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Abstract

In this paper, it is important to illustrate that, for the LCF of metallic materials, a "stress quantity" calculated based on the linear-elastic analysis of the studied component is taken to be a mechanical quantity, S, to establish a relation of the mechanical quantity, S, to the fatigue life, N, is practicable. Based on the practicability, a prediction equation, for a low/medium/high cycle fatigue life assessment of metallic materials, is proposed. The prediction equation is a stress invariant based one, in which the computation of stress invariant is on the basis of the linear-elastic analysis of the studied component. Using experimental data of plain specimens reported in literature, it is proved that the prediction equation is both accurate and high efficient. In addition, the prediction equation in conjunction with the Theory of Critical Distances and linear-elastic notch mechanics are combined to establish the fatigue life estimation equation of the notched components. Finally, using experimental data of the fatigue life of 16MnR steel, validation verification of the notch fatigue life prediction equation is given.
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1 Introduction

It is well-known that the majority of damages in real components are due to fatigue. Moreover, the problem of properly performing the fatigue assessment is further complicated due to the fact that such failures are, in general, caused by multiaxial loading: this makes it evident that engineers engaged in assessing real mechanical assemblies need sound engineering tools capable of accurately and efficiently estimating multiaxial fatigue damage. 

As well known to us, a fatigue life estimation of metallic materials is usually divided into two types, i.e., a low/medium cycle (LCF )and a high cycle fatigue (HCF). Concerning the HCF fatigue assessment, the Wöhler Curve Method is usually employed. The Modified Wöhler Curve Method (MWCM) proposed by Susmel and Lazzarin [1], for example, is used to perform the HCF fatigue assessment of metallic materials for conventional mechanical components subjected to multiaxial fatigue loading. While for the LCF of metallic materials, no doubt, the Manson–Coffin Curve is used to perform fatigue life assessment. The Modified Manson–Coffin Curve Method by Susmel, Meneghetti, and Atzori [2], for example, is used to evaluate LCF lifetime of metallic materials under multiaxial fatigue loading.
A key to fatigue life evaluation of metallic materials is, in substance, that, on the basis of experimental fatigue data of metallic specimens and mechanical analyses for those specimens , a proper mechanical quantity, S, is chosen to establish a relation of the mechanical quantity to the fatigue life, N. For example, the Wöhler Curve and the Manson–Coffin Curve are two typical examples of the relation. When a different mechanical quantity, S, is taken, naturally, a different S-N curve is obtained, which has usually different accuracy and efficiency when to be used to perform fatigue life estimation. Both accurate and high efficient fatigue life prediction equation is to be searched for to all field investigators.  
The present paper attempts to present a prediction equation of a low/medium/high cycle fatigue life of metallic materials. The prediction equation is required to have both accuracy and high efficiency when applied to perform the fatigue life assessment of metallic components subjected to both uniaxial and multiaxial loading, and at the same time, to be suitable for not only plain but also notched components. Concerning fatigue assessment of a mechanical component, main factors affecting its efficiency include three aspects. One is a mechanical analysis of the studied component. The mechanical analysis is generally a basis of fatigue assessment of the studied component due to the fact that the mechanical analysis is a basis of calculating a chosen mechanical quantity, S. The consuming time used in the linear-elastic analysis of the studied component, for example, is much less than that in its elastic-plastic analysis. Two is to calculate a chosen mechanical quantity, S. On the basis of wide research into multiaxial fatigue life predictions [1-10], it can be seen that the consuming time used in calculating the mechanical quantity based on a stress invariant based approach is much less than that on a critical plane approach. The third is to measure the material constants in the stress-stain relation used to perform the mechanical analysis of the studied component. The time and financial resource consuming used in determining the material constants in linear stress-strain relation is, no doubt, much less than that in determining the material constants in cyclic elastic-plastic stress-strain relation.
Concerning the high cycle fatigue assessment in the presence of stress concentration phenomena, it is common practice that a multiaxial fatigue criterion (e.g., the MWCM) in conjunction with the Theory of Critical Distances (TCD) [11], is applied to be correctly handling not only the degree of multiaxiality of the stress field acting on the process zone but also the detrimental effect of tridimensional stress gradients. In [12], an elastic-plastic reformulation of Theory of Critical Distances was proposed by Susmel and Taylor to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. 
The aim of this paper is to present, on the basis of the linear-elastic analysis of the studied component, a stress invariant based equation of multiaxial fatigue life prediction. The stress invariant based equation will be both accurate and high efficient when used in performing low/medium/high fatigue life assessment of mechanical component under both uniaxial and multiaxial loading. The systematic exercises we made, using a large number of experimental fatigue data of plain specimens reported in literature, have proved that this aim has been reached. 
In addition, the prediction equation of a low/medium/high cycle fatigue life of metallic materials proposed in this paper in conjunction with the Theory of Critical Distances and linear-elastic notch mechanics are combined to establish a multiaxial fatigue life estimation equation of the notched components. By using experimental data of the fatigue life of 16MnR steel from literature, validation verification of the notch fatigue life prediction equation is made.
2 On a prediction equation of low/medium/high cycle fatigue life of plain metallic materials 
The following three aspect contents are contained in this section:
 (a)、It is important to illustrate the practicability of establishing a prediction equation of low/medium/high cycle fatigue life of plain metallic materials.
(b)、The prediction equation is presented in detail.
 (c)、On experimental verification of the prediction equation validation，a brief illustration is given. 
2.1 On practicability of establishing the prediction equation
In a low/medium/high cycle fatigue regime of metallic materials, does a prediction  equation in which the mechanical quantity calculation is on the basis of the linear-elastic analysis exist? According to previous wide investigations [1-12], the prediction equation is impossible to exist: For the HCF of metallic materials, the mechanical quantity calculation is on the basis of the linear-elastic analysis of the studied component due to the fact that the studied component is subjected to elastic deformation, while for the LCF of metallic materials, the mechanical quantity calculation is on the basis of the elastic-plastic analysis of the studied component due to obvious plastic deformation produced in the studied component. Here, the mention-above impossibility is, no doubt, reasonable. Such a viewpoint that, for the LCF of metallic materials, there is large plastic deformation in the materials and therefore it's not reasonable to perform the fatigue life assessment of the materials by using the linear-elastic analysis, is a common view. 
However, on the basis of the well-known Rambrg–Osgood relationship: 
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where E is Young’s modulus, K is the strength coefficient and n is the strain hardening exponent, the author considers that, for the LCF of metallic materials, such a way that a "stress quantity", which is calculated based on the linear-elastic analysis of the studied component, instead of a "strain quantity", which is calculated based on the elastic-plastic analysis of the studied component, is taken to be a mechanical quantity, S, to establish a relation of the mechanical quantity, S, to the fatigue life, N, is practicable. In order to fully indicate the author’s viewpoint, here, some experimental data of low/medium/high cycle fatigue of tension–compression fatigue of plain and notched specimens made of 16MnR steel [13,14] were given in the Appendix A, see Tables A1 and A2. Comparison of experimental data and linear fitted curve of tension–compression fatigue of plain specimens in the double-logarithm frame of axes is shown in Fig.A1. From the good agreement between experimental data and linear fitted curve shown in Fig. A1, no doubt, low/medium/high fatigue life assessment of plain specimens of the material can be carried out by using the Wöhler curve, i.e., the linear fitting relation of 
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, in which the fitting constants are listed in Table A3. Fig. A2 shows comparison of experimental fatigue lives and ones predicted using the Wöhler curve for tension–compression fatigue of plain specimens of the material, from which it can be seen that good prediction results can be obtained using the Wöhler Curve. Similarly handling can be done for experimental data of tension–compression fatigue of notched specimens made of 16MnR steel, see Figs A3 and A4, from which it can be seen that for low/medium/high cycle fatigue of notched specimens of the material, good prediction results can be obtained using the notch Wöhler Curve, i.e., the linear fitting relation of 
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 obtained by using experimental data of tension–compression fatigue of notched specimens shown in Table A2. 
From Figs A1 to A4, in summary, it can be seen that, for low/medium/high cycle fatigue life assessment of 16MnR steel, a "stress quantity", 
[image: image6.wmf]a

