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1 Supplements to framework description

1.1 Inference procedure in details

We outline the inference process, i.e. the procedure for training the model. For a site k, we de�ne the vector of
observed species' abundances:

yk = (yki)i∈S .

We gather as positive and negative observations (instances), the species that are present and absent at each
site, respectively:

S+k = {i ∈ S, yki > 0} ,
S−k = {i ∈ S, yki = 0} .

Absent species are typically over-represented in an ecological dataset as compared to present species, leading
to a high imbalance between positive and negative observations. To address this issue, while all positive instances
are included into the training set, negative instances S−k are sub-sampled randomly (at rate r%) at each training
iteration. By introducing randomness into the objective function, this sub-sampling procedure also improves the
robustness of the estimations and prevents over-�tting. Furthermore, we promote the sparsity of the embeddings
and of the resulting association matrices by adding regularizers on the embedding vectors.

In summary, given the training data (abundances Y and abiotic variables X) together with the user-de�ned
hyper-parameters (including hyper-parameters for the abiotic suitability model φh, embedding dimension d, vector
of species o�sets O, negative examples subsample rate r and regularization coe�cient λ), the model training
procedure aims to infer the values of the model parameters (esp. the response and e�ect embeddings matrices P
and Q, and the HSM parameters θh) that optimize the objective function L. In other words, the model is trained
to maximize the penalized likelihood L of the observed abundances on each site for all positive instances and the
sampled subset of negative instances.

L(θh, P,Q) =
∑
k∈K

(
∑
i∈S+

k

L+
ki +

∑
i∈S̃k

L−ki) + λ(|P |1 + |Q|1)

where L+
ki = log

[
hi(xk; θh)

]
+ log

[
fE
(
ηki(P,Q), τ(yki)

)]
and L−ki = log

[(
1− hi(xk; θh)

)
+ hi(xk; θh)fE

(
ηki(P,Q), τ(0)

)]
To do so, we use Stochastic Gradient Descent [1] as our optimization algorithm of choice. The resulting model

can then be applied on hold-out data for validation, and on previously unseen records to predict the abundance
of a species given other species' abundances.

1.2 Extensions of the biotic context de�nition

1.2.1 Adding conditioning covariates

In the base model, the estimation of any pairwise interaction is oblivious to the abiotic or biotic conditions sur-
rounding it. To account for these neighborhood conditions, we extend the base model by allowing the embeddings
used to represent the biotic context to depend on some chosen variables.

Each site is associated to p conditioning covariates. These covariates are stored alongside an o�set in a n×(p+1)
matrix V , such that each of the �rst p columns of V contains the values of the corresponding covariate for the
di�erent sites while the last column is �lled with ones. Then, given an embedding dimension d, the covariates are
mapped to d dimensions by applying a regression with a weight matrix W ∈ Rd×(p+1). The resulting conditioning
vectors are such that βk = WvTk .

The extended biotic context is then written as follows, where � is the element-wise vector product:

zki = βk �
( 1

|Cki|
∑

j∈Cki

ykjρj
)

=
1

|Cki|
∑

j∈Cki

ykj · (βk � ρj)

The biotic associations can be recovered as in the base model, by isolating the pairwise interactions in the
response variable. However, in this case, the associations we obtain are represented by a three-dimensional tensor
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instead of a two-dimensional matrix. Each slice along the �rst dimension of this tensor represents a local association
network.

akij =

d∑
l=1

(βk � αi � ρj)l

ηki = f
( ∑
j∈Cki

ykiakij + oj
)

By incorporating the environmental covariates on the latent space, we gain two desirable properties. First, we
get a �xed number of parameters that is a factor of the embedding dimension, which is signi�cantly smaller than
the number of modeled species. Second, we ensure species with similar latent traits, as captured by the response
and e�ect embeddings, share associations regardless of the surrounding conditions. As a result, response or e�ect
groups of species computed from the learnt embeddings remain consistent in the environmental space.

1.2.2 Temporal extension

When longitudinal data are available, we denote the abundance of species i at site k at time-point t as y
(t)
ki .

