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Abstract

In this study, the generalized modi�ed variable-coe¢ cient KdV equa-
tion with external-force term (gvcmKdV) arising in �uid mechanics, plasma
physics and ocean dynamics is studied for integrability by using consistent
Riccati expansion (CRE) solvability and reduced to nonlinear integrable
fourth order ordinary di¤erential equation by Clarkson and Kruskal (CK)
similarity reduction method. By using the solutions of Riccati equations
given before in literature many novel solitary and periodic wave solutions
obtained for the gvcmKdV.

1 Introduction

The KdV-type equation is a key for many investigated methods in nonlinear
partial di¤erential equations and it was a challenge for modifying many meth-
ods like symmetry groups, Bäcklund transformation, Painléve analysis, trail
equation method,...etc. [1�17]. One of those challenge KdV type equations is
the generalized variable-coe¢ cients modi�ed KdV equation (gvcmKdV) with
external-force term given by [18]

vt + f1vxxx +
�
f2v

2 + f3v + f4
�
vx + f5v + f6 = 0; (1)

where fi; i = 1; :::; 6, are arbitrary functions of t. The gvcmKdV describe the
blocking events in atmospheric and oceanic dynamic systems [19,20] moreover,
equation (1) contains many types of KdV equation as an instant internal soli-
tary waves (ISWs) in ocean, pressure pulses in �uid-�lled tubes of special value
in arterial dynamics, trapped quasi-one-dimensional Bose-Einstein condensates,
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ion-acoustic solitary waves in plasmas and the e¤ect of a bump on wave propa-
gation in a �uid-�lled elastic tube [21�25].
From the previous importance for the gvcmKdV we are going to study the

integrability of this equation using the consistent Riccati expansion (CRE) solv-
ability and reducing it to nonlinear ordinary di¤erential equation of fourth order
using classical Clarkson and Kruskal (CK) direct similarity reduction method,
then in both integrability and reduction many novel solitary and periodic wave
solutions will obtained.

2 Integrability of gvcmKdV equation

In this section we are going to discuss the integrability property of the gvcmKdV
equation by using the consistent Riccati expansion solvability [25-26] as follows:
Assume that a nonlinear partial di¤erential equation is given by

Q(x; t; v) = 0; x = fx1; x2; x3; :::g (2)

we assume that Q has a solution in the form

v (x; t) =
nX
k=0

vk (x; t)R
k (w (x; t)) ; (3)

where vk (x; t) are arbitrary functions in the independent variables x; t and R(w)
is a solution of the Riccati equation

Rw (w) = a+ b R (w) + c R
2 (w) ; (4)

where a; b and c are arbitrary constants and w = w(x; t) is an unknown function
to be determined. The integer n can be obtained by balance method then by
substitution from (3) in (2) using (4) a polynomial in R(w) is obtained, then
by �nishing all coe¢ cients of R(w) a system of partial di¤erential equations is
obtained.

De�nition 1 If the partial di¤erential system obtained by �nishing all powers
of the polynomial R (w) is consistent, or, not over-determined, we call that the
expansion (3) is a CRE and equation (2) is integrable according to CRE solvable.

Now, By applying the previous steps on the gvcmKdV equation and from
the balance method we get n = 1, therefore we can assume that the solution of
equation (1) takes the form

v(x; t) = v0(x; t) + v1(x; t)R(w(x; t)); (5)

where v0(x; t) , v1(x; t) are arbitrary functions. By back substitution from
(5) into (1) using (4) a polynomial of fourth order in R is constructed, by
equating the coe¢ cients of R with zero then, a partial di¤erential system of only
�ve equations is obtained. From the previous de�nition, we have found that
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the obtained system is consistent, or, not over-determined with the following
solutions for it

v0(x; t) =
1

2f2(t)

 
k1bf2 (t)

s
�6f1(t)
f2(t)

� f3(t)
!
; v1(x; t) = k1c

s
�6f1(t)
f2(t)