s

, can be taken as a mechanical quantity, S, to establish a relation of the mechanical quantity, S, to the fatigue life, N, i.e., a linear fitting relation between 
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, even though there is obvious plastic deformation in the material, see Fig.A5. 
Then, for a real mechanical component which needs to be fatigue lifetime assessment, is either a linear-elastic analysis or an elastic-plastic analysis employed in calculating the "stress quantity"? Due to the fact that the magnitude of the strains involved in fatigue problems is in general not very high [3] and that the well-known Rambrg–Osgood relationship is usually employed in the elastic-plastic analysis of metallic materials, (please here see the well-known Rambrg–Osgood relationship curve, Fig.7.7 in [3]), the author considers that, at a given loading, the "stress quantity" calculated using the elastic-plastic analysis almost is the same as that by the linear-elastic analysis. From a practical point of view, thus, the author considers  that, for the LCF of metallic materials, the "stress quantity" can be calculated using the linear-elastic analysis of the mechanical component.
Thus it can be concluded that, in a low/medium/high cycle fatigue regime of metallic materials, it is practical to present a stress invariant based equation in which the "stress quantity" is calculated using the linear-elastic analysis of the studied component. Such a stress invariant based equation is, in fact, the Wöhler Curve type one usually used to perform the fatigue life assessment of the medium/high cycle fatigue life of metallic materials. That is to say that the Wöhler Curve can be used to perform the fatigue life assessment of not only the medium/high cycle fatigue of metallic materials but also the low cycle fatigue of metallic materials. Thus, for low/medium/high cycle fatigue of metallic materials, a prediction equation proposed in this paper is, in fact, the well-known Wöhler Curve type one, in which the mechanical quantity is a "stress quantity" which is calculated using the linear-elastic analysis of the studied component.
    2.2 A proper mechanical quantity in the prediction equation
According to the discussions above, in a low/medium/high cycle fatigue regime of metallic materials, a stress based lifetime estimation equation in which the mechanical quantity calculation is on the basis of the linear-elastic analysis maybe exist. In order to present the stress based lifetime estimation equation, is what a "stress quantity" employed under multiaxial loading? Amongst the available stress variant quantities, the most commonly adopted stress variant quantity is the Von Mises equivalent stress. In this paper, the Von Mises equivalent stress will be taken a mechanical quantity, S, to establish the relation of the mechanical quantity, S, to the fatigue life, N, i.e., a stress based lifetime estimation equation. 
It is pointed out here that the Von Mises equivalent stress were employed previously in fatigue of metallic materials, for example, multiaxial fatigue limits [6,7], multiaxial fatigue life predictions [4,9,10,15].
In the following, the Von Mises equivalent stress is called a Mises stress for short, which is expressed in term of the main stresses 
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2.3  Multiaxial fatigue life prediction equation
Generally, a multiaxial fatigue life prediction equation can be expressed mathematically to be [15]:
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where
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 is the Von Mises equivalent stress, 
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 are the amplitude and the mean value of the equivalent stress, respectively. A multiaxial parameter,
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where 
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 is the amplitude of the first invariant of stress tensor. It is known from the formula (4) that, for the bending and torsion fatigue, the multiaxial parameter,
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, in Eq. (3) are material parameters, which are usually varied with the multiaxial parameter 
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A concrete form of Eq.(3) will be described from a few aspects: 
Multiaxial fatigue life prediction equation under zero mean stress
Under zero mean stress, a stress based fatigue life estimation equation under multiaxial loading is assumed to be [15]
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which, under bending and torsion fatigue, can be written to be, respectively:
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and
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Eq. (6) is the well known S-N curve equation expressed in terms of a stress quantity. Eq. (7) is the variant form of the S-N curve equation under torsion fatigue. 
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 in Eq.(7) are material constants determined by using bending and torsion experimental fatigue data of plain specimen, respectively.
In view of the complexity of fatigue life analysis under multiaxial loading, and also taking into account that a large number of experimental fatigue data have been accumulated in literature, from the viewpoint of application, it is assumed here that the material parameters in Eq. (5) can be obtained by interpolating the material constants in Eqs. (6) and (7), i.e.:


[image: image30.wmf]10

(1)

BBB

r

rr

=×+×-

            （8）


[image: image31.wmf]10

(1)

