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Abstract

The interplay between environmental suitability, dispersal and biotic interactions

induces spatial patterns of species' co-abundance. Existing statistical frameworks

that infer the underlying interactions from these patterns either ignore the species

response to the environment or they fail to account for the asymmetric nature of

interactions.

Here, we propose a framework that (a) models pair-wise associations as directed

in�uences from a source to a target species, parameterized with two species-speci�c

latent variables: the response of the target species to the community, and the

e�ect of the source species on the community; and (b) jointly �ts these associations

with a habitat suitability model through a conditional abundance model. Using

both simulated and empirical data, we demonstrate the ability of the framework to

recover known associations and highlight the properties of the learned association

networks. Our framework should now pave the way for getting more accurate

pictures of interspeci�c dependencies from empirical data.
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1 Introduction1

Understanding the drivers of species distribution and their abundance is a long-lasting goal of biogeography [32].2

Niche theory explains the spatial distribution of species by a set of physiological and adaptive properties allowing3

them to thrive in speci�c environmental conditions and decline in others [12, 49]. The range of environmental4

(abiotic) variables, such as climate and soil characteristics, that matches the eco-physiological requirements of a5

species delimits its potential niche (Grinnellian niche, [25]) or (Fundamental niche, [33]). Habitat suitability models6

(HSM) or species distribution models (SDMs) [27] aim to infer and model this niche by establishing statistical7

relationships between observed occurrences or abundances of species and the environmental characteristics of the8

corresponding locations.9

HSMs have proven useful to predict species ranges in space, or their shift in response to climate change,10

providing operational tools to conservation biologists [19,26]. However, as they model multiple species distributions11

separately, they fail to detect, or to account for, possible dependencies between species that can restrict or extend12

their ranges beyond what is expected when considering only abiotic factors. Indeed, species may exclude one13

another locally (competitive exclusion, [28]) or be di�erent enough in terms of space and resource needs to co-exist14

(niche partitioning, [52]). Conversely, some species facilitate others by modifying the environment in a way that15

creates habitats or enables access to resources for other species (engineering and facilitation, [17]). Although these16

interactions take place at a local scale, some of them may alter the range of the species on a wider, macroscopic17

scale [22]. Consequently, they induce consistent patterns of co-location and dislocation that are unexplained by18

the abiotic environment. Such interactions are referred here as associations. The inability to take into account19

the presence or absence of other species is therefore an important source of errors for statistical models of species20

distributions ( [61]).21

Over the last decade, several approaches have been proposed to infer interspeci�c dependencies from the22

observations of many species. Probabilistic Graphical Models (PGM) [34] have been used to infer either directed23

(Bayesian Networks, BN) or undirected (Markov Random Fields, MRF) networks [20] involving plants [1], parasites24

and potential hosts [46], predators and preys [37, 56] or multi-trophic communities turnover [43]. More recently,25

Joint Species Distribution Models (JSDM) were introduced to address the same question while jointly predicting26

co-occurrences of multiple species [44,48]. The gist is that once abiotic factors are accounted for, the unexplained27

variance, typically captured by the correlation matrix of the residuals, is attributed to the e�ect of species on28

one another or to unknown environmental variables [44]. As they rely purely on correlations, JSDMs and MRFs29

are limited to estimating symmetric associations where the involved parties in�uence one another with the same30

polarity and strength. Lany et al. [35] proposed a JSDM that allows to capture asymmetric associations but31

requires longitudinal data (see also [2, 30]). On the other hand, BNs support directed relationships but they32

impose an acyclic structure that does not allow modeling of bidirectional in�uences.33

Inferring associations from co-occurrence data is a common task in text mining. Supposedly, the probability34

of a word occurring in a particular sentence of a text depends on the semantic compatibility (association) of this35

word with the list of words surrounding it, forming its context. The common approach is to use word embedding36

algorithms (e.g word2vec [38]) to learn multidimensional representations (embeddings) of words that encode this37
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contextual semantic compatibility. By analogy, in community ecology, the probability of the presence of a species38

in a given environmentally suitable site depends on its compatibility with other species occurring at that site, i.e.39

other species in the observed community.40

Recently, word embeddings were generalized to any type of data that follow an exponential family distribution41

