References
Anderson JM, & Van Itallie CM (2009). Physiology and function of the
tight junction. Cold Spring Harb Perspect Biol 1: a002584.
Basuroy S, Seth A, Elias B, Naren AP, & Rao R (2006). MAPK interacts
with occludin and mediates EGF-induced prevention of tight junction
disruption by hydrogen peroxide. Biochem J 393: 69-77.
Basuroy S, Sheth P, Kuppuswamy D, Balasubramanian S, Ray RM, & Rao RK
(2003). Expression of kinase-inactive c-Src delays oxidative
stress-induced disassembly and accelerates calcium-mediated reassembly
of tight junctions in the Caco-2 cell monolayer. J Biol Chem
278: 11916-11924.
Bens M, Bogdanova A, Cluzeaud F, Miquerol L, Kerneis S, Kraehenbuhl
JP, et al. (1996). Trans-immortalized intestinal cells (m-ICcl2)
that
maintain a crypt phenotype. Am J Physiol Cell Physiol 270:C1666-C1674.
Cameron BD, Sekhar KR, Ofori M, & Freeman ML (2018). The Role of Nrf2
in response to Normal Tissue Radiation Injury. Radiat Res 190:99-106.
Chen X, & Macara IG (2006). Par-3 mediates the inhibition of LIM kinase
2 to regulate cofilin phosphorylation and tight junction assembly. J
Cell Biol 172: 671-678.
Deng W, Balazs L, Wang DA, Van Middlesworth L, Tigyi G, & Johnson LR
(2002). Lysophosphatidic acid protects and rescues intestinal epithelial
cells from radiation- and chemotherapy-induced apoptosis.
Gastroenterology 123: 206-216.
Deng W, Kimura Y, Gududuru V, Wu W, Balogh A, Szabo E, et al.(2015). Mitigation of the Hematopoietic and Gastrointestinal Acute
Radiation Syndrome by Octadecylthiophosphate a Small Molecule Mimic of
Lysophosphatidic Acid. Radiation Res 183: 465-475.
Deng W, Shuyu E, Tsukahara R, Valentine WJ, Durgam G, Gududuru V,
et al. (2007). The lysophosphatidic acid type 2 receptor is required
for protection against radiation-induced intestinal injury.
Gastroenterology 132: 1834-1851.
Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, et al.(2009). Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its
interaction with ZO-1 and destabilizes its assembly at the tight
junctions. J Biol Chem 284: 1559-1569.
Jaiswal AK (2004). Nrf2 signaling in coordinated activation of
antioxidant gene expression. Free Radic Biol Med 36: 1199-1207.
Khurana S, Tomar A, George SP, Wang Y, Siddiqui MR, Guo H, et al.(2008). Autotaxin and lysophosphatidic acid stimulate intestinal cell
motility by redistribution of the actin modifying protein villin to the
developing lamellipodia. Exp Cell Res 314: 530-542.
Kiss GN, Lee SC, Fells JI, Liu J, Valentine WJ, Fujiwara Y, et
al. (2013). Mitigation of radiation injury by selective stimulation of
the LPA(2) receptor. Biochim Biophys Acta 1831: 117-125.
Konno T, Kotani T, Setiawan J, Nishigaito Y, Sawada N, Imada S, et
al. (2019). Role of lysophosphatidic acid in proliferation and
differentiation of intestinal epithelial cells. PLoS One 14:e0215255.
Kuo B, Szabo E, Lee SC, Balogh A, Norman D, Inoue A, et al.(2018). The LPA2 receptor agonist Radioprotectin-1 spares Lgr5-positive
intestinal stem cells from radiation injury in murine enteroids. Cell
Signal 51: 23-33.
Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, et al.(2005). Lysophosphatidic acid inhibits cholera toxin-induced secretory
diarrhea through CFTR-dependent protein interactions. J Exp Med
202: 975-986.
Lin FT, Lai YJ, Makarova N, Tigyi G, & Lin WC (2007). The
lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to
promote cell survival. J Biol Chem 282: 37759-37769.
Lin S, Yeruva S, He P, Singh AK, Zhang H, Chen M, et al. (2010).
Lysophosphatidic acid stimulates the intestinal brush border Na(+)/H(+)
exchanger 3 and fluid absorption via LPA(5) and NHERF2. Gastroenterology
138: 649-658.
Madara JL, Moore R, & Carlson S (1987). Alteration of intestinal tight
junction structure and permeability by cytoskeletal contraction. Am J
Physiol 253: C854-861.
Madara JL, Stafford J, Barenberg D, & Carlson S (1988). Functional
coupling of tight junctions and microfilaments in T84 monolayers. Am J
Physiol 254: G416-423.
Pandey D, Goyal P, & Siess W (2007). Lysophosphatidic acid stimulation
of platelets rapidly induces Ca2+-dependent dephosphorylation of cofilin
that is independent of dense granule secretion and aggregation. Blood
Cells Mol Dis 38: 269-279.