CCC

r

rr

=×+×-

            （9）

Multiaxial fatigue life prediction equation with non-zero mean stress
 A mean stress effect on fatigue life assessment is a classical problem. Based on the previous investigations (e.g., Tao and Xia [16]) and Marin’s general equation [17]), an equivalent stress under multiaxial loading is introduced by Liu and Yan [15] to consider the effect of mean stress on multiaxial fatigue life:
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where 
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By substituting the equivalent stress defined in formula (10) into the 
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equation with the effect of mean stress can be obtained [15]:
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which, under bending and torsion fatigue, can be written to be, respectively 
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where 
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 in Eq.(13) are material constants which are determined by using bending and torsion experimental fatigue data with mean stress effect, respectively. While the material parameters, 
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On dealing with non-proportional loading fatigue
As to non-proportional loading fatigue, Itoh’s formula [18] is usually used to reveal the relationship of the amplitude of the equivalent non-proportional stress,
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where 
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 is a material sensitivity constant to load-path non-proportionality defined on 
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In this paper, it is found that the prediction results of fatigue life obtained by using Itoh’s formula sometimes are not satisfactory. Thus the following attempt is made:
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where 
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 in formula (15) is equal to 1, the linear fitting relation (15) becomes Itoh’s formula. In this paper, the formulas (14) and (15) is called Itoh’s formula (I.F) and linear formula (L.F), respectively.

Under out-of-phase loading fatigue, the non-proportional factor F ( NPF) is usually decided as the ratio of the two principal axes of elliptical loading path [19]. According to this definition of NPF, two similar elliptical loading paths with different radii, in which one is, for example, much larger than the other, have a uniform value, F, which appears to be unreasonable. In order to reveal the effect of relative size of fatigue loading path on the non-proportional factor F, a new definition of NPF is proposed here as follows:
 It is assumed that there are m out-of-phase loading cases, in which the non-proportional factor, F, and the equivalent proportional stress,
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2.4  A brief illustration of experimental verification of the prediction equation 
As well known to us, a large number of experimental fatigue data of metallic materials were got together in literature [3]. By using the experimental fatigue data, including the stress control fatigue data of 18G2A [20], Z12CNDV12-2[21], 5% Cr [22], 6082-T6[23] and SM45C[24]), and the strain control fatigue data of S45C [25], 1Cr-18Ni-9Ti [26], Ti-6Al-4V [27] and S460N [28], the prediction equation of the low/medium/high cycle fatigue life of metallic materials proposed in this paper have been verified. Here, a brief illustration of experimental verification is only given because of the limitation of space.
In order to quantitatively evaluate the accuracy of the fatigue prediction equation, the following error indexes are defined:
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where n is the number of experimental cases. The three error indexes defined in (17) to (19) are called a relative error, a mean error and an absolute mean error, respectively.

Two experimental verification examples are given in Appendix B. 
3  Fatigue life prediction equation of notch specimens 

    Seeing that much has been achieved in linear elastic notch mechanics, such as a notch stress field [29-34] and a notch stress concentration factor[35-42], the valuable results will be used to perform the fatigue life assessment of notch components.
    In this section, the theory of a linear elastic notch stress field and the TCD are described briefly. Further the fatigue life prediction equation of notch specimens are presented in detail. 
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Fig.1  A notch geometry and coordinate system of a V-shaped notch (from [30])
3.1  A brief description of a linear elastic notch stress field 

    Fig.1 shows a notch geometry and coordinate system of a V-shaped notch (the opening angle
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    The maximum tensile stress 
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 at the apex of the notch is commonly expressed in term of a stress concentration factor 
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Concerning a stress concentration factor 
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, many results (e.g., [35-38]) have been obtained. 

    For blunt V-shaped notches in axisymmetric shaft under torsion, the most important stress component is the torsion stress 
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, were given by Filippi and Lazzarinin [31]. R in the equation (21) is a net section radius of shaft. 

3.2  A description of the Theory of Critical Distance of notch fatigue

The TCD to predict notch fatigue limits

    Through systematic verification [43-48], the Theory of Critical Distances (TCD) is capable of accurately estimating fatigue limit in the components containing not only cracks but also any type of notches (i.e., short, sharp and blunt). 

    In Ref[3], it is worth highlighting that such a theory estimates fatigue damage by directly post-processing the linear elastic stress fields acting on the process zone. This aspect is very important, because the TCD allows real components to be assessed without the need for carrying out complex and time-consuming elastic-plastic analyses.

    The TCD takes as a starting point the assumption that fatigue damage in the presence of stress concentration phenomena has to be estimated by using a stress quantity which is representative of the entire linear-elastic stress field damaging the fatigue process zone. In particular, notches are assumed to be in their fatigue limit condition when a suitable equivalent stress range,
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The equivalent stress can be formalized in different forms. For example, it is calculated at a given distance from the apex of the stress concentrator, according to the so-called Point Method (PM), 
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    According to the linear elastic fracture mechanics of Model I crack, the critical distance L can be represented as [49]: 
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where 
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is the threshold value range of the Mode I stress intensity factor. 

     For Mode III crack, similarly, Susmel and Taylor [50] gave the expression of the critical distance 
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where 
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 is the threshold value range of the Mode III stress intensity factor, 
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 is the plain torsion fatigue limit. 

    By using the PM argument, Susmel and Taylor [50] calculated the critical distance value L and 
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 by considering several experimental results generated by testing V-notched cylindrical samples made of different steels [53], see Table 1. The results in Table 1 clearly show that the critical distance value under torsion fatigue loading is larger than that under bending fatigue loading.

    Owing to the complexity of the material cracking behavior under torsion loading, the Susmel and Taylor put forward an engineering measure. That is, in any case the TCD can be used to estimate notch torsion fatigue limit by simply assuming that the critical distance value under torsion fatigue loading is equal to that under bending fatigue loading [50]. 

