‖x0‖) +

r1(ε) + r2(ε)M

a1(ε)

≤ Kα2(c1) +
r1(ε) + r2(ε)M

a1(ε)

< α1(c2), ∀t ≥ t0. (10)

Thus,
‖yε(t; t0, x0)‖ < c2, ∀t ≥ t0.

Therefore, the system (5) is ε∗-practically uniformly stable with respect to y.
Considering now the case where αi ∈ K∞, (i = 1, 2).
Let d1 > 0.
We consider ε̂1 ∈]0, ε∗] such that

r1(ε) + r2(ε)M

a1(ε)
< 1, ∀ε ∈]0, ε̂1].

In this case (10) becames :
α1((‖yε(t; t0, x0)‖) < Kα2(d1) + 1.

Then,
‖yε(t; t0, x0)‖ < α−11

(
Kα2(d1) + 1

)
, ∀t ≥ t0.

Hence, the system (5) is ε∗-practically uniformly bounded with respect to y.
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Remark 1. For the ε∗-practical uniform boundedness of system (5), it suffices to take the condition d(ε) −→ 0 is
bounded on (0, ε∗] instead of the condition lim

ε→0
d(ε) = 0.

Theorem 2. Let ε∗ > 0. Assume that for all 0 < ε ≤ ε∗, there exist a continuously differentiable function Vε :

R+×Rn −→ R, a continuous function µ : R+ −→ R+, class K∞ functions αi, (i = 1, 2) and positive constants scalar
a1(ε), a2(ε), a3(ε), r1(ε) and r2(ε) such that

1.
a1(ε)α1(‖y‖) ≤ Vε(t, x) ≤ a2(ε)α2(‖w‖) + r1(ε), ∀t ≥ 0, x ∈ Rn. (11)

2.
CDα

t0,tVε(t, xε(t)) ≤ −a3(ε)α2(‖xε(t)‖) + µ(t)r2(ε), ∀t ≥ t0, (12)

where w = (x1, x2, ..., xk), k ∈ {m,m+ 1, ...n}.

with

• ∀ε ∈]0, ε∗], a3(ε)a2(ε)
≥ c and 0 < a2(ε)

a1(ε)
≤ K, with c, K > 0.

• t 7→
t∫

0

(t− s)α−1Eα,α
(
− c(t− s)α

)
µ(s)ds is a bounded function.

• d(ε) −→ 0 as ε −→ 0+ where

d(ε) = r1(ε)
(a2(ε) +Ma3(ε))

a1(ε)a2(ε)
+ r2(ε)

M

a1(ε)
,

with, M = M1 +M2, where
M1 = sup

s≥0

(
sαEα,α+1

(
− csα

))
and

M2 = sup
t≥0

t∫
0

(t− s)α−1Eα,α
(
− c(t− s)α

)
µ(s)ds.

Then, the system (5) is ε∗-practically globally uniformly asymptotically stable with respect to y.

Proof. From equations (11) and (12) we give :

CDα
t0,tVε(t, xε(t; t0, x0)) ≤ −cVε(t, xε(t; t0, x0)) +

a3(ε)

a2(ε)
r1(ε) + µ(t)r2(ε)

≤ −cVε(t, xε(t; t0, x0)) + ρ(t)l(ε), ∀t ≥ t0, (13)

where ρ(t) =
(
1 + µ(t)

)
and l(ε) = r1(ε)a3(ε)a2(ε)

+ r2(ε).
Let

M(t) =C Dα
t0,tVε(t, xε(t; t0, x0)) + cVε(t, xε(t; t0, x0)).