(6)

w(x; t) = k1

�
x� 1

4

Z �
8ack21f1(t)f2(t)� 2b2k21f1(t)f2(t)� f23 (t) + 4f2(t)f4(t)

�
dt

�
;

(7)

with integrability conditions

f5(t) =
f1(t)f

0
2(t)� f2(t)f 01(t)
2f1(t)f2(t)

;

f6(t) =
2f1(t)f2(t)f

0
3(t)� f1(t)f3(t)f 02(t)� f2(t)f3(t)f 01(t)

4f1(t)f22 (t)
; (8)

where 0 means di¤erentiation with respect to time t. Moreover, by using the
known solutions for the Riccati equation (4) see [17], the following new solutions
for the gvcmKdV equation are obtained:
Type I: If b2 � 4ac > 0 and bc 6= 0 (or ac 6= 0); the solutions of Eq. (1) are

v1(x; t) = v0(x; t)�
k1
2

s
�6f1(t)
f2(t)

(b+
p
b2 � 4ac tanh(

p
b2 � 4ac
2

w)); (9)

v2(x; t) = v0(x; t)�
k1
2

s
�6f1(t)
f2(t)

(b+
p
b2 � 4ac coth(

p
b2 � 4ac
2

w)); (10)

v3(x; t) = v0(x; t) +
k1
2

s
�6f1(t)
f2(t)

(�b�
p
b2 � 4ac(

p
A2 +B2 �A cosh(

p
b2 � 4acw)

A sinh(
p
b2 � 4acw) +B

)

(11)

v4(x; t) = v0(x; t) +
2ak1c

q
�6f1(t)
f2(t)

cosh(
p
b2�4ac
2 w)

p
b2 � 4ac sinh(

p
b2�4ac
2 w)� b cosh(

p
b2�4ac
2 w)

: (12)

v5(x; t) = v0(x; t) +
�2ak1c

q
�6f1(t)
f2(t)

sinh(
p
b2�4ac
2 w)

�
p
b2 � 4ac(cosh(

p
b2 � 4acw)� 1)� b sinh(

p
b2 � 4acw)

; (13)

where A;B are two non-zero real constants.
Type II: If a = 0 and bc 6= 0, the solutions of Eq. (1) are

v6(x; t) = v0(x; t)�
k1bd

q
�6f1(t)
f2(t)

d+ cosh(bw)� sinh(bw) ; (14)

v7(x; t) = v0(x; t)�
k1b
q

�6f1(t)
f2(t)

(cosh(bw) + sinh(bw))

d+ cosh(bw) + sinh(bw)
; (15)
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where d is an arbitrary constant.
Type III: If b2� 4ac < 0 and bc 6= 0 (or ac 6= 0); the solutions of Eq. (1) are

v8(x; t) = v0(x; t) +
k1
2

s
�6f1(t)
f2(t)

(�b+
p
4ac� b2 tan(

p
4ac� b2
2

w)); (16)

v9(x; t) = v0(x; t)�
k1
2

s
�6f1(t)
f2(t)

(b+
p
4ac� b2 cot(

p
4ac� b2
2

w)); (17)

v10(x; t) = v0(x; t) +
k1
2

s
�6f1(t)
f2(t)

(�b�
p
4ac� b2(

p
A2 �B2 �A cos(

p
4ac� b2w)

A sin(
p
4ac� b2w) +B

)

(18)

v11(x; t) = v0(x; t)�
2ak1c

q
�6f1(t)
f2(t)

cos(
p
4ac�b2
2 w)

p
4ac� b2 sin(

p
b2�4ac
2 w) + b cos(

p
4ac�b2
2 w)

: (19)

v12(x; t) = v0(x; t) +
2akc

q
�6f1(t)
f2(t)

sin(
p
4ac�b2
2 w)

p
4ac� b2 cos(

p
4ac�b2
2 w)� b sin(

p
b2�4ac
2 w)

: (20)

v13(x; t) = v0(x; t) +
2ak1c

q
�6f1(t)
f2(t)

sin(
p
b2�4ac
2 w)

p
b2 � 4ac(cos(

p
4ac� b2w)� 1)� b sin(

p
4ac� b2w)

: (21)

v14(x; t) = v0(x; t) +
2ak1c

q
�6f1(t)
f2(t)

cos(
p
b2�4ac
2 w)

p
b2 � 4ac(sin(

p
4ac� b2w)� 1) + b cos(

p
4ac� b2w)

: (22)

with v0(x; t) given by (6).