Table 1
Critical distance values under uniaxial fatigue loading, L, and under torsion fatigue loading, 
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	Material
	L (mm)
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 (mm)
	L/
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	Reference

	0.4% C steel(normalised)
	0.111
	0.305
	0.364
	Gough, [53]

	3% Ni steel
	0.145
	0.215
	0.674
	Gough, [53]

	Cr-Va steel
	0.100
	0.148
	0.676
	Gough, [53]

	3.5% NiCr steel(normal impact)
	0.103
	0.183
	0.563
	Gough, [53]

	3.5% NiCr steel(low impact)
	0.098
	0.12
	0.817
	Gough, [53]

	NiCrMo steel (75–80 tons)
	0.075
	0.208
	0.361
	Gough, [53]

	Low-carbon steel
	0.143
	0.339
	0.423
	Qilafku et al., [54]


The TCD to estimate fatigue lifetime of notched components

    The linear-elastic TCD proved to be highly accurate not only in predicting notch fatigue limits but also in estimating fatigue lifetime of notched components failing in the medium-cycle fatigue regime [51]. Such an extension of the TCD takes as its starting point the assumption that the critical distance value, 
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, decreases. In other words, fatigue lifetime of components containing stress raisers can be estimated provided that the 
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   Observing that, according to Wöhler’s schematization, the number of cycles to failure is, in the medium cycle fatigue regime, a power function of the applied stress, the hypothesis can be formed that the critical distance, 
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, the number of cycles to failure, results in  a simple power law, that is:

     
[image: image111.wmf]1

1

L

A

L

LBN

s

=×

        (26)
where 
[image: image112.wmf]1

L

B

 and 
[image: image113.wmf]1

L

A

 are material constants to be determined by running appropriate experiments.

    Susmel and Taylor [51] proposed a method of determining the critical distance from two calibration fatigue failure curves of a smooth specimen and notched specimen:

Consider the Wöhler diagram shown in Fig. 2a, where two different fatigue curves are plotted: the upper one is obtained by testing plain specimens and the lower one by testing notched samples having one particular notch geometry. The Wöhler equation describing the upper curve is assumed to be calculated by using one of the pertinent statistical procedures suitable for post-processing fatigue data. By using the PM argument, the critical distance can be determined at any given number of cycles to failure. For a fixed value 
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, the distance from the notch tip, 
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, at which the amplitude of the linear-elastic maximum principal stress equals the stress applied to the plain specimens to generate a failure at 
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 cycles to failure，can be calculated by using either FE or analytical methods (Fig.2b). Thus the appropriate value of the critical distance can be found for any number of cycles 
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, (i=1,2,...M), in which M is the number of notched calibration specimens. Then the constants,
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 relationship (26) , can be found by using a numerical fitting method.
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Fig.2 Plain and notched calibration fatigue curve (a); Linear-elastic stress field in the vicinity of the stress concentrator apex and application of the TCD in terms of the PM to estimate the number of cycles to failure (b) (from [3])
   It is important to point out here that constants 
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 relationship (26) have to be determined by using experimental fatigue results that are always generated under fully reversed loading, because the presence of superimposed static stresses is assumed to be taken into account directly by the MWCM itself. Finally, it has to be said that the values of the above constants are assumed to be independent of the degree of multiaxiality of the stress field acting on the fatigue process zone [11].
   By the way, it is pointed out here that in [12,52], using the concept of the TCD and on the basis of notch elastic-plastic stress analysis, Manson-Coffin equation together with ＳＷＴparameter is employed to perform LCF assessment of notched components. Yang et.al. [52] found that, at a any given fatigue lifetime, the product of the critical distance and the linear-elastic stress concentration factor is almost equal for different notched DS Ni-based super-alloy components. 

3.3  Fatigue life prediction equation of notch specimens
    Here, the S-N equations (5-7) of plain specimens together with the theory of linear elastic notch stress field and the TCD are employed to establish a fatigue life prediction equation of notch specimens. 

Notch fatigue life prediction equation under mode I loading 

   First, it is assumed here that there is a notch specimen under Mode I loading, marked as  Notch 1. Its fatigue life is
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under the action of net section nominal stress amplitude,
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Note here that the tensile stress 
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where 
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 is called a stress field function, whose form is referenced to (20b) .  

   Second, it is assumed that there is another notch specimen under Mode I loading, marked  as Notch 2. Its stress concentration factor and stress field function are denoted by 
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   Let that the fatigue life of notch 2 is N under the action of net section nominal stress amplitude,
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    Third, it is assumed here that Notch 1 and Notch 2 have equal fatigue life N, then the following equation can be obtained from equations (37), (38), (31) and (32). 
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    From the equation (33), it can be seen that, under the condition of equal fatigue life, there is a relation between the critical distance,
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,of the notch 2 and the critical distance,
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,of the notch 1. This can be regarded as a theoretical support of Yang finding [52]: 
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     In the following, the method of two calibration fatigue curves by Susmel and Taylor [51] is employed in determining 
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relationship, and Notch 1 is taken a calibration specimen. Number of the calibration specimen is set to be m, then the following data exist:
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which are in order the net section nominal stress amplitude, fatigue life, and critical distance of the calibration specimen.
   Using 
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, similarly, the S-N equation of the calibration specimen can be determined:
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    From 
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Further from 
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, and equation (34), the critical distance of Notch 2 can be obtained:
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Then, from
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, the following data can be obtained: 
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Further from equation (33), the following data can be obtained:
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Then from 
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, the S-N equation of notch 2 can be determined:
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    It is important to pointed out here that the S-N equation (43) of notch 2 is different from the S-N equation (38) of notch 1 (calibration specimen). The latter is called an inherent notch S-N equation, while the former is called a predicted notch S-N equation.

Notch fatigue life prediction model under mode III loading 

    Following the way of establishing the notch fatigue life prediction equation under Mode I loading, the notch fatigue life prediction equation under Mode III loading can be given. Here, the relation of the critical distance,
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where 
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 are fitted constants.

    Similarly, the method of two calibration fatigue curves by Susmel and Taylor [51] is carried out. The following equations parallel to equations (38) and (43) can be obtained
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which are an inherent notch S-N equation and a predicted notch S-N equation under Mode III loading, respectively.
Notch fatigue life prediction equation under Mode I and III loading 

    Following the way of dealing with the multiaxial fatigue life prediction of plain specimen presented in this paper, here, after obtaining the notch fatigue life prediction equation (38) under Mode I loading and (45) under Mode III loading, the notch fatigue life prediction equation under Mode I and III loading for the calibration notch specimen can be written as: 
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    Using equations (43) and (46), similarly, the notch fatigue life prediction equation of Notch 2 under Mode I and III loading can be written as: 
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4  Experimental verification of notch fatigue life equations
    Based on the tension–compression, torsion, and axial-torsion fatigue experiments conducted on notched shaft specimens and plain specimens made of 16MnR steel [13,14], the notch fatigue life prediction equation presented in this paper is verified to be valid for LCF life assessment of notched metallic components.