Accordingly, the de�nition of the biotic context for a target species at a given time-point is extended to contain
the species, including the target, that were observed in the previous time-point:

C
(t)
ki = {j ∈ S, y(t−1)kj > 0}

z
(t)
ki =

1∣∣∣C(t)
ki

∣∣∣
∑

j∈C(t)
ki

y
(t−1)
kj ρj

1.2.3 Spatial extension

Given a function d that measures the distance between any pair of sites and a radius r, we consider a spatial
extension of the base model where the biotic context is de�ned to contain species that were observed at locations
within distance r of the considered site.

Cki = {(j, l) ∈ S × K, ylj > 0 and d(k, l) ≤ r}

One can use multiple radius values customized to the dispersal abilities of each target group or species for
instance. The e�ect of each contextual element is weighted in inverse proportion to its distance to the target
location. The hyperparameter τ controls the decrease in weight per unit of distance. Similarly, τ can be customized
for each group of species based on expert knowledge.

zki =
∑

(j,l)∈Cki

ylj · exp(−τ d(k, l))

1.2.4 Graph extension

So far, we de�ned the biotic context using the community composition in terms of species, possibly involving
their abundances. At this point, we are able to capture pairwise additive e�ects. However, we miss the impact of
interactions between context species or the whole network structure around the target location on the abundance
distribution of the target group, contextual network.

Fortunately, graph embedding algorithms permit the incorporation of structured data such as knowledge graphs
into predictive models. For instance, we can rede�ne the biotic context as the interaction network at site of interest
k minus the target species i, noted Gk/i. The context embedding is then obtained by applying a graph kernel
function k with parameter θ on the contextual network

zki = k(Gk/i; θ) .

2 Supplements to the simulation experiment

2.1 Simulation how-to

We used a process-based stochastic model adapted from Virtualcomm (Gallien and Münkemüller 2015) to simulate
the assembly of individuals from a regional species pool into communities, on di�erent locations sampled along
an environmental gradient. The assembly process is controlled by three �ltering mechanisms: the response to the
abiotic environment, the outcome of biotic interactions and reproduction. For simplicity, the spatial structure of
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communities and thus dispersal processes are ignored. In other words, there is no exchange of individuals between
neighboring communities. The simulation starts with a given or random initial composition for each community
independently. Individuals are replaced through time until an equilibrium state is reached or a user-de�ned number
of iterations is completed. The �nal communities' composition is returned at the end Fig. 2.

2.1.1 Notation

- We start by sampling n locations uniformly on a single environmental gradient E.

- All locations have the same carrying capacity of K individuals from a common pool ofm species S = {Sj/j ∈
[1,m]}.

- Each species has its own optimal environmental value µj ∈ E as well as a niche breadth δj ∈ E.

- Biotic interactions are described by a full interaction matrix I = (Ijk)/j, k ∈ [1,m]2 ; −1 ≤ Ijk ≤ 1 where Ijk
represents the e�ect of the interaction between the pair (Sj , Sk) on species Sk. We also write: I = I+ − I−
such that:

� I+ = (I+jk)/j, k ∈ [1,m]2; 0 ≤ I+jk ≤ 1 represents the matrix of positive e�ects (facilitation matrix)

� I− = (I+jk)/j, k ∈ [1,m]2;−1 ≤ I+jk ≤ 0 represents the matrix of negative e�ects (competition matrix)

2.1.2 Assembly rules

At each timestep (epoch), given an actual composition c, the probability that an individual from a given species
i to replace any other individual of c is given by the following equation ; such that:

• Benv: weights of the abiotic �lter.

• Bcomp: weight of the competition.

• Bfac: weight of the facilitation.

• Babun: weight of the reproduction �lter, can be interpreted in terms of growth rate.

• Penv,i,c: the probability of species i to occur under the environmental value Ec is given by the normalized
density on Ec of a Gaussian distribution parameterized by its optimum and niche breadth. The closer to its
optima, the higher the probability of the species' occurrence.

• Pcomp,i,c: the probability for an individual of species i to join the community given the aggregated e�ect of
its competitors in c.