[36, 50], including binary and ordinal data, in so-called exponential family embeddings. Building on this work,42

we propose here a conditional probabilistic model of species co-distributions that can be trained jointly with any43

habitat suitability model on presence/absence or count data to infer interspeci�c associations. In this paper,44

we detail the methodology, the mathematical formulation and the underlying assumptions. We evaluate the45

capacity of the model to accurately recover associations using both simulated data for which we know the true46

interactions between species, and empirical data for which reliable expert knowledge is available [13,60]. We show47

that our model critically infers meaningful associations. Finally, we demonstrate how the learnt parameters can48

be harnessed, to analyze the structure of biotic association networks.49

2 The inference framework50

Three main conditions should be satis�ed for a species to be present at a given site. First, the site must be51

accessible. This relates to the species' intrinsic dispersal capacity and the presence of migration opportunities52

or barriers. Second, the abiotic conditions should allow the species' population to maintain a positive growth53

rate. This condition is referred to here as habitat suitability and is the target of Habitat Suitability Models.54

Third, the species should sustain the interactions with the other species of the community, since those interactions55

can also impact the species' survival chances and its abundance [27]. Although we recognize the importance of56

spatial dispersal processes, in this study we focus on the latter two factors, namely habitat suitability and species57

interactions.58

Notation. We consider a dataset consisting of the abundances of a collection S of m species observed at a59

collection K of n sites, as well as abiotic variables measured at these same sites or in their vicinity. The abundance60

of species i at site k is denoted yki, while the vector xk represents the abiotic variables at site k.61

In what follows, we introduce the key concepts used in the inference model. In particular, we explain how we62

model the associations between a pair of species by decomposing them into e�ects and responses, represented as63

multi-dimensional embedding vectors, and how we use these embeddings to recover biotic interactions.64

2.1 Spatial associations and biotic context65

2.1.1 Representing species associations using embeddings66

For a given pair of species, a spatial association describes the relative in�uence that they have on each other's67

abundance. The two directions of this in�uence can be of di�erent types (positive, negative or neutral) and have68

di�erent intensities Fig 1b. Several mechanisms can lead to such association: a direct interaction between these two69

species (e.g. competition, predator-prey), an indirect interaction through the environment or a shared correlation70
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to an unmeasured environmental variable or an unobserved group of organisms.71

Here, we represent the association between species i and j with a pair of scalars aij and aji, representing the72

strength of the in�uence of species j on species i and vice-versa, respectively. More speci�cally, aij represents73

the change (excess if positive, de�cit if negative, none otherwise) in target species i's abundance induced by the74

source species j. These values across all pairs of species, and in both directions, can be collected into an m ×m75

asymmetric association matrix A.76

The association strength depends on two parameters: the e�ect applied by the source on the target species,77

and the response of the target species. We assume these parameters are controlled by intrinsic traits or properties78

of the species, which we encode in two separate d-dimensional real-valued vectors referred to as embeddings. In79

practice, d is a user de�ned hyperparameter which is typically signi�cantly smaller than half the number of species.80

The e�ect embedding of species i, αi, captures the type of organisms the species allows when it is present. The81

response embedding of species i, ρi, measures the type of biotic context the species would strive in. For instance,82

trees with spreading canopy create shade (e�ect) that selects only shade-tolerant (response) species and exclude83

others. The response and e�ect embeddings of the di�erent species can be collected into two m × d matrices,84

respectively denoted as P and Q.85

The association matrix Fig 1a is then written as A = PQT .86

2.1.2 Biotic context87

The biotic context encodes our assumptions about the potential biotic e�ects a target species is exposed to at a88

given site. In the simplest case, without any prior knowledge, it consists of individuals from other species observed89

at the same site. Formally, the biotic context of species i at site k, denoted Cki, is de�ned as follows:90

Cki = {j ∈ S, j 6= i and ykj > 0} .

We obtain the aggregated e�ect of the biotic context by averaging the e�ect embeddings of its elements weighted91

by their respective abundances:92

zki =
1

|Cki|
∑

j∈Cki

ykjαj .