By the way, it is pointed out here that, by using Fortran, the notch fatigue life equation presented in this paper has been programmed, named a Notch Fatigue Life Prediction of Metallic Materials.
4.1  Uniaxial fatigue of plain specimens made of 16MnR steel

    Comparison of experimental data and linear fitted curve of tension–compression and torsion fatigue of plain specimens made of 16MnR steel in the double-logarithm frame of axes is shown in Figs 3 and 4. From the agreement between experimental data and linear fitted curve shown in Figs 3 and 4, no doubt, the fatigue life assessment of plain specimens of the material can be carried out by using the prediction equation of a low/medium/high cycle fatigue of metallic materials presented in this paper. The material constants in the S-N equations (6) and (7) are listed in Table 2.

Table 2  Fitted constants in the S-N equations (16MnR steel )
	Equation
	 A
	  C
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	Note

	Tensile (6)
	-0.08941
	2.91288
	0.96211
	Plain specimen

	Torsion (7)
	-0.07068
	2.88484
	0.92642
	Plain specimen

	Tensile (38)
	-0.18268
	3.1392
	0.98329
	Notch 1

	Torsion (43)
	-0.10159
	2.97289
	0.93502
	Notch 1

	Tensile  (45)
	-0.13466
	3.03877
	0.98874
	Notch 2

	Torsion  (46)
	-0.09024
	2.976511
	0.96607
	Notch 2


Table 3  Stress concentration factor of two notched crafts under Mode I and Mode III loading

	notch
	Mode I loading
	Mode III loading

	Notch 1
	2.16338
	1.435313

	Notch 2
	1.374516
	1.130576
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Fig.3  Comparison of experimental data and linear fitted curve of tension–compression fatigue of plain specimens made of 16MnR steel in the double-logarithm frame of axes
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Fig.4  Comparison of experimental data and linear fitted curve of torsion fatigue of plain specimens made of 16MnR steel in the double-logarithm frame of axes

4.2 Tension–compression fatigue of notched shaft specimens
   The geometry and dimensions of the notched shaft specimens are shown in Fig.5a. The notch radii are 1.5 mm (sharp notch) and 6.7 mm (blunt notch), respectively. All the test specimens were taken from a hot rolled plate with a thickness of 35 mm as shown in Fig.5b. The axial direction of the specimen was perpendicular to the rolling direction of the plate.

   In this study, the notched specimens with sharp notch are denoted to Notch 1, as calibration specimens, while the other notched specimens with blunt notch are denoted to notch 2. By using the software of Notch Fatigue Life Prediction of Metallic Materials developed in this study, the calculated stress concentration factors for the two notches are given in Table 3.

    For the notched calibration specimens, comparison of experimental data and linear fitted curve of tension–compression fatigue in the double-logarithm frame of axes is shown in Fig.6, from which it can be seen that the agreement is very good. From the results in Fig.6, the author considers that the notch fatigue prediction equation presented in this paper is possibly very valid for the assessment of tension–compression fatigue of the notched shaft specimens of the material.

    For the notched calibration specimens, here, on one hand, the S-N equation (6) together with the TCD, and on the other hand, the notch S-N equation (53), are employed to perform the assessment of tension–compression fatigue. Comparison of the prediction results is given in Fig.7. The very high agreement shows that in implementing the S-N equation (6) together with the TCD to perform the assessment of the notched calibration specimens, the programmed application of the theory of notch stress field under Mode I loading is successful. It is necessary to point out here that the programmed application plays an important role for promoting the efficiency of fatigue life assessment of notched components. The very good results shown in Fig.7, at the same time, illustrate that not only the S-N equation (6) together with the TCD but also the notch S-N equation (38) all are very valid for the assessment of fatigue life of the notched calibration specimens. 

   Based on the tension–compression fatigue prediction of the notched calibration specimens, here, the 
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In the following, fatigue life prediction of notch 2 under Mode I loading is carried out. The fitted constants in the predicted Notch S-N equation (43) are given in Table 2. Besides using the predicted Notch S-N equation (43), here, the S-N equation (6) together with the 
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equation (53) is employed to perform the fatigue life prediction of notch 2. The obtained results are given in Fig.8, from which it can be seen that, under Mode I loading, the fatigue life prediction results by the predicted Notch S-N equation is obviously better than those by the S-N equation (6) and the 
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equation (53). 
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 Fig.5 Notched shaft specimen and the orientation of the specimen taken from the hot rolled plate (taken from [14])
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Fig.6 Comparison of experimental data and linear fitted curve of tension–compression fatigue of notched shaft specimens made of 16MnR steel in the double-logarithm frame of axes
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Fig.7 Comparison of prediction fatigue lives by using TCD and S-N equation and Notch S-N equation for tension–compression fatigue of notched calibration specimens
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Fig.8 Comparison of prediction fatigue lives by using TCD and S-N equation and Notch S-N equation for tension–compression fatigue of notch 2 specimens
4.3 Torsion fatigue of notched shaft specimens    
    For the notched calibration specimens under Mode III loading, comparison of experimental data and linear fitted curve in the double-logarithm frame of axes is shown in Fig.9, from which it can be seen that the agreement is very good. From the results in Fig.9, the author considers naturally that the notch fatigue prediction equation presented in this paper is possibly very valid for the assessment of torsion fatigue of notched shaft specimens of the material.

   For the notched calibration specimens, here, on one hand, the S-N equation(7) together with the TCD, and on the other hand, the Notch S-N equation (45), are employed to perform the assessment of torsion fatigue of notched specimens. Comparison of the prediction fatigue lives is given in Fig.10. The very high agreement shows that in implementing the S-N equation (7) together with the TCD to perform the fatigue assessment of notched calibration specimens, the programmed application of the theory of notch stress field under Mode III loading is also successful. The very good results shown in Fig.10, at the same time, illustrate that not only the S-N equation (7) together with the TCD but also the Notch S-N equation (45) all are very valid for the assessment of fatigue life of the notched calibration specimens. 