Then,

Vε(t, xε(t; t0, x0)) = Eα
(
− c(t− t0)α

)
Vε(t0, x0) +

t∫
t0

(t− s)α−1Eα,α
(
− c(t− s)α

)
M(s)ds

≤ Eα
(
− c(t− t0)α

)
Vε(t0, x0) + l(ε)

t∫
t0

(t− s)α−1Eα,α
(
− c(t− s)α

)
ρ(s)ds. (14)

Thus,
Vε(t, xε(t; t0, x0)) ≤ Eα

(
− c(t− t0)α

)
Vε(t0, x0) +Ml(ε), ∀ t ≥ t0.
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By (11), we get

α1

(
‖yε(t; t0, x0)‖

)
≤ 1

a1(ε)

(
Eα
(
− c(t− t0)α

)(
a2(ε)α2(‖x0‖) + r1(ε)

)
+
Ml(ε)

a1(ε)
. (15)

Using Lemma 3, we get

α1

(
‖yε(t; t0, x0)‖

)
≤ a2(ε)

a1(ε)
Eα
(
− c(t− t0)α

)
α2(‖x0‖) + c(ε). (16)

It follows from Lemma 11 that

‖yε(t; t0, x0)‖ ≤ α−11

(
2KEα

(
− c(t− t0)α

)
α2(‖x0‖)

)
+ α−11

(
2c(ε)

)
. (17)

Now, we will prove that (i), (ii) and (iii) are satisfied.
Let c2 > 0.
From (17), we get

‖yε(t; t0, x0)‖ ≤ α−11

(
2Kα2(‖x0‖)

)
+ α−11

(
2c(ε)

)
. (18)

We have
lim
r→0

α−11

(
2Kα2(r)

)
= 0,

and
lim
ε→0

α−11

(
2c(ε) = 0.

then, there exist c1 > 0 and ε̂ ∈ (0, ε∗] such that

α−11

(
2Kα2(‖x0‖)

)
<
c2
2
, ∀ ‖x0‖ < c1

and
α−11

(
2c(ε) <

c2
2
, ∀ ε ∈ (0, ε̂).

Then,
‖yε(t; t0, x0)‖ < c2, ∀ t ≥ t0, ∀ ‖x0‖ < c1, ∀ ε ∈ (0, ε̂).

Hence, (i) is satisfied.
Let d1 > 0,
We have

lim
ε→0

α−11

(
2c(ε)

)
= 0,

then, there exists ε̂1 > 0 such that
α−11

(
2c(ε)

)
< 1, ∀ ε ∈ (0, ε̂1).

We have
α−11

(
2Kα2(‖x0‖)

)
< α−11

(
2Kα2(d1)

)
, ∀ ‖x0‖ < d1,

then for d2 = α−11

(
2Kα2(c1)

)
+ 1, we get

‖yε(t; t0, x0)‖ < d2, ∀ ‖x0‖ < d1, ∀ ε ∈ (0, ε̂1).

Hence, (ii) is satisfied.
Let δ1 > 0, δ2 > 0.
Let x0 ∈ Rn such that ‖x0‖ < δ1. It follows from (17) that

‖yε(t; t0, x0)‖ ≤ α−11

(
2KEα

(
− c(t− t0)α

)
α2(δ1)

)
+ α−11

(
2c(ε)

)
.

We have
lim

s→+∞
Eα
(
− csα

)
= 0,

then there exist T > 0 and ε̂2 > 0 such that

α−11

(
2KEα

(
− c(t− t0)α

)
α2(δ1)

)
<
δ2
2
, ∀ t− t0 ≥ T,

and
α−11

(
2c(ε)

)
<
δ2
2
, ∀ ε ∈ (0, ε̂2).
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Thus,
‖yε(t; t0, x0)‖ < δ2, ∀ t− t0 ≥ T, ∀ε ∈ (0, ε̂2).

Hence, (iii) is satisfied.
Therefore, the system (5) is ε∗-practically globally uniformly asymptotically stable with respect to y.

Remark 2. In the case when α1(s) = c1s
p and α1(s) = c2s

p with c1, c2 > 0 and p ≥ 1, we get the practical Mittag
Leffler stability with respect to y for the system (5).

