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Abstract. A special class of conjugated hydrocarbons known as phenylenes,
which is composed of a special arrangement of six- and four-membered rings. In
particular, any two six-membered rings (hexagons) are not adjacent, and every
four-membered ring(square) is adjacent to a pair of nonadjacent hexagons. If
each hexagon of phenylene is adjacent only to two squares, then the obtained
chain is called the phenylene chain.

The main object of this paper is to determine the expected values of the sum-
connectivity, harmonic, and symmetric division indices for this class of conjugated
hydrocarbons. The comparisons between the expected values of these indices
with respect to the random phenylene chains, have been determined explicitly.
The graphical illustrations have been given in terms of the differences between the
expected values of these indices.
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1. Introduction

There are lot of topological indices in the literature of chemical graph theory.
The first of it kind is the Wiener index [36]. After that most important topological
index is a class of the Zagreb indices [19], molecular connectivity [27, 10].Suppose
Γ = Γ(V,E) is a graph of order n with vertex set V and edge set E. Then the
sum-connectivity(S)[41], harmonic(H)[39] and symmetric division(SDI)[18] indices
are defined as:

(1.1) S(Γ) =
∑

uv∈E(Γ)

1√
du + dv

(1.2) H(Γ) =
∑

uv∈E(Γ)

2

du + dv

(1.3) SDI(Γ) =
∑

uv∈E(Γ)

d2
u + d2

v

dudv

1
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There are plenty of papers outlined the mathematical properties of these indices,
for example one can consults the papers ([2]-[9], [13]) and the references therein.

The phenylenes are a class of conjugated hydrocarbons composed of a special
arrangement of six- and four-membered rings. In particular, any two six-membered
rings (hexagons) are not adjacent, and every four-membered ring(square) is adjacent
to a pair of nonadjacent hexagons. If each hexagon of a phenylene is adjacent only
to two squares, then the obtained chain is called phenylene chain.

The phenylenes exhibit unique physicochemical properties due to their aromatic
and antiaromatic rings. In general,phenylenes, especially phenylene chains have
attracted much attention due to excellent properties. For example it was a great
discovery in the theory of phenylenes that many π-electron properties of a phenylene
are closely related to the analogous properties of a benzenoid molecule, called its
hexagonal squeeze (HS).
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Figure 1. The three types of local arrangements in phenylene

There are unique phenylene chains for n = 1 and n = 2 as shown in Fig.1. More
generally, a phenylene chain with n hexagons can be regarded as a phenylene chain
RPHn, with n−1 hexagons to which a new terminal hexagon n-th has been adjoined
by a square. But, for n ≥ 3, the terminal hexagon can be attached in three different
ways, which results in a random phenylene chain RPH(n, ρ) with n hexagons as a
phenylene chain obtained by stepwise addition of terminal hexagons with probability
ρ, as shown in Fig. 1. A random phenylene chain RPH(n, ρ) with n hexagons as
a phenylene chain can be obtained by stepwise addition of terminal hexagons. At
each step k(= 3, 4, . . . , n) a random selection is made from one of the three possible
constructions:

(a) RPHk−1 → RPH1
k with probability ρ,

(b) RPHk−1 → RPH2
k with probability ρ, or

(c) RPHk−1 → RPH3
k with probability q = 1− 2ρ, with probability.

If, we consider the probability is invariant to the step parameter and constant,
then this process process is a zeroth-order Markov process. If we obtained a random
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phenylene chains which involved only the first or second types of arrangements, then
such a chain will be called all-kinks chains, denoted by Hn and if we obtained a chain
from only third type of arrangements, then such a chain will be called linear and
denoted by Ln for example see Fig. 2. There are few papers which focused on the
random structure of a chemical graphs, see for example [22, 28, 33] and references
therein. It was discovered that the algebraic structure count of a phenylene is equal
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Figure 2. The linear chain and kicks

to the number of Kekule structures of the associated hexagonal squeeze [20, 21].
The energy and Estrada index of phenylenes has been determined in [16].