   Based on the torsion fatigue analysis of the notched calibration specimens, here, the 
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In the following, the fatigue life prediction of notch 2 under Mode III loading is carried out. The fitted constants in the predicted Notch S-N equation (46) are given in Table 2. Besides using the predicted Notch S-N equation (46), here, the S-N equation (7) together with the 
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equation (53), is employed to perform the fatigue life prediction of notch 2. The obtained results are given in Fig.11, from which it can be seen that, under Mode III loading, the fatigue life prediction results by the predicted Notch S-N equation (46) is obviously better than those by the S-N equation (7) and the 
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equation (53). Here, please note that, according to the TCD by Susmel and Taylor[11], the fatigue life prediction of notch 2 under Mode III loading is performed by using S-N equation (7) of plain specimens together with the 
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Fig.9 Comparison of experimental data and linear fitted curve of torsion fatigue of notched shaft specimens made of 16MnR steel in the double-logarithm frame of axes
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Fig.10 Comparison of fatigue lives by the TCD and S-N equation and the Notch S-N equation for torsion fatigue of notched calibration specimens
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Fig.11 Comparison of fatigue lives by TCD and S-N equation and the predicted Notch S-N equation for torsion fatigue of notch 2 specimens
4.4  Axial-torsion fatigue of notched shaft specimens 
    By using the multiaxial Notch S-N equation (57), for the notched calibration specimens, their multiaxial fatigue life predictions can be carried out after obtaining the Notch S-N equations (38) and (45) under Mode I and Mode III loading. Moreover, the multiaxial S-N equation (5) together with 
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equation (53) is also used to perform the fatigue life assessment of the notched calibration specimens. The obtained results are shown in Fig.12, from which it can be seen that the predicted results obtained by means of two methods are satisfactory, but the former has relatively conservative estimation, while the latter reacted against that, with relative error ranges, [-43.5, 2.9] and [89.0, 171.2], respectively.

    Besides using the predicted multiaxial Notch S-N equation (50), the multiaxial S-N equation (5) together with the 
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equation (53), here, is employed to perform the fatigue life prediction of notch 2. The obtained results are given in Fig.13, from which it can be seen that, the prediction results by the predicted multiaxial Notch S-N equation 50 are better than those by the multiaxial S-N equation (5) together with the 
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equation (53), with relative error ranges, [-49.3,-71.0], and [-30.1,-79.3], respectively. 
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Fig.12 Comparison of fatigue lives by the multiaxial Notch S-N equation and the multiaxial S-N equation together with TCD under axial-torsion loading for the notched calibration specimens
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Fig.13 Comparison of fatigue lives by the predicted multiaxial notch S-N equation and the multiaxial S-N equation together with TCD under axial-torsion loading for the notch 2 
5  Conclusions
From the investigations done in this paper, the following conclusions can be made:
1、A prediction equation, for a low/medium/high cycle fatigue life assessment of metallic materials, is proposed. The prediction equation is a stress invariant based one, in which the computation of stress invariant is on the basis of the linear-elastic analysis of the studied component. 
2、Using experimental data of plain specimens reported in literature, it is proved that the prediction equation is both accurate and high efficient.
3、The prediction equation of a low/medium/high cycle fatigue life of metallic materials in conjunction with the Theory of Critical Distances and linear-elastic notch mechanics are combined to establish the fatigue life estimation equation of the notched components. Using experimental data of the fatigue life of 16MnR steel, validation verification of the notch fatigue life prediction equation is given.
4、Further experimental verification is still needed. In particular, for the notch fatigue life model, further experimental verification is very necessary
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Appendix A
Table A1  Fully reversed uniaxial fatigue experiments of plain specimens made of 16MnR steel(from[13])
	No
	   Strain Amplitude
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	 Stress Amplitude 
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 (MPa)
	  Fatigue life

   N ( Cycles)

	1
	1.999
	514.6
	280

	2
	1.501
	487.3
	400

	3
	1
	459.2
	880

	4
	0.7
	418.2
	2220

	5
	0.5
	380
	4850

	6
	0.38
	351
	9200

	7
	0.3
	322.9
	17300

	8
	0.243
	303.7
	37600

	9
	0.199
	285.1
	79000

	10
	0.18
	274.5
	148400

	11
	0.16
	261.9
	388500

	12
	0.146
	256
	1400000


Table A2
Fully reversed uniaxial fatigue experiments of notched specimens made of 16MnR steel (from[14])
	No
	 Stress Amplitude 
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 (MPa)
	  Fatigue life

   N ( Cycles)

	1
	438.97
	800

	2
	345.53
	2048

	3
	308.42
	3250

	4
	255.81
	8192

	5
	202.86
	27,000

	6
	184.52
	47,000

	7
	151.32
	180,000

	8
	140.64
	232,000

	9
	131.07
	642,200


Table A3 
Linear fitted constants in S-N equations of 16MnR steel 

	Specimen
	 A
	  C
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	Plain specimen
	-0.08941
	2.91288
	0.96211

	Notched specimen
	-0.18268
	3.1392
	0.98329
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Fig.A1 Comparison of experimental data and linear fitted curve of tension–compression fatigue of plain specimens made of 16MnR steel in the double-logarithm frame of axes
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Fig.A2 Comparison of experimental fatigue lives and ones predicted using the Wöhler curve for tension–compression fatigue of plain specimens made of 16MnR steel
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Fig.A3 Comparison of experimental data and linear fitted curve of tension–compression fatigue of notched shaft specimens made of 16MnR steel in the double-logarithm frame of axes
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Fig.A4 Comparison of experimental fatigue lives and ones predicted using the Notch Wöhler curve for tension–compression fatigue of notched shaft specimens made of 16MnR steel 
[image: image232.emf]
Fig.A5 Monotonic tensile stress-strain curve of 16MnR steel (from [13])
Appendix B 
      In this Appendix, two examples of the experimental verification of fatigue life predictions for plain metallic materials are given. 