• Pfac,i,c: the probability for an individual of species i to join the community given the aggregated e�ect of
its facilitators in c.

• Pabund,i,c: probability of an individual of species i to join the community as a result of the reproduction of
some of the Ni,c conspeci�cs in c.

The unnormalized weights Wi,c for each species are then normalized by dividing each one of them by their
sum. The result is a vector of probabilities W that sums to 1. Finally, we sample from a multinomial distribution,
parameterized with W , K individuals to compose the new community.

2.2 Simulation con�guration

We summarize the simulation parameters as well as the graphic codes in Fig. 3. Throughout our simulation ex-
periment, we use symbols to picturally and concisely represent combinations of density and directionality. Hollow
shape represent a sparse setting whereas a �lled shape represents a dense setting. A triangle represent an asym-
metric setting whereas a diamond represent a symmetric setting, since they intuitively evoke single-directional and
a bi-directional arrows, respectively. Density and directionality of associations is irrelevant for con�guration with
the abiotic �lter only, that are hence represented by a simple dot.
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2.3 Framework adaptation and training

For each simulated dataset, we counted the number of individuals of each species in each site to produce a site-
by-species abundance matrix and binarized these counts to produce a site-by-species occurrence matrix.

We used a Generalized Linear Model (GLM) with a logistic link and a quadratic term to model the response
of species to the environmental gradient to produce the habitat suitability map for each of the simulated species.
We then applied the inference model with a negative binomial distribution to �t the species counts. We set the
o�sets for each species as the average value of its abundance across its presence sites (i.e. oi = ȳi). We also added
lasso penalties with λ = 0.01 on response and e�ect embeddings to promote the sparsity of their products. To
adjust the embeddings dimension d, we used a 5-fold cross-validation scheme where we monitored the deviance of
the predicted abundances (see Supplementary Materials).

Given the observed count y and the predicted mean count µ, the deviance is computed as two times the
di�erence between the predicted and the maximum achievable likelihood. The latter is simply the likelihood on
the observed count value

d(y, µ) = 2
(
L(y)− L(µ)

)
.

Having set d to the value that minimizes the average deviance over all species, we trained the model on 1000
bootstrap samples from the training set. Finally, we used the bootstrap estimates to compute the 95% con�dence
interval of the inferred association matrix's mean.

2.4 Model selection

The model performances for each simulation and for each embedding dimension are reported on Table 4, the
embedding dimension was selected based on the best score in terms of deviance.

3 Supplements to the empirical application

3.1 Environmental data preparation

The plant dataset contained the following set of environmental variables:

slope : the slope inclination in degrees,

snow : the average snowmelt date in Julian days between 1997 and 1999,

physd : the percentage of non vegetated soil due to physical processes,

zoogd : the percentage of non vegetated soil due to marmot activity,

aspect : the relative south aspect, and

form : the microtopographic landform index.

We initially applied a one-hot encoding scheme to the two categorical features (aspect and form) and we scaled
the numerical features.

3.2 Framework adaptation and training

We split the observations into a training and a test dataset using a multi-label strati�cation scheme1 to ensure
that all species were covered and their proportions were preserved in both sets.

For each plant species, we pre-trained a generalized linear model (GLM) with a logit link to relate species
occurrences to the environmental variables. We used the learnt weights as initial parameter values in the habitat
suitability component of our framework.

We de�ned the biotic context for a target species as the set of plants observed on the location of interest. We
used a negative binomial distribution to �t the plant counts. The embedding vectors were initialized using random
samples from a uniform distribution on the [−0.01, 0.01] interval, and subjected to lasso penalties to promote
sparsity. Finally, the o�set value for each species was set to its average count on occurrence points.

We trained the full model using stochastic gradient descent (with a learning rate of 0.01 and momentum of 0.8)
on the training dataset using a subsampling rate of 25% for the negative examples. We monitored the negative
log-likelihood of positive examples (presences) on the validation set after each full pass of the training set to assess
the convergence of the training. We stopped when the loss stops decreasing or when 200 epochs have elapsed.

1Python library scikit-multilearn: http://scikit.ml/
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3.3 Embedding dimension and lasso parameter selection

The �rst step in this evaluation was to �nd appropriate values for the hyperparameters of our model. For a species
pool of size m, the embedding dimension d is selected among powers of 2 up to m/2, to improve hyperparameter
search speed. In our case, with m = 82, the embedding dimension is chosen from the set {2, 4, 8, 16, 32}.

When the value of the lasso penalty parameter λ becomes large, some components of the embedding vectors
take extremely small values for all species (below 10−5). These components have no e�ect on the computed
associations. Removing them, shrinks the embeddings to a smaller e�ective dimension, equal to the number of
retained components. In the extreme, very high values of λ lead to e�ective dimension equal to zero, resulting in
a zero association matrix, so that the interaction model is only parameterized by the species o�set counts.

For each value of d, we apply the training procedure described previously with increasing values of λ ∈
{0.01, 0.015, 0.02, 0.025}. We evaluate the resulting models on the test set by computing the e�ective dimension
and the deviance of the predicted counts on positive examples (Fig. 2).

3.4 Habitat suitability

Performances The model predicts habitat suitability with a 87.7 ± 0.17% AUC score for all genera (Fig. 5).
The analysis of environmental variable importance showed the dominance of snow duration followed by zoogenic
disturbances, the site form and aspect. Physical disturbance and slope weights were negligible, probably due to
their correlation with snow.

Relationship between performances and prevalence . We illustrate in Fig. 6 the relationship between the
habitat suitability score (Area under the curve) and the species prevalence. Overall, the performance decreased
with prevalence as would be expected since more prevalence meant larger environmental range, hence more di�culty
to identify suitable habitats.

3.5 Analyzing the functional meaning of plant embeddings

We investigated the functional determinants of the associations diversity. To do so, we compute the mutual in-
formation between the learnt embeddings and the plant traits (reported in [2]). The Mutual Information [4] is
an unbounded symmetric and positive score that measures the amount of information contained in one random
variable about another. It quanti�es the reduction in uncertainty about one random variable given knowledge of
another. Zero mutual information indicates independence.

In general, we expect traits related to dispersal capabilities (seed mass, spread) to impact the prevalence of
the species, consequently increasing or decreasing the opportunity to a�ect other species (interaction probability).
As a result, we expect such traits to have a higher mutual information with e�ect embeddings than with response
embeddings. Conversely, traits related to nutrient uptake and biomass accumulation potential capture competitive
or cooperative abilities of the plant species. Hence, we would expect a high mutual information between these
traits and both responses and e�ects embeddings.

There was a relatively signi�cant contribution of the leaf nitrogen mass and spread to the plants response,
whereas leaf angle was found independent (Fig. 7). The Speci�c Leaf Area contributes signi�cantly to the e�ect
in addition to the Nitrogen mass and on a lesser extent Spread. Height is reported as related to both parameters.

4 Discussion of the o�set choice

4.1 Interplay of o�set choice, niche overlap and carrying capacity

The way we simulated data tended to produce high co-occurrence probabilities due to high niche overlap between
species and large carrying capacities. This was especially true for the largest pool sizes that further leaded to
large biotic contexts. When applied to these simulated data, our proposed inference model detected a number of
spurious weak positive associations. There are two complementary explanations for this. First, a large di�erence
between the chosen o�sets (baseline abundances) and the observed abundances forced the model to compensate
with a strong positive signal. Second, since the biotic contexts were large, hence the large amount of positive
associations, the required positive e�ect had to be distributed amongst the biotic context members, explaining the
low strengths. Conversely, negative associations had to be strong to counterbalance the strong positive signal to
provoke absence where habitat suitability was satis�ed. The simulations with 5 species departed from this rule
because the abiotic �lter outweighed the few associated pairs.
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4.2 Alternative o�set con�gurations

Unquestionably, the o�set choice had an impact on both the interpretation of the associations and their inferred
strength. We chose to �x the o�sets as the average abundance of species over their presence points. This de�nition
a�ords a convenient interpretation for biotic associations as explanatory variables of the deviation from the mean
abundance. However, it averaged many points where species occurred, albeit with low abundance, outside their
abiotic niche mainly due to their assumed unlimited dispersal abilities, leading to underestimated o�set abundances.