This unexpected connection between the two classes of polycyclic conjugated
molecules, a lot of study has been carried out in this direction, for example, for
the total π-electron energy[21], Narumi-Katayama index[32], and PI index [14],
Merrifild-Simmons index [11], anti-Kekul and antiforceing number [40], Omega in-
dex and related polynomials [1, 25] The problem of the calculation of the Wiener
index of phenylenes was solved in [26].

Peng and Li [31] obtained the explicit closed formula of the Kirchhoff index and the
number of spanning trees of linear phenylene chains. Chen and Zhang [12] obtained
an explicit analytical expression for the expected value of the Wiener index (resp. the
number of perfect matchings) of a random phenylene chain. Very recently, Li, and
Shuchao[34] obtained the extremal phenylene chains with respect to the coefficients
sum of the permanently polynomial, the spectral radius, the Hosoya index and the
MerrifieldSimmons index. In [38] the extremal phrnylene chains with respect to
Kirchhoff index and degree based topological indices has been characterized. For
more details one may see [15, 17, 23, 24, 29, 30, 35, 37].

In this paper, we extent the study of this class of hydrocarbon for sum-connectivity,
harmonic and symmetric division indices and give their expected values and com-
parison between them.

2. The sum-connectivity, harmonic and symmetric division indices in
random phenylene chains

In this section, the sum-connectivity, harmonic and symmetric division indices in
a random phenylene chain RPHn with n hexagons will be considered. For that, let
RPHn be the chain obtained from RPHn−1 as shown in Fig.1. From the structure
of the RPHn chain, it is easy to see that there exits only (2, 2), (2, 3), and (3, 3)-type
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of edges in RPHn. Thus, in order to compute the sum-connectivity, harmonic and
symmetric division indices of RPHn, one has to determine x22(RPHn), x23(RPHn)
and x33(RPHn) type of edges and for simplicity, we denote xij(RPHn) just by
xij Hence, the sum-connectivity, harmonic and symmetric division indices can be
written as:

(2.1) S(RPHn) =
1

2
x22(RPHn) +

1√
5
x23(RPHn) +

1√
6
x33(RSCn).

(2.2) H(RPHn) = (
1

2
)m22(RPHn) + (

2

5
)x23(RPHn) + (

1

3
)x33(RPHn).

(2.3) SDI(RPHn) = 2x22(RPHn) +
13

6
x23(RPHn) + 2x33(RSCn).

As due to the local arrangements, it is clear RPH(n; ρ) is a random phenylene
chains. So, S(RPH(n; ρ)), H(RPH(n; ρ)) and SDI(RPH(n; ρ)) are random vari-
ables. Let us denote by ES

n = E[S(RPH(n; ρ))], EH
n = E[H(RPH(n; ρ))] and

ESDI
n = E[S(RPH(n; ρ))] the expected values of these indices, respectively.

Theorem 2.1. Let RPH(n; ρ) be a random phenylene chain of length n(≥ 2). Then

ES
n = n

[
2ρ(

1

2
− 2√

5
+

1√
6

) +
4√
5

+
4√
6

]
− 4ρ(

1

2
− 2√

5
+

1√
6

)− 4√
5
− 4√

6
+ 3.

Proof. Since E2 = 3 + 4√
5

+ 4√
6

which is true, thus for n ≥ 3, there are three

possibilities to be considered as shown in Fig.1.

a. If RPHn−1 → RPH1
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.1, we have
S(RPH1

n) = S(RPHn−1) + 1
2

+ 2√
5

+ 5√
6
.

b. If RPHn−1 → RPH2
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.1, we have
S(RPH1

n) = S(RPHn−1) + 1
2

+ 2√
5

+ 5√
6
.

c. If RPHn−1 → RPH3
n with probability 1− 2ρ, then

x22(RPH3
n) = x22(RPHn−1), x23(RPH3

n) = x23(RPHn−1) + 4 and
x33(RPH3

n) = x33(RPHn−1) + 4 and from 2.1, we have
S(RPH1

n) = S(RPHn−1) + 4√
5

+ 4√
6
.