Table B1  Material constants in S-N equation 

	Materials
	Bending Fatigue
	 Torsion Fatigue

	
	  B1
	C1
	 R-Square
	B0
	C0
	R-Square

	6082-T6[23]
	-0.1425
	3.0224
	0.9906
	-0.1177
	2.8728
	0.9273

	5% Cr [22]
	-0.0714
	3.1582
	0.9804
	-0.0790
	3.5265
	0.9105


Example 1:  5% Cr steel
According to the experimental fatigue data of 5% Cr steel [22], it is a low/medium/high cycle fatigue problem with the influence of mean stress and out-of-phase loading. By using the experimental fatigue data of this material, the material constants in the S-N equation obtained are given in Table B1, with Adj. R-Squares, 0.9804 and 0.9105, for bending and torsion fatigue of the material, respectively. 
The comparison of experimental and calculated fatigue lives of the material under in-phase loading is shown in (Fig.B1), from which it can be seen that the predicted results are in good agreement with experimental ones. 
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Fig.B1  Comparison of experimental and calculated fatigue lives of 5% Cr steel under in-phase loading
Table B2  Out-of-phase fatigue loading cases of 5% Cr steel 
	No
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(degree)
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N


( Cycles)

	1

2

3

4

5

6

7

8

9

10

11
	748

735

589

594

434

430

690

680

550

549

642
	0

0

0

0

0

0

0

0

0

0

0
	433

432

605

597

751

745

394

390

549

543

791
	0

0

0

0

0

0

0

0

0

0

0
	58

94

58

101

50

101

72

108

101

94

79
	46794

45358

6040

20609

13727

6890

45731

13842

279968

110207

8889


Table B3 Fatigue life prediction results of 5%Cr steel under out-of phase loading (including the unusual experimental data)  
	NO
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	ER(NPF)  (%)
	ER(NPF’)  (%)

	1

2

3

4

5

6

7

8

9

10

11
	-0.37979

-0.21232　

-0.09835

-0.22602

-0.39856

-0.12301

-0.19278

-0.0661

-0.3966

-0.2747

-0.48768
	-0.5425

-0.30627

-0.12378

-0.28676

-0.43976

-0.13683

-0.30055

-0.10435

-0.54625

-0.38164

-0.48768
	-66.6

114.9

170.4

33.1

-38.1

85.6

120.1

775.3

-71.1

-12.8

-80.8
	-73.6

33.3

178.2

35.8

-28.6

123.0

26.6

388.3

-75.3

-27.5

-68.2


Table B4  Fatigue life prediction results of 5% Cr steel under out-of-phase loading (excluding the unusual experimental data)  
	No
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	NP F
	NPF’
	Itoh’s formula
	linear formula

	
	
	
	
	ER(NPF)(%)
	ER(NPF’)(%)
	ER(NPF)(%)
	ER(NPF’)(%)

	1

2

3

4

5

6

7

9

10

11
	0.7894

0.8024　

0.9578

0.8747

0.9028

0.9599　

0.8599　

0.7787

0.8404

0.7779
	0.5542

0.9304　

0.4288

0.5542

0.2436

0.3256　

0.7263　

0.5578

0.5808

0.4553
	0.3880

0.6450　

0.3407

0.4368

0.2208

0.2927　

0.4659　

0.4050

0.4180

0.4553
	-60.4

197.7　

206.2

57.3

-33.9

103.2　

179.1　

-65.8

4.0

-78.1
	-69.7

72.3　

212.7

58.7

-23.4

145.6　

50.3　

-71.5

-15.9

-62.6
	-63.8

44.5

235.4

44.1

-8.2

154.5

94.2

-68.9

-8.4

-76.9
	-69.2

79.7

215.9

61.7

-23.4

147.0

53.8

-71.1

-14.4

-61.8


Table B5  Error indexes of fatigue life analysis of 5% Cr steel under out-of-phase loading
	
	ER(NPF)
	ER(NPF’)

	
	Min ER

(%)
	Max ER.

(%)
	AER

(%)
	MER

(%)
	Min ER

(%)
	Max ER.

(%)
	AER

(%)
	MER

(%)

	Itoh’s F
	-78.1
	206.2
	98.6
	50.9
	-71.5
	212.7
	78.3
	29.6

	Linear F
	-68.9
	235.4
	79.9
	41.0
	-71.1
	215.9
	79.8
	31.8

	Itoh’s F

(Including unusual data) 
	-80.8
	775.3
	135.3
	93.6
	-75.3
	388.3
	96.2
	46.5


The fatigue life prediction of the material under out-of-phase loading will be studied in detail in the following. 
Out-of-phase loading cases are listed in Table B2. On the basis of Itoh’s formula and by using of the original and new definitions of the non-proportional loading factor, the fatigue life prediction results are given in Table B3, from which it is found that there is an experimental case (No.8) whose relative error (ER(NPF)) reaches to 775.3%. The failure of this case is obviously untimely fatigue failure. The experimental fatigue data of this case is the unusual data, which will be eliminated in the fatigue life prediction of the material. 
After eliminating the unusual data, the calculated results, including the variation of 
[image: image243.wmf]/
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, NPF, NPF’, and relative error of fatigue life prediction with out-of-phase loading cases, are given in Table B4. The calculated error indexes are listed in Table B5 in which error indexes including the unusual data are also listed. 

On the basis of the Itoh’s formula and by using the original definitions of the non-proportional loading factor, the comparison of two sets of error indexes including and excluding the unusual data illustrates that it is important to exclude the unusual data in the fatigue life prediction of the material: the error ranges, [-88.8, 775.3](%) and [-78.1, 206.2](%), the mean errors, 96.3% and 50.9%. 
While on the basis of Itoh’s formula, the comparison of two sets of error indexes shows that the calculated results of fatigue lives of the material by using the new definition of the non-proportional loading factor are better than those by using the original definition of the non-proportional loading factor: the absolute mean errors, 78.3% and 98.6%, the means errors, 29.6% and 50.9%. 
 Also on the basis of the original definition of the non-proportional loading factor, the calculated results of fatigue lives of the material by the linear formula are better than those by Itoh’s formula: the absolute mean errors, 79.9% and 98.6%, the means errors, 41.06% and 50.9%. This illustrates that it is necessary to employ the linear formula (15) for the fatigue life analysis of the material.  