4 STABILITY ANALYSIS FOR A CLASS OF TRIANGULAR SYSTEMS

In this section, we consider the following triangular system depending on a parameter ε > 0:
CDα

t0,ty(t) = Ay + g1(t, y, z, ε), (19)
CDα

t0,tz(t) = g2(t, z, ε), t ≥ t0, (20)

where y ∈ Rm, z ∈ Rp. For the study of stability of system (19)-(20), we make the following Hypothesis:
(H1) : (20) is ε0-practically uniformly bounded.
(H2) : The function g1 satisfies for all t ≥ 0, ε > 0 and y ∈ Rm, z ∈ Rp

‖g1(t, y, z, ε)‖ ≤ δ1(ε)ν1(t) + δ2(ε)‖y‖, (21)

such that δ1(ε), δ2(ε) > 0 and δ1(ε), δ2(ε) −→ 0 as ε −→ 0+ and ν1 is a nonnegative continuous function.
(H ′1) : (20) is εh-practically globally uniformly asymptotically stable.
(H ′2) : The function g1 satisfies for all t ≥ 0, ε > 0 and y ∈ Rm, z ∈ Rp

‖g1(t, y, z, ε)‖ ≤ δ3(ε)ν2(t) + δ4(ε)‖y‖+ δ5(ε)‖z‖, (22)

such that δ3(ε), δ4(ε) > 0, δ5(ε) > 0 and δ3(ε), δ4(ε), δ5(ε) −→ 0 as ε −→ 0+ and ν2 is a nonnegative continuous
function.
For the partial stability of system (19)-(20), we have the following results.

Theorem 3. Suppose that (H2) holds, the system (19)-(20) is ε1-practically globally uniformly asymptotically stable
with respect to y for some ε1 > 0 if there exists a symmetric positive definite matrix P , η > 0 and λ ∈]0, η[ such that

ATP + PA+ ηI < 0, (23)

and

t 7→
t∫

0

(t− s)α−1Eα,α
(
− (η − λ)

λmax(P )
(t− s)α

)
ν21(s)ds is a bounded function.

Proof. We have from (32)

2yTPg(t, y, z, ε) ≤ 2‖y‖‖P‖‖g(t, y, z, ε)‖
≤ 2‖y‖‖P‖

(
δ1(ε)ν1(t) + δ2(ε)‖y‖

)
. (24)

Let 0 < λ1 < λ, we have

2‖y‖‖P‖δ1(ε)ν1(t) ≤ λ1‖y‖2 +
‖P‖2δ1(ε)2ν21(t)

λ1
. (25)

Then,

2yTPg(t, y, z, ε) ≤
(
λ1 + 2δ2(ε)‖P‖

)
‖y‖2 +

‖P‖2δ1(ε)2ν21(t)

λ1
.

It follows from lim
ε→0

δ2(ε) = 0 that there exists ε1 > 0 such that for all ε ∈]0, ε1], we have

2yTPg(t, y, z, ε) ≤ λ‖y‖2 +
‖P‖2δ1(ε)2ν21(t)

λ1
. (26)
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Let ε ∈]0, ε1]. We consider the Lyapunov-like function V (t, y, z) = yTPy.
Using Lemma 1, we get

CDα
t0,tV (t, xε(t; t0, x0)) ≤ 2yε(t; t0, x0)TPCDα

t0,tyε(t; t0, x0)

≤ yε(t; t0, x0)T
(
ATP + PA

)
yε(t; t0, x0)

+ 2yε(t; t0, x0)TPg(t, yε(t; t0, x0), zε(t; t0, x0), ε). (27)

Using (32), (26) and (27), we get

CDα
t0,tV (t, xε(t; t0, x0)) ≤ −σ‖yε(t; t0, x0)‖2 +

‖P‖2δ1(ε)2ν21(t)

λ1
,

with σ = η − λ.
Then, the assumptions of Theorem 1 are satisfied.
Consequently, the system (19)-(20) is ε1-practically globally uniformly asymptotically stable with respect to y.

Theorem 4. Suppose that (H1), (H ′2) hold, the system (19)-(20) is ε1-practically globally uniformly asymptotically
stable with respect to y for some ε1 > 0 if there exists a symmetric positive definite matrix P , η > 0 and λ ∈]0, η[

such that
ATP + PA+ ηI < 0, (28)

and

t 7→
t∫

0

(t− s)α−1Eα,α
(
− (η − λ)

λmax(P )
(t− s)α

)
ν22(s)ds is a bounded function.

Proof. Let 0 < λ1 < λ, as the same in Theorem 3, there exists ε1 such that we have the following estimation:

2yTPg(t, y, z, ε) ≤ λ‖y‖2 +
‖P‖2δ1(ε)2ν22(t) + ‖P‖2δ3(ε)2‖z‖2

λ1
, ∀ε ∈ (0, ε1]. (29)

Now, we start by proving the points (i), (ii), and (iii) for the practical uniform stability.
First step: We will prove the practical uniform stability of system (19)-(20).
Let c2 > 0.
It follows from (H1) that there exist d > 0, ε′0 > 0 such that

zε(t; t0, x0) < d, ∀t ≥ t0, ∀‖z0‖ < 1, ∀ε ∈ (0, ε′0).

Let ε1 = min(ε0, ε
′
0).

We consider the Lyapunov-like function V (t, x) = yTPy.

We get for ‖x0‖ < 1,

CDα
t0,tV (t, xε(t; t0, x0)) ≤ −σ‖yε(t; t0, x0)‖2 +

‖P‖2δ1(ε)2ν22(t) + ‖P‖2d2δ3(ε)2

λ1
,

with σ = η − λ.
As the same in Theorem 1, we obtain the practical uniform stability of the system (19)-(20).
Second step: We will prove the practical uniform boundedness and the practical uniform attractivity of the system
(19)-(20).
Let c1 > 0.
It follows from (H1) that there exist d2 > 0, ε′1 > 0 such that

zε(t; t0, x0) < d2, ∀t ≥ t0, ∀‖z0‖ < c1, ∀ε ∈ (0, ε′1).

In this case, we obtain for ε < min(ε0, ε
′
1), and ‖x0‖ < c1

CDα
t0,tV (t, xε(t; t0, x0)) ≤ −σ‖yε(t; t0, x0)‖2 +

‖P‖2δ1(ε)2ν22(t) + ‖P‖2d22δ3(ε)2

λ1
, (30)

with σ = η − λ.
As the same in Theorem 1, we obtain from (30) the practical uniform boundedness and the practical uniform
attractivity of the system (19)-(20).
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In the case when the system (20) is ε∗-practically globally uniformly asymptotically stable for some ε∗ > 0, we
deduce from Theorem 3 and Theorem 4 the following results about the global practical stability of the system
(19)-(20).

Theorem 5. Suppose that (H2), (H ′1) hold, the system (19)-(20) is ε1-practically globally uniformly asymptotically
stable for some ε1 > 0 if there exists a symmetric positive definite matrix P , η > 0 and λ ∈]0, η[ such that

ATP + PA+ ηI < 0, (31)

and

t 7→
t∫

0

(t− s)α−1Eα,α
(
− (η − λ)

λmax(P )
(t− s)α

)
ν21(s)ds is a bounded function.

Theorem 6. Suppose that (H ′1), (H ′2) hold, the system (19)-(20) is ε1-practically globally uniformly asymptotically
stable for some ε1 > 0 if there exists a symmetric positive definite matrix P , η > 0 and λ ∈]0, η[ such that

ATP + PA+ ηI < 0, (32)

and

t 7→
t∫

0

(t− s)α−1Eα,α
(
− (η − λ)

λmax(P )
(t− s)α

)
ν22(s)ds is a bounded function.