Patil R, Fells JI, Szabo E, Lim KG, Norman DD, Balogh A, et al.(2014). Design and synthesis of sulfamoyl benzoic acid analogues with
subnanomolar agonist activity specific to the LPA2 receptor. J Med Chem
57: 7136-7140.
Patil R, Szabo E, Fells JI, Balogh A, Lim KG, Fujiwara Y, et al.(2015). Combined mitigation of the gastrointestinal and hematopoietic
acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist.
Chem Biol 22: 206-216.
Rao R (2008). Oxidative stress-induced disruption of epithelial and
endothelial tight junctions. Front Biosci 13: 7210-7226.
Rao RK, Basuroy S, Rao VU, Karnaky Jr KJ, & Gupta A (2002). Tyrosine
phosphorylation and dissociation of occludin-ZO-1 and
E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative
stress. Biochem J 368: 471-481.
Rao RK, Basuroy S, Rao VU, Karnaky KJ, Jr., & Gupta A (2002). Tyrosine
phosphorylation and dissociation of occludin-ZO-1 and
E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative
stress. Biochem J 368: 471-481.
Rao RK, Seth A, & Sheth P (2004). Recent Advances in Alcoholic Liver
Disease I. Role of intestinal permeability and endotoxemia in alcoholic
liver disease. Am J Physiol Gastrointest Liver Physiol 286:G881-884.
Seth A, Sheth P, Elias BC, & Rao R (2007). Protein phosphatases 2A and
1 interact with occludin and negatively regulate the assembly of tight
junctions in the CACO-2 cell monolayer. J Biol Chem 282:11487-11498.
Sheth P, Samak G, Shull JA, Seth A, & Rao R (2009a). Protein
phosphatase 2A plays a role in hydrogen peroxide-induced disruption of
tight junctions in Caco-2 cell monolayers. Biochem J 421:59-70.
Sheth P, Samak G, Shull JA, Seth A, & Rao R (2009b). Protein
phosphatase 2A plays a role in hydrogen peroxide-induced disruption of
tight junctions in Caco-2 cell monolayers. The Biochemical journal
421: 59-70.
Sheth P, Seth A, Atkinson KJ, Gheyi T, Kale G, Giorgianni F, et
al. (2007). Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin
complex in Caco-2 cell monolayers by a phosphorylation-dependent
mechanism. Biochem J 402: 291-300.
Shukla PK, Gangwar R, Manda B, Meena AS, Yadav N, Szabo E, et al.(2016). Rapid disruption of intestinal epithelial tight junction and
barrier dysfunction by ionizing radiation in mouse colon in vivo:
protection by N-acetyl-l-cysteine. Am J Physiol Gastrointest Liver
Physiol 310: G705-715.
Shukla PK, Meena AS, Manda B, Gomes-Solecki M, Dietrich P, Dragatsis
I, et al. (2018). Lactobacillus plantarum prevents and mitigates
alcohol-induced disruption of colonic epithelial tight junctions,
endotoxemia, and liver damage by an EGF receptor-dependent mechanism.
Faseb J: fj201800351R.
Singla A, Dwivedi A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K,
et al. (2010). Mechanisms of lysophosphatidic acid (LPA) mediated
stimulation of intestinal apical Cl-/OH- exchange. Am J Physiol
Gastrointest Liver Physiol 298: G182-189.
Thompson KE, Ray RM, Alli S, Ge W, Boler A, Shannon McCool W, et
al. (2018). Prevention and treatment of secretory diarrhea by the
lysophosphatidic acid analog Rx100. Exp Biol Med (Maywood) 243:1056-1065.
Van Itallie CM, & Anderson JM (2006). Claudins and epithelial
paracellular transport. Annu Rev Physiol 68: 403-429.
Vardouli L, Moustakas A, & Stournaras C (2005). LIM-kinase 2 and
cofilin phosphorylation mediate actin cytoskeleton reorganization
induced by transforming growth factor-beta. The Journal of biological
chemistry 280: 11448-11457.
Wang W, Halasz E, & Townes-Anderson E (2019). Actin Dynamics, Regulated
by RhoA-LIMK-Cofilin Signaling, Mediates Rod Photoreceptor Axonal
Retraction After Retinal Injury. Invest Ophthalmol Vis Sci 60:2274-2285.
Yoshida M, He P, & Yun CC (2016). Transgenic Expression of Human
Lysophosphatidic Acid Receptor LPA2 in Mouse Intestinal Epithelial Cells
Induces Intestinal Dysplasia. PLoS One 11: e0154527.
Yun CC, & Kumar A (2015). Diverse roles of LPA signaling in the
intestinal epithelium. Exp Cell Res 333: 201-207.