 From the Table B5, it can be seen that, on the basis of the new definition of the non-proportional loading factor, the fatigue life prediction results obtained by means of Itoh’s formula are nearly same as those by the linear formula (15), which illustrates that the linear formula (15) becomes Itoh’s formula (14) for the material because the constant
[image: image244.wmf]l

in the linear formula (15) is nearly equal to 1 (
[image: image245.wmf]l

=1.0012).
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Fig.B2 Comparison of experimental and calculated fatigue lives of 6082-T6 steel under in-phase loading

Example 2  6082-T6 steel
According to the experimental fatigue data of 6082-T6 steel [23], it is a medium/high cycle fatigue problem. The material constants of the S-N equations obtained are shown in Table B1, with Adj. R-Squares, 0.9906 and 0.9273, for the bending and torsion fatigue of the material, respectively. 

 The comparison of experimental and calculated fatigue lives of the material under in-phase loading is shown in Fig.B2, from which it can be seen that the predicted results are in good agreement with experimental ones. 
The fatigue life prediction of 6082-T6 steel under out-of-phase loading will be discussed in detail in the following. 
Out-of-phase loading cases are listed in Table B6. On the basis of Itoh’s formula and by using the original and new definitions of the non-proportional loading factor, the fatigue life prediction results of the material are given in Table B7, from which it is found that there is an experimental case (No.7) whose relative error (ER(NPF’) reaches to 916.9%. The failure of this case is obviously untimely fatigue failure. The experimental fatigue data of this case is the unusual data, which will be eliminated in the fatigue life prediction of the material.

After eliminating the unusual data, the calculated results are given in Table B8. The calculated error indexes are listed in Table B9 in which error indexes including the unusual data are also listed. 

On the basis of the Itoh’s formula and by using the original definition of the non-proportional loading factor, the comparison of two sets of error indexes including and excluding the unusual data again illustrates that it is important to exclude the unusual data in the processing of experimental fatigue data: the error ranges, [-63.7, 632.9](%) and [-62.9, 237.8](%), the mean errors, 62.2% and 27.99%. 
On the basis of the original definition of the non-proportional loading factor, the calculated results of fatigue life of 6082-T6 steel by the linear formula are better than those by Itoh’s formula: the error ranges, [-58.3, 162.9](%) and [-62.9, 237.8](%), the absolute mean errors, 43.3% and 54.2%, the means errors, 11.3% and 27.9%, which illustrates that it is necessary to employ the linear formula (18) in the fatigue life analysis of the material.  

It can be seen from Table B9 that the fatigue life prediction results of the material obtained by using the new definition of the non-proportional loading factor and the linear formula (15) are the best in all prediction results. 

Table B6  Out-of-phase loading cases of 6082-T6 steel 

	No
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( Cycles)

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
	79

79

69

68

68

60

188

189

189

171

190

149

151

155

152
	0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
	129

116
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99

99

94

106

106

106

99
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68

67

72

47
	0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
	129

125

126

128

125

126

89

94

88

91

91

93

94

92

91
	20730

41490

188882

234725

368080

1016280

5590

27420

34015

44750

47020

114845

273325

445560

456725


Table B7 Fatigue life prediction results of 6082-T6 steel under out-of-phase loading (including the unusual experimental data)  
	No
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	ER(NPF) (%)
	ER(NPF’) (%)

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
	0.035304

0.058219

-0.38065

-0.14933

-0.31527

-0.55003

0.132388

-0.09982

-0.1242

-0.07823

-0.1621

0.051737

-0.10284

-0.21841

-0.09256
	0.039253

0.071057

-0.49499

-0.21331

-0.45035

-0.83527

0.132752

-0.09982

-0.1242

-0.08513

-0.1624

0.071778

-0.14229

-0.28929

-0.14144
	42.3

59.2

-44.5

-3.8

-37.7

-64.5

577.5

29.0

7.3

55.91

-21.1

198.9

20.1

-44.1

17.9
	51.9

65.6

-43.7

-5.2

-38.6

-65.6

916.9

90.3

60.6

108.0

17.4

194.8

18.8

-42.6

11.2


Table B8 Fatigue life prediction results of 6082-T6 steel under out-of-phase loading (excluding the unusual experimental data)  
	No
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	NP F
	NPF’
	Itoh’s formula
	linear formula

	
	
	
	
	ER(NPF)(%)
	ER(NPF’)(%)
	ER(NPF)(%)
	ER(NPF’)(%)

	1

2

3

4

5

6

8

9

10

11

12

13

14

15
	1.0092

1.0177

0.8937

0.9562

0.9031

0.8439

0.9074

0.8813

0.9231

0.8453

1.0406

0.9217

0.8247

0.9504
	0.2608

0.3049

0.2792

0.2932

0.3072

0.2836

0.9271

0.9555

0.9825

0.9539

0.7858

0.7613

0.8022

0.5354
	0.2346

0.2498

0.2147

0.2053

0.2150

0.1867

0.9271

0.9555

0.9029

0.9522

0.5664

0.5502

0.6057

0.3503
	48.2

67.0

-42.1

0.6

-34.6

-62.9

49.8

25.3

83.0

-8.0

237.8

35.2

-36.6

27.6
	58.7

73.5

-41.4

-1.5

-36.1

-64.4

129.4

95.0

149.4

42.4

227.2

31.4

-35.7

18.1
	69.8

85.0

-34.5

12.4

-27.7

-58.3

4.0

-14.8

21.5

-37.4

162.9

7.2

-51.3

19.6
	74.2

87.1

-34.2

11.6

-28.4

-58.8

10.8

-9.2

24.1

-33.3

147.6

1.3

-53.5

13.9


Table B9  Error indexes of fatigue life analysis of 6082-T6 steel under out-of-phase loading
	
	ER(NPF)
	ER(NPF’)

	
	Min ER

(%)
	Max ER.

(%)
	AER

(%)
	MER

(%)
	Min ER

(%)
	Max ER.

(%)
	AER

(%)
	MER

(%)

	Itoh’s F
	-62.9
	237.8
	54.2
	27.9
	-64.4
	227.2
	71.7
	46.1

	Linear F
	-58.3
	162.9
	43.3
	11.3
	-58.8
	147.6
	42.0
	10.9

	Itoh’s F

(Including unusual data) 
	-63.7
	632.9
	88.9
	62.2
	-65.6
	916.9
	115.4
	89.3
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