5 EXAMPLES

In this section, three examples are given to illustrate the effectiveness of the proposed theoretical results.
Example 1. Consider the following fractional-order system

CDα
t0,tx1 = −x1 + e−t

2

cos(x2)x1 + εe−t

1+x2
1+x

2
2+x

2
3
,

CDα
t0,tx2 = −x2 + sin(x3)x2 + εe−t

1+x2
1+x

2
2+x

2
3
,

CDα
t0,tx3 = 2x3,

(33)

where, 0 < α < 1 and x(t) =
(
x1(t), x2(t), x3(t)

)
∈ R3.

Consider the Lyapunov-like function: V (t, x) =
x21 + x22

2
.

By Lemma 1, we get
CDα

t0,tV (t, x(t; t0, x0)) ≤ x1(t; t0, x0)CDα
t0,tx1(t; t0, x0) + x2(t; t0, x0)CDα

t0,tx2(t; t0, x0)

≤ εe−t (34)

Then, we get from Theorem 1 the practical uniform stability and the practical uniform boundedness with respect to
(x1, x2) of the system (33).
Example 2. Consider the following fractional-order system

CDα
t0,tx1 = −2x1 + x2 + εx1 + ε2 cos(t)

1+x2
3
,

CDα
t0,tx2 = x1 − x2 + εx2 + ε2e−t

1+x2
1+x

2
3
,

CDα
t0,tx3 = ax3 + ε

1+t2 ,

(35)

where, a ∈ R, 0 < α < 1 and x(t) =
(
x1(t), x2(t), x3(t)

)
∈ R3.

This system has the form of (19)-(20) with y = (x1, x2), z = x3,

A =

(
−2 1

1 −1

)
,

g1(t, x1, x2, x3, ε) = ε(x1, x2) + ε2( cos(t)
1+x2

3
, e−t

1+x2
1+x

2
3
and g2(t, x1, x2, x3, ε) = ax3 + ε

1+t2 .
The function g1 satisfies (H2) with δ1(ε) = ε2, δ2(ε) = ε and ν1(t) =

√
2.

Select P = 2I, we get ATP + PA + I < 0 then, the assumptions of Theorem 3 are satisfied. Hence (35) is ε1-"1-
practically globally uniformly asymptotically stable with respect to (x1, x2) for some ε1 > 0.
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In addition, if a < 0, then (H ′1) hold. In this case we have the system (35) is ε1-"1-practically globally uniformly
asymptotically stable for some ε1 > 0.

Example 3. Consider the following fractional-order system
CDα

t0,tx1 = −2x1 + x2 + ε2x1 + εx3e
−t + ε sin(t)

1+t2 ,
CDα

t0,tx2 = x1 − x2 + ε2x2 +3 +ε cos(t),
CDα

t0,tx3 = ax3 + ε2e−t,

(36)

where, a ∈ R, 0 < α < 1 and x(t) =
(
x1(t), x2(t), x3(t)

)
∈ R3.

This system has the form of (19)-(20) with y = (x1, x2), z = x3,

A =

(
−2 1

1 −1

)
,

g1(t, x1, x2, x3, ε) = ε2(x1, x2) + ε2x3(e−t, 1) + ε( sin(t)
1+t2 , cos(t)) and g2(t, x1, x2, x3, ε) = ax3 + ε2e−t.

The function g1 satisfies (H ′2) with δ3(ε) = ε, δ4(ε) = ε2, δ5(ε) = ε and ν1(t) =
√

2.
If a ≤ 0, (H1) holds, so we get from Theorem 4 the practical global uniform stability with respect to (x1, x2) for the
system (36).
Furthermore, if a < 0, (H ′1) holds and we get from Theorem 6 the practical global uniform stability for the system
(36).

6 CONCLUSION

In this paper, by using Lyapunov-like function, sufficient conditions are derived to ensure the partial practical stability
of fractional-order nonlinear systems depending on a parameter. Some examples are given to show the effectiveness
of the contributed results.
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