3 CK similarity reduction method

The classical Clarkson and Kruskal (CK) direct similarity reduction method was
�rst introduced in 1989 [28] and then enlarged and modi�ed by many authors in
[7,9,21,22] in this paper we have used the classic CK method because the other
modi�ed CK methods specially the connected CK with homogeneous balance
method could not use to reduce equation (1).
In the following the main steps of the classic CK method:
1) If # is a partial di¤erential equation given by

#(t; x; vx; vt; vxx; vxxx; f1(t); f2(t); :::; f6 (t)) = 0; (23)

where v = v(x; t); fi(t); i = 1; :::; 6 are arbitrary functions in t.
2) Assume that

v(x; t) = �(x; t) + 
(x; t)V (&); (24)

where & = &(x; t) is a similarity variable and �(x; t) and 
(x; t) are arbitrary
functions in x; t to be determined later.Collect all coe¢ cients of V (&) and equate
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it with the coe¢ cient of the most linear term multiply with arbitrary function
�j(&); j = 1; 2; :::k a partial di¤erential system in �; 
 and & is given. To solve
the determined system we can use the following rules.
a) If �(x; t) = 
(x; t) �(&) + �0(x; t); then we can assume that �(&) = 0;
b) If 
(x; t) = 
0(x; t)�(&); then �(&) can be assumed as constant.
c) If �(&) = &0(x; t); then we can take �(&) = &:
Finally, equation (23) is reduced to a nonlinear ordinary di¤erential equation

with constant coe¢ cients.

4 Reduction and solutions for gvcmKdV

In this section we have substitute from (23) into (1) and the following partial
di¤erential equation is given

f1
&
3
xV

000 + 3f1
�

x&

2
x + 
&x&xx

�
V 00 + [f4
&x + f13 (
xx&x + 
x&xx) + 
&xxx) + f2
&x�

2 + f3�
&x]V
0

+
�
2f2
�&x + f3


2&x
�
V V 0 + f2


3&xV
2V 0 +

�
f2
�
2

x� + 


2�x
�
+ f3

x

�
V 2

+
�

t + f4
x + f1
xxx + f2
x�

2 + f5
 + f3
�x + f3
�x + 2f2
��x
�
V

+f2

2
xV

3 + �t + f1�xxx +
�
f2�

2 + f3� + f4
�
�x + f5� + f6 = 0 (25)

To make the above equation ordinary di¤erential equation in V we need to make
the coe¢ cients constants or functions on & therefore, we take the coe¢ cient
of V 000 as a normalized coe¢ cients and equate other coe¢ cients in (4) with
f1
&

3
x�i (&) ; i = 1; :::; 8 as follows:

f2

3&x = f1
&

3
x�1 (&) ; f2


2
x = f1
&
3
x�2 (&) ; 3f1

�

x&

2
x + 
&x&xx

�
= f1
&

3
x�3 (&) ;

2f2
�&x + f3

2&x = f1
&

3
x�4 (&) ; f2

�
2

x� + 


2�x
�
+ f3

x = f1
&

3
x�5 (&) ;

f4
&x + f13 (
xx&x + 
x&xx) + 
&xxx + f2
&x�
2 + f3�
&x = f1
&

3
x�6 (&) ;


t + f4
x + f1
xxx + f2
x�
2 + f5
 + f3
�x + f3
�x + 2f2
��x = f1
&

3
x�7 (&) ;