This formulation allows the presence of facilitators and competitors to balance one another. By weighting with93

abundance, we implicitly consider that individuals from the same species are similar and contribute equally to the94

community structure. Rare species have a noticeable impact only if their per capita e�ect is stronger than the95

aggregated e�ect of dominant groups.96

The biotic context carries implicit constraints on the structure of species association networks by restricting97

the set of potential associations a priori. For instance, it can be customized for each species according to its98

known interactions. Moreover, it can include species from neighboring locations (spatially-explicit) up to a99

chosen radius where their in�uence is relevant (e.g. species with high mobility). Similarly, we can construct100

the biotic context from previous observations (temporally-explicit) to perform a causal analysis. We detail the101
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mathematical adjustments of these alternative de�nitions along with the associated data requirements and relevant102

e�ect aggregation functions in the Appendix.103

2.2 A conditional generative model of abundance104

2.2.1 Formalization105

The habitat suitability for species i at site k, denoted ski, is a binary variable that follows a Bernoulli distribution106

whose parameter (success rate) is estimated using a habitat suitability model (HSM), h, �tted on the target107

species's occurrences, i.e.108

ski ∼ B
(
hi(xk)

)
.

At sites where the abiotic environment is unsuitable (i.e. where ski = 0), the probability mass of the species109

abundance is concentrated on zero. Otherwise (i.e. where ski = 1), the abundance of the species is a function of110

its biotic context. In other words, we assume that the abiotic environment conditions the presence or the absence111

of a given species, while the biotic context controls its abundance.112

Following Rudolph et al. [50], we model the abundance of species i at site k using the canonical form of the113

exponential family E , whose probability density function (pdf) fE is parameterized by ηki. Formally,114

yki ∼

 E
(
ηki, τ(yki)

)
if ski = 1,

δ0 otherwise,

such that115

- δ0 denotes Dirac (point-mass) distribution, whose density is equal to one at zero, and to zero elsewhere.116

- τ denotes the su�cient statistic from the canonical form of the exponential family distribution. It depends117

only on the data point yki.118

We let the canonical parameter ηki depend on the response ρi of the target species and on the biotic context119

e�ect zki. An o�set oi is used to represent the baseline abundance of each species in the event of an empty biotic120

context. The link function f scales the outcome to the domain of the target variable. The canonical parameter121

ηki is de�ned as122

ηki = f(ρizki + oi) ,

which can be rewritten as an aggregate of pairwise association strengths:123

ηki = f
( ∑
j∈Cki

ykjaij + oi
)
.

The type of data considered (presence/absence vs. abundance) might lead to di�erent choices of probability124

distributions, which in turn require resorting to di�erent variants of the generic model (cf. Table 1).125
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2.2.2 Inference126

We gather as positive and negative observations (instances), the species that are present and absent at each site.127

Absent species are typically over-represented in an ecological dataset as compared to present species, leading to a128

high imbalance between positive and negative observations. To address this issue, while all positive instances are129

included into the training set, negative instances are sub-sampled randomly (at rate r%) at each training iteration.130

Then, we use Stochastic Gradient Descent [6] to learn the parameters (esp. response and e�ect embeddings matrices131

and HSM parameters) that minimize the negative loglikelihood (cf. Appendix) of the selected observations with132

the addition of lasso penalties on the embeddings to promote the sparsity of the resulting associations. Finally, we133

use cross-validation to select the hyper-parameters (including hyper-parameters for the abiotic suitability model,134

embedding dimension, vector of species o�sets, negative examples subsample rate and regularization coe�cient).135

2.3 Unraveling inter-speci�c association networks136

To identify meaningful associations, we apply two �ltering steps to the estimated matrix A. First, the statistical137

�ltering step consists in setting to zero all associations with a con�dence interval containing zero and keeping the138

mean value for the rest. Second, the biogeographic �ltering step aims to further eliminate associations that are139

predicted to potentially exist from the latent representations of the species, but are not realized by the species140

occurrences because they break some biogeographic constraints:141

1. Mutualism or attraction between two species require co-existence. Thus, we set to zero any inferred positive142

e�ect involving two species never observed together in the same site [51], i.e. non-co-occurring.143

2. Repulsive relationships do not require co-occurrence and may even explain the geographic separation. Hence,144

the involved species do not have to co-occur but should live in similar environments to be considered as a145

potential negative association. Speci�cally, we compute the ranges of the environmental values corresponding146

to the occurrences of each species and retain negative associations only if these ranges overlap or if the147

species are otherwise su�ciently similar (above a user-de�ned similarity threshold) in terms of their habitat148

suitability parameters.149

Furthermore, we focus on the polarity of the associations, rather than their strength, hence we consider a150

discrete version of the association matrix, which we call the adjacency matrix de�ned as follows:151

Iij =


positive if aij > ε+,

negative if aij < ε−,

neutral otherwise.

