References
Anderson JM, & Van Itallie CM (2009). Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1: a002584.
Basuroy S, Seth A, Elias B, Naren AP, & Rao R (2006). MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J 393: 69-77.
Basuroy S, Sheth P, Kuppuswamy D, Balasubramanian S, Ray RM, & Rao RK (2003). Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J Biol Chem 278: 11916-11924.
Bens M, Bogdanova A, Cluzeaud F, Miquerol L, Kerneis S, Kraehenbuhl JP, et al. (1996). Trans-immortalized intestinal cells (m-ICcl2) that
maintain a crypt phenotype. Am J Physiol Cell Physiol 270:C1666-C1674.
Cameron BD, Sekhar KR, Ofori M, & Freeman ML (2018). The Role of Nrf2 in response to Normal Tissue Radiation Injury. Radiat Res 190:99-106.
Chen X, & Macara IG (2006). Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J Cell Biol 172: 671-678.
Deng W, Balazs L, Wang DA, Van Middlesworth L, Tigyi G, & Johnson LR (2002). Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology 123: 206-216.
Deng W, Kimura Y, Gududuru V, Wu W, Balogh A, Szabo E, et al.(2015). Mitigation of the Hematopoietic and Gastrointestinal Acute Radiation Syndrome by Octadecylthiophosphate a Small Molecule Mimic of Lysophosphatidic Acid. Radiation Res 183: 465-475.
Deng W, Shuyu E, Tsukahara R, Valentine WJ, Durgam G, Gududuru V, et al. (2007). The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury. Gastroenterology 132: 1834-1851.
Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, et al.(2009). Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284: 1559-1569.
Jaiswal AK (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36: 1199-1207.
Khurana S, Tomar A, George SP, Wang Y, Siddiqui MR, Guo H, et al.(2008). Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia. Exp Cell Res 314: 530-542.
Kiss GN, Lee SC, Fells JI, Liu J, Valentine WJ, Fujiwara Y, et al. (2013). Mitigation of radiation injury by selective stimulation of the LPA(2) receptor. Biochim Biophys Acta 1831: 117-125.
Konno T, Kotani T, Setiawan J, Nishigaito Y, Sawada N, Imada S, et al. (2019). Role of lysophosphatidic acid in proliferation and differentiation of intestinal epithelial cells. PLoS One 14:e0215255.
Kuo B, Szabo E, Lee SC, Balogh A, Norman D, Inoue A, et al.(2018). The LPA2 receptor agonist Radioprotectin-1 spares Lgr5-positive intestinal stem cells from radiation injury in murine enteroids. Cell Signal 51: 23-33.
Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, et al.(2005). Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med 202: 975-986.
Lin FT, Lai YJ, Makarova N, Tigyi G, & Lin WC (2007). The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem 282: 37759-37769.
Lin S, Yeruva S, He P, Singh AK, Zhang H, Chen M, et al. (2010). Lysophosphatidic acid stimulates the intestinal brush border Na(+)/H(+) exchanger 3 and fluid absorption via LPA(5) and NHERF2. Gastroenterology 138: 649-658.
Madara JL, Moore R, & Carlson S (1987). Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 253: C854-861.
Madara JL, Stafford J, Barenberg D, & Carlson S (1988). Functional coupling of tight junctions and microfilaments in T84 monolayers. Am J Physiol 254: G416-423.
Pandey D, Goyal P, & Siess W (2007). Lysophosphatidic acid stimulation of platelets rapidly induces Ca2+-dependent dephosphorylation of cofilin that is independent of dense granule secretion and aggregation. Blood Cells Mol Dis 38: 269-279.
Patil R, Fells JI, Szabo E, Lim KG, Norman DD, Balogh A, et al.(2014). Design and synthesis of sulfamoyl benzoic acid analogues with subnanomolar agonist activity specific to the LPA2 receptor. J Med Chem 57: 7136-7140.
Patil R, Szabo E, Fells JI, Balogh A, Lim KG, Fujiwara Y, et al.(2015). Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. Chem Biol 22: 206-216.
Rao R (2008). Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci 13: 7210-7226.
Rao RK, Basuroy S, Rao VU, Karnaky Jr KJ, & Gupta A (2002). Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368: 471-481.
Rao RK, Basuroy S, Rao VU, Karnaky KJ, Jr., & Gupta A (2002). Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368: 471-481.
Rao RK, Seth A, & Sheth P (2004). Recent Advances in Alcoholic Liver Disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 286:G881-884.
Seth A, Sheth P, Elias BC, & Rao R (2007). Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem 282:11487-11498.
Sheth P, Samak G, Shull JA, Seth A, & Rao R (2009a). Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers. Biochem J 421:59-70.
Sheth P, Samak G, Shull JA, Seth A, & Rao R (2009b). Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers. The Biochemical journal 421: 59-70.
Sheth P, Seth A, Atkinson KJ, Gheyi T, Kale G, Giorgianni F, et al. (2007). Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 402: 291-300.
Shukla PK, Gangwar R, Manda B, Meena AS, Yadav N, Szabo E, et al.(2016). Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine. Am J Physiol Gastrointest Liver Physiol 310: G705-715.
Shukla PK, Meena AS, Manda B, Gomes-Solecki M, Dietrich P, Dragatsis I, et al. (2018). Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism. Faseb J: fj201800351R.
Singla A, Dwivedi A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K, et al. (2010). Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl-/OH- exchange. Am J Physiol Gastrointest Liver Physiol 298: G182-189.
Thompson KE, Ray RM, Alli S, Ge W, Boler A, Shannon McCool W, et al. (2018). Prevention and treatment of secretory diarrhea by the lysophosphatidic acid analog Rx100. Exp Biol Med (Maywood) 243:1056-1065.
Van Itallie CM, & Anderson JM (2006). Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403-429.
Vardouli L, Moustakas A, & Stournaras C (2005). LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. The Journal of biological chemistry 280: 11448-11457.
Wang W, Halasz E, & Townes-Anderson E (2019). Actin Dynamics, Regulated by RhoA-LIMK-Cofilin Signaling, Mediates Rod Photoreceptor Axonal Retraction After Retinal Injury. Invest Ophthalmol Vis Sci 60:2274-2285.
Yoshida M, He P, & Yun CC (2016). Transgenic Expression of Human Lysophosphatidic Acid Receptor LPA2 in Mouse Intestinal Epithelial Cells Induces Intestinal Dysplasia. PLoS One 11: e0154527.
Yun CC, & Kumar A (2015). Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res 333: 201-207.