�t + f1�xxx +
�
f2�

2 + f3� + f4
�
�x + f5� + f6 = f1
&

3
x�8 (&) : (26)

By using the assumptions (a� c) in the previous section we obtain

�1 (&) = b2; �4 (&) = b3; �6 (&) = 1; �2 (&) = �3 (&) = �5 (&) = �7 (&) = �8 (&) = 0;
(27)

with �; 
 and & in the form

�(x; t) = c1e
�
R
f5(t)dt; 
(x; t) =

�
c2 �

Z
f6(t)e

R
f5(t)dtdt

�
e�

R
f5(t)dt: (28)

with integrability conditions

f2(t) = b2k
2f1(t)e

2
R
f5(t)dt; f3 =

k2f1
c21

e
R
f5(t)dt

�
c1b3 + 2b2(

Z
f6e

R
f5(t)dtdt� c2)

�
(29)
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By back substitution from (28) into (24) the similarity solution of gvcmKdV
takes the form

v(x; t) = e�
R
f5(t)dt

�
c1V (&)�

Z
f6(t)e

R
f5(t)dtdt+ c2

�
(30)

with the following similarity variable

& = k

�
x+

1

c21

Z �
f1k

2

�
c21 + b2c

2
2 � c1c2b3 + [b2(1� 2c2) + b3c1]

Z
f6e

R
f5(t)dtdt

�
� c21f4

�
dt+ C

�
;

(31)

where C is an integration constant. Then equation (25) becomes

V 000 + b2V
2V 0 + b3V V

0 + V 0 = 0; (32)

Integrate equation (32) twice with respect to &, we obtain

V 02 +
b2
6
V 4 +

b3
2
V 3 + V 2 = A1V +A2; (33)

where A1 and A2 are integration constants. Equation (33) is a Riccati equation
[29] has many solutions we will contrast our attention on solutions contains all
variable coe¢ cients it means that b2 6= 0 and b3 6= 0, so we have the following
solution for equation (33)

V1 =
6 sec (&)p

b23 � 6b2 � b3 sec(&)
; (34)

V2 =
6 csc (&)p

b23 � 6b2 � b3 csc(&)
; (35)

with A1 = 0 and A2 = 0 then back substitution from (34-35) into (30) the
following new solutions for the gvcmKdV are obtained

v1(x; t) = e�
R
f5(t)dt

 
6c1 sec (&)p

b23 � 6b2 � b3 sec(&)
�
Z
f6(t)e

R
f5(t)dtdt+ c2

!
;(36)

v2(x; t) = e�
R
f5(t)dt

 
6c1 csc (&)p

b23 � 6b2 � b3 csc(&)
�
Z
f6(t)e

R
f5(t)dtdt+ c2

!
;(37)

with & given by equation (31) under integrability conditions (29).

5 Conclusion

In this paper the gvcmKdV is studied by two di¤erent techniques the CRE
solvability and the CK direct reduction method after this study we have the
following concluding remarks:
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1) The nonlinear partial di¤erential system (PDEs) obtained from The CRE
solvability is consistent with solutions given by equations (5-6) under integra-
bility conditions (8) therefore the gvcmKdV is integrable in this case.
2) The PDEs system obtained from the CRE is solvable if we take v0(x; t) =


(x; t), v1(x; t) = �(x; t) and w = & with integrability conditions (29) and

in this case Riccati equation (4) will be satisfy with a = � b23�6b2
2b22

q
� b2

6 ; b =

1
b2

q
� b1b3

6 and c =
q

�b2
6 therefore solutions (9-23) are obtained for the CK

direct similarity method also.
3) In this study we have used the classic CK because the external force term

f6 (t) make other modi�cations in literature [7,9,21,22] could not be applied.
4) If we put b3 = 0 in Riccati equation (33) many single and combined non-

degenerate Jacobi elliptic solutions [29] could be obtained for the gvcmKdV in
this case the obtained solutions recover solutions obtained for constants coe¢ -
cients modi�ed KdV equation in [20].
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