such that ε+ and ε− represent a user-de�ned threshold on the strength of the positive and negative associations,152

respectively.153

The resulting matrix de�nes a network, where each species is represented by a vertex and a directed edge154

labelled as positive (resp. negative) from vertex i to vertex j represents a positive (resp. negative) in�uence of155

species i on species j.156
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By design (Fig. 1a), species with similar response embeddings constitute clusters of rows in the adjacency157

matrix, called response groups. Conversely, species with similar e�ect embeddings constitute clusters of columns158

called e�ect groups. These groups can be computed simultaneously using a bi-clustering algorithm [23]. The159

product of both types of groups results in the emergence of clusters of exchangeable or redundant species in the160

resulting network, called structural roles [21].161

3 Theoretical validation of the framework162

Before applying our model to infer associations from empirical data, we evaluated its ability to recover interspeci�c163

associations from simulated datasets with known associations.164

3.1 Data generation165

We used a process-based stochastic model adapted from Virtualcom [40] to simulate the assembly of individuals166

from a regional species pool into communities, on di�erent locations sampled along an environmental gradient.167

The assembly process is controlled by three �ltering mechanisms: the response to the abiotic environment, the168

outcome of biotic interactions, and reproduction.169

We set up an experiment where multiple simulations were run on random points on a single abiotic gradient170

ranging from 0 to 100 with di�erent hand-crafted con�gurations of the prior association matrix: absence of associ-171

ation, positive associations only, negative associations only and both positive and negative associations. Generally,172

few species were set to interact. We investigated two settings where species are involved in one association (sparse)173

or more than on associations (dense). Associated pairs were chosen such that their abiotic niches overlap.174

In each con�guration mode, we varied the number of species (5, 10 or 20), the density setting (sparse or dense)175

and whether the association matrix included asymmetric e�ects (semi-attraction or semi-repulsion). Positive (resp.176

negative) e�ects were all set to +1 (resp. −1) as we are interested in the polarity of the associations rather than177

their magnitude. The factorial design of this experiment produced 29 simulation datasets (Appendix).178

3.2 Evaluation179

We describe the inference procedure and model selection in detail in Appendix.180

3.2.1 Observed relative abundances vs. inferred associations strengths181

For each association type and simulation con�guration, we compare the inferred association strengths to the182

observed relative abundance e�ects. To quantify these e�ects, we de�ne the relative abundance index (RAI), an183

asymmetric metric that measures the change in abundance of the target species when the source species is present184

as compared to its mean abundance irrespective of whether the source species is present.185

Formally, we de�ne186
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ȳt = avg
(
{ ykt, for all k ∈ K such that ykt > 0 }

)
, and

∆st = { ykt − ȳt, for all k ∈ K such that ykt > 0 and yks > 0 } .

Then RAIst = avg(∆st). The larger the standard deviation std(∆st), the more ambiguous the strength of the187

e�ect of species s on species t. If the con�dence interval avg(∆st) ± 1.96 std(∆st) does not contain zero, then188

the simulated dependencies unambiguously translate a polarized e�ect of species s on species t. Otherwise, the189

polarity of the e�ect is ambiguous, due to either confounding e�ects of other species or a neutral association if190

the mean is close to zero. We also compute the Jaccard coe�cient between the binary presence/absence vectors191

of species s and t, a.k.a. Jaccard co-occurrence index, denoted as Jst.192

3.2.2 Association classi�cation evaluation193

We discretized the learnt associations using the threshold values (ε+, ε−) = (0, 0) to obtain the corresponding194

classes (positive, negative, neutral). Subsequently, we evaluated the latter against the simulated association classes195

as the ground-truth using standard multi-class performance metrics (recall, precision, F1-score). Recall measures196

the percentage of associations of a speci�c class correctly recovered by the model, whereas precision quanti�es197

the percentage of true associations amongst those classi�ed as the speci�ed class. The F1-score is computed as198

the harmonic mean of recall and precision. A higher recall indicates lower false negatives whilst higher precision199

indicates lower false positives.200

3.3 Results201

Overall, we found a better �t for positively associated communities than those in competition, while mixing202

both types resulted in intermediate performances. In the case of simulations with competition, most sparse203

and asymmetric con�gurations induced better performances than their (dense and symmetric) counterparts (see204

Appendix).205

The average relative abundance index re�ected well the simulated associations with negative (resp. positive)206

e�ects below or around (resp. above) zero, while neutral associations were centered around zero. However, most207

positive e�ects yielded small relative abundance e�ects as compared to the negative e�ects. Although more clearly208

marked, the latter approached neutrality on larger and more densely connected communities (Fig. 2).209

The inference model was able to discriminate positive from negative e�ects while maintaining an average value210

for non interacting pairs centered on zero with a small variance. On simulations with a dense mix of positive and211

negative associations, both observed e�ects and inferred associations were close to zero, possibly due to opposing212

e�ects canceling each other. The absence of associations led to the systematic prediction of the o�set hence the213

constant deviance on mixed types simulations.214

On average, recall did not vary signi�cantly between positive and negative associations, whereas precision215

was higher for negative than for positive associations (Table 2), indicating the detection of spurious positive216
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associations. Much higher precision was achieved for neutral associations (absence of association). The prediction217

performance was better for small species pool, with higher recall on the dense con�gurations but higher precision218

on sparse ones. The sparse asymmetric positive simulation resulted in the worst predictive performance with low219

recall.220

4 Empirical case study221

We applied our model to empirical observations (also analyzed by [60]) of species abundances to show how it can222

unravel meaningful associations. We used the plant dataset from [13] that consists of 75 vegetation plots, of size223

5 × 5m sampled around July 2000. Across the vegetation plots, the abundance of the 82 occurring plant species224

were registered. In addition, a set of environmental and topographic variables was recorded on each plot. We225

describe the data preprocessing, framework adaptation and model selection procedures in Appendix.226

4.1 Network analysis227

We performed a hierarchical bi-clustering on the inferred association matrix to obtain e�ect and response groups228

(Fig. 3a). In parallel, we applied the modularity maximization algorithm [42] on the association network to identify229

densely connected modules, referred to as communities [21]. After that, we mapped the structural roles within230

the modules to create the group-level network. Finally, we analyzed the resulting patterns in light of existing231

literature on alpine plants interactions [14].232

4.2 Results233

We identi�ed four densely connected modules of di�erent sizes, within which species occupied various structural234

roles in the plant association network. Modules were structured along the snow melting date gradient (Fig. 3a).235

Species from early-melting sites were classi�ed into the same module. We found a prominence of positive asso-236

ciations, speci�cally an unselective mostly asymmetric attraction of forbs and grasses to tall dominant graminoids237

(Carex, Kobresia). Forbs and grasses formed two distinct groups linked by negative associations. Besides, some238

of them acted as hubs connecting the high elevation sites to the adjacent sites where they also occurred. The239

second module encompassed two groups of grasses: (i) Tall herb grasslands occuring in favorables conditions,240

mostly structured by negative associations (ammensalism and competition); (ii) Short herb meadows, exposed to241

zoogenic disturbances. They presented higher abundances when co-occuring with tall herbs. The third module242

consisted of chinopholous (cold-resistant) vegetation appearing on late-melting sites. The last module included243

north-facing isolated communities dominated by Salix Herbacea positively associated with high-altitude commu-244

nities and characterized by high eccentricity (Fig. 4).245

In general, positive associations were prominent on stressful conditions. For instance, on early melting sites,246

species are exposed to wind and erosion due to snow melting [13]. The positive associations could be explained247

by the facilitative e�ect of graminoids through multiple hypothetical mechanisms. Graminoids have the ability to248

maintain the soil stability [9,29], they can also prevent dessication and frost heaving on stones in favor of seedling249
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survival [14]. They also sustain a suitable microclimate for small forbs and grasses, while o�ering protection from250

the wind [59]. On the other hand, negative associations were found on the richest sites, hypothetically re�ecting251

a competition for resources: water and Nitrogen [14].252

As reported in the literature, the abiotic conditions strongly structured the predicted response [13] of the plant253

species and the dominant interaction types [10]. Speci�cally, network modules were distributed along the gradient254

following their composition's response to the average snow duration. Negative associations in�icted by competitive255

tall grasses on mid slope communities connected early-melting communities to the chinopholous vegetation from256

late-melting sites in the resulting association network (Fig. 3b). Response and e�ect groups were included in one or257

at most two close (in terms of position in the gradient) modules (Fig. 3a). Non neutral associations had consistent258

types (either negative or positive) within e�ect groups regardless of the responding species, suggesting that species259

roles (e�ects) in their community might be predictable from their own characteristics and the surrounding abiotic260

conditions. At last, learnt associations were symmetric within groups but asymmetric (mostly semi-attraction or261

semi-repulsion) between them.262

5 Discussion263

In this article, we tackled the challenge of inferring interspeci�c associations from multiple species co-abundances264

along environmental gradients. To do so, we formalized pairwise associations as a function of two sets of latent265

variables representing the response and the e�ect of each species in respect to the others. We incorporated these266

associations into a conditional probabilistic model of abundance that controls for habitat suitability. The evaluation267

of the model's ability to recover known associations from simulated data showed that it is able to discriminate the268

association types (positive, negative or neutral), but the inferred strength depended on the species pool size, niche269

overlap, network density and the presence of multiple confounding associations. When we applied the model to270

the co-abundance data of plants along a mesotopographic gradient in the French Alps, the model identi�ed most271

of the important relationships expected in these plant communities [14].272

5.1 Disentangling confounding e�ects273

Inferring species associations from co-occurrence patterns is a very challenging task [11]. Even in our simulated274

dataset for which we have pre-de�ned interactions between species, the resulting co-occurrence levels could be high275

even for known competing pairs of species (case of a small species pool with large carrying capacity). Instead, the276

co-abundance structure better re�ects the nature of associations. Indeed, species' abundances are lower than in277

average in presence of negative associations and higher with positive associates. Nonetheless, pairwise abundance278

e�ects may turn out to be neutral in presence of multiple confounding e�ects [7]. Our proposed framework is able279

to tease apart the di�erent opposing in�uences (Fig. 2) by estimating the pairwise associations conditioned on all280

other species.281
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5.2 Interaction of habitat suitability and biotic associations282

Following a hierarchical �ltering scheme of community assembly [7, 44, 45], we assumed the species occurred only283

on suitable habitats. However, species may occur outside their abiotic niche if the local conditions are ameliorated284

by their peers (facilitation) [8, 16,53].285

In the absence of micro habitat descriptors, two scenarios are possible depending on the location's distance in286

environmental space from the species' true fundamental niche. If the distance is small, any HSM would probably287

overestimate the species ranges [5] with no residuals on the occurrence probabilities. Consequently, the associations288

would go undetected by joint presence/absence models (e.g JSDMs), whereas the proposed model will detect them289

as long as there is an observed increase in abundance. Conversely, if the distance is large then a robust HSM would290

correctly learn the true abiotic niche, leaving the unexplained presence to the biotic e�ect. But since the habitat291

was found unsuitable by the HSM component, our model would fail to detect the underlying biotic association.292

Indeed, the model constraints considered co-occurrence as a prerequisite for positive associations (including293

facilitation) while in the described scenario co-occurrence is a consequence of facilitation. A compromise solution294

would be to consider that species do not respond separately to each factor : abiotic captured by the HSM param-295

eters θh and biotic through the response embeddings ρ. Instead, they respond to the outcome of the aggregation296

f of the abiotic features x and the biotic context e�ects z. By choosing f to be a universal function approximator297

(e.g a feed-forward neural network [31]), we can learn which of the hierarchical, additive or interactive models of298

the abiotic and biotic �lters best �t the observed abundances/distributions without any a priori assumption.299

5.3 Associations validation300

With no prior or guidance on the expected associations network, validating inferred associations is challenging.301

It is now agreed upon that associations are not equivalent to biological interactions [18]. They represent302

signi�cant spatial co-location patterns, that are informative in a predictive rather than in a causal way [39].303

The speci�c mechanism that led to these patterns may vary from pair to pair, ranging from direct interactions304

(e.g. trophic), to indirect interactions (e.g. engineering, shared habitat). Consequently, the validation of inferred305

associations should consider other explanations than biotic interactions.306

In general, because many processes in�uence community assembly, multiple scenarios could lead to the same307

communities making this problem unidenti�able [41]. In this case, rather than a single expected list of associations,308

we need all the possible combinations of associations, or a goodness-of-�t measure that accounts for equivalence309

between di�erent combinations. A possible way to prevent this issue is to include prior knowledge of ecological310

interactions in the model [11]. For instance, [54] used a Bayesian network with a prede�ned structure, and trained311

its parameters using a HSM to predict species occurrence probabilities. In our case, such constraints can be de�ned312

by altering the biotic context de�nition. One direct way to do it is to consider a customized biotic context for313

each species composed of the set of its potential interaction partners in a pre-built regional metaweb.314

There is now growing evidence that ecological interactions are context-dependent [47, 55], we showed in the315

Appendix how to adapt the framework to infer associations whose strength is modulated by other covariates (e.g.316

stress, presence of predator, etc.). Recently developed models account for association variability as a function of317

12



the environmental context [15, 55]. Despite these new possibilities, the question of how to validate their results318

still arises itself.319

5.4 Species roles and association's asymmetry320

In the plant network, modules were strongly structured by the abiotic gradient. Because of the HSM conditioning,321

this pattern would be expected in gradients with strong taxonomic turnover. Modules and structural roles provided322

two complementary information. The modules brought insight into the connectivity therefore the stability [24]323

of the meta-network while structural roles, including response and/or e�ect groups, were useful to evaluate the324

functional redundancy within locally projected networks. In the future, identifying characteristic traits within325

structural roles would allow the elicitation of the functional drivers of network structure.326

Many studies [57] of interaction networks reported that interactions tend to be asymmetric, both in terms of327

�type� in binary networks [3, 58] and in terms of �strength� in quantitative networks [4]. By analyzing various328

types of observed ecological networks, [57] suggested that asymmetric interaction strengths arise from mismatch in329

species relative abundances. Since the proposed model learns per capita e�ects, the abundance is already controlled330

for. In the case of Alpine plants, the response and e�ect groups encompassed species occurring in similar habitats.331

Knowing that, the predominance of symmetrical (resp. asymmetric) associations within (resp. between) groups332

suggests the degree of asymmetry might be inversely related to habitat sharing or niche overlap.333

Nevertheless, the ability to discern this asymmetry sheds light on the imbalance and direction of interspeci�c334

dependencies, drawing a more accurate picture for biodiversity forecasting models.335

6 Conclusion336

Biological interactions and other processes induce spatial patterns of co-occurrence and co-abundance. We pre-337

sented and validated a model of species co-abundances as a function of the habitat and biotic associations. We338

proposed an asymmetric scheme for modeling associations that is based on learning latent representations of339

species' responses and e�ects. Future e�orts should be directed towards a combination of prior knowledge on the340

complete or partial topology of the association networks to guide the inference process. Along with that, a strong341

theory of how known ecological interactions in�uence the co-distribution of species is needed to support all these342

models.343
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(a) Inferred plant association matrix. Species in the association matrix are grouped based on a hierarchical bi-clustering
performed row-wise (yielding response groups) and column-wise (yielding e�ect groups).

(b) Network of plant associations. Blue (resp. red) edges indicate negative (resp. positive) edge weights. Node colors on
the graph represent communities identi�ed by the modularity maximization algorithm [42] whilst node sizes are scaled
according to the plant height. Nodes (except Salix Herbacea, which represents the vegetation on the northern face of the
gradient) are placed from left to right following an ascending order of their response to Snow duration (regression coe�cient
from the Generalized Linear Model used as a Habitat Suitability Model).

Fig. 3: Plant associations on an Alpine mesotopographic gradient. We highlight the communities (node colors)
in �gure (b) using colored labels on the matrix (a).
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MS grassland

HS forbs
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LS grasslandShort herbs
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Alch glau, Anth nippPlantago alpina
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Fig. 4: The summary association network. Structural roles (nodes) are mapped to position in the gradient
(Higher-slope HS, mid-slope MS, lower-slope LS) and plant classes (graminoids, grasses/herbs, forbs) and network
modules (node colors). Edges go from a source (e�ect group) to a target (response group). Blue (resp. red) edges
represent positive (resp. negative) associations.
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Data type Distribution Link function Natural parameter mapping

Presence/ Binomial identity Probability of occurrence
Absence pkj = σ(

∑
i∈Cki

ykjaij + oi
)

σ : logistic function

Count Poisson identity Mean count
λki = exp(

∑
j∈Cki

ykjaij + oi
)

Count Poisson logarithm Mean count
λki = (

∑
j∈Cki

ykjaij + oi
)

Count Negative identity Mean count
binomial pki = exp(

∑
j∈Cki

ykjaij + oi
)

Table 1: Natural parameter mapping to the expression of the mean for common distributions used for pres-
ence/absence or count data, for di�erent choices of the link function.
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Association type Support Recall (%) Precision (%) F1-score (%)

Neutral [12, 380] 60.75 98.64 74.50
Negative [2, 20] 72.00 34.02 41.23
Positive [2, 20] 77.60 17.60 26.72

Averages - 62.45 94.71 73.09

Table 2: Association classi�cation performances and class supports (number of true associations of each class).
The averages are obtained by weighting the score of each association type by its support.
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