To overcome this problem, we could restrict the o�set computation to suitable habitats only providing they are
correctly estimated by the HSM. Alternatively, instead of using a �xed o�set, we could �t the expected abundance
under no biotic in�uence as a �xed bias term, as a location-dependent function of the abiotic environment for each
species [3] or as the output of a population dynamic model [5].
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Fig. 2: Simulation procedure.
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Fig. 3: Design of the simulation experiment. We list the di�erent con�gurations corresponding to combinations
of poolsize, density and directionality. On the right-hand side we indicate the symbols that are used through-
out the simulation experiment to represent combinations of density (sparse:hollow shape/dense:�lled shape) and
directionality (asymmetric:triangle/symmetric:diamond).
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Sim.

ID

Association

types

Pool

size

Density Direction Dimension Deviance of

predictions

1 A 5 / / 2 0.88±0.88
2 A 10 / / 3 0.78±0.54
3 A 20 / / 5 0.83±0.4
4 A+F 5 Sparse Symetric 2 0.7±0.74
5 A+F 5 Dense Symetric 2 0.46±0.59
6 A+F 10 Sparse Symetric 5 0.71±0.6
7 A+F 10 Sparse Asymetric 4 0.63±0.47
8 A+F 10 Dense Symetric 5 0.66±0.4
9 A+F 10 Dense Asymetric 4 0.44±0.43
10 A+F 20 Sparse Symetric 7 0.79±0.32
11 A+F 20 Sparse Asymetric 8 0.75±0.54
12 A+F 20 Dense Symetric 9 0.79±0.35
13 A+F 20 Dense Asymetric 8 0.82±0.76
14 A+C 5 Sparse Symetric 2 1.25±0.88
15 A+C 5 Dense Symetric 2 1.25±1.13
16 A+C 10 Sparse Symetric 5 1.04±0.67
17 A+C 10 Sparse Asymetric 4 0.88±0.61
18 A+C 10 Dense Symetric 5 0.96±0.57
19 A+C 10 Dense Asymetric 4 1.02±0.79
20 A+C 20 Sparse Symetric 5 0.78±0.3
21 A+C 20 Sparse Asymetric 9 0.83±0.45
22 A+C 20 Dense Symetric 7 0.94±0.55
23 A+C 20 Dense Asymetric 8 0.87±0.48
24 A+F+C 5 Sparse Symetric 2 0.69±0.85
25 A+F+C 5 Dense Symetric 2 0.79±0.86
26 A+F+C 10 Sparse Symetric 5 0.67±0.51
27 A+F+C 10 Dense Symetric 5 0.9±0.7
28 A+F+C 20 Sparse Symetric 7 0.78±0.32
29 A+F+C 20 Dense Symetric 9 0.83±0.4

Table 1: Selected embedding dimension and its corresponding deviance over predicted abundances for each simu-
lation.
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λ \k 2 4 8 16 32

E�ective dimension

0.010 2 4 8 16 32
0.020 2 3 5 11 21
0.030 0 0 1 3 0
0.040 0 0 0 0 0

Deviance

0.010 0.300 0.295 0.296 0.290 0.287
0.020 0.302 0.298 0.298 0.295 0.295
0.030 0.579 0.579 0.304 0.305 0.579
0.040 0.579 0.579 0.579 0.579 0.579

AIC

0.010 1148.960 1804.961 3116.962 5740.960 10988.957
0.020 1148.946 1804.952 3116.954 5740.951 10988.947
0.030 1148.704 1804.704 3116.936 5740.920 10988.704
0.040 1148.704 1804.704 3116.704 5740.704 10988.704

Table 2: E�ective dimension (number of non-zero components), positive deviance and Akaike Information Criterion
(AIC) as a function of the embedding size (k) and the lasso penalty parameter λ.
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