Thus, we obtain

ES
n = ρS(RPH1

n) + ρS(RPH2
n) + (1− 2ρ)S(RPH3

n)

= 2ρ[S(RPHn−1) +
1

2
+

2√
5

+
5√
6

] + (1− 2ρ)[S(RPHn−1) +
4√
5

+
4√
6

]

ES
n = S(RPHn−1) + 2ρ(

1

2
− 2√

5
+

1√
6

) + 4(
1√
5

+
1√
6

).(2.4)
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But E[ES
n ] = ES

n , so apply the operator E on 2.4, we get

(2.5) ES
n = ES

n−1 + 2ρ(
1

2
− 2√

5
+

1√
6

) + 4(
1√
5

+
1√
6

). n > 2

and after solving the recurrence relation 2.5 with initial condition, we get

ES
n = n

[
2ρ(

1

2
− 2√

5
+

1√
6

) +
4√
5

+
4√
6

]
− 4ρ(

1

2
− 2√

5
+

1√
6

)− 4√
5
− 4√

6
+ 3.

�

Theorem 2.2. Let RPH(n; ρ) be a random phenylene chain of length n(≥ 2). Then

EH
n =

n

15
(ρ+ 44)− 2

15
(ρ− 1

2
).

Proof. Since Ea
2 = 89

15
which is true, thus for n ≥ 3, there are three possibilities to

be considered as shown in Fig.1.

1. If RPHn−1 → RPH1
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.2, we have
H(RPH1

n) = H(RPHn−1) + 89
30
.

2. If RPHn−1 → RPH2
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.2, we have
H(RPH1

n) = H(RPHn−1) + 89
30
.

3. If RPHn−1 → RPH3
n with probability 1− 2ρ, then

x22(RPH3
n) = x22(RPHn−1), x23(RPH3

n) = x23(RPHn−1) + 4 and
x33(RPH3

n) = x33(RPHn−1) + 4 and from 2.2, we have
H(RPH3

n) = H(RPHn−1) + 44
15
.

Thus, we obtain

EH
n = ρH(RPH1

n) + ρH(RPH2
n) + (1− 2ρ)H(RPH3

n)

= 2ρ[H(RPHn−1) +
89

30
] + (1− 2ρ)[H(RPHn−1) +

44

15
]

EH
n = H(RPHn−1) + ρ

1

15
+

44

15
.(2.6)

But E[En]H = EH
n , so apply the operator E on 2.6, we get

(2.7) EH
n = EH

n−1 + ρ
1

15
+

44

15
. n > 2

and after solving the recurrence relation 2.7 with initial condition, we get

EH
n =

n

15
(ρ+ 44)− 2

15
(ρ− 1

2
).

�

Theorem 2.3. Let RPH(n; ρ) be a random phenylene chain of length n(≥ 2). Then

ESDI
n = n

[50

3
− 2ρ

3

]
+

4ρ

3
− 14

3
.
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Proof. Since E2 = 86
3

which is true, thus for n ≥ 3, there are three possibilities to
be considered as shown in Fig.1.

a. If RPHn−1 → RPH1
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.3, we have
SDI(RPH1

n) = SDI(RPHn−1) + 49
3
.

b. If RPHn−1 → RPH2
n with probability ρ, then

x22(RPH1
n) = x22(RPHn−1) + 1, x23(RPH1

n) = x23(RPHn−1) + 2 and
x33(RPH1

n) = x33(RPHn−1) + 5 and from 2.3, we have
SDI(RPH2

n) = SDI(RPHn−1) + 49
3

c. If RPHn−1 → RPH3
n with probability 1− 2ρ, then

x22(RPH3
n) = x22(RPHn−1), x23(RPH3

n) = x23(RPHn−1) + 4 and
x33(RPH3

n) = x33(RPHn−1) + 4 and from 2.3, we have
SDI(RPH3

n) = SDI(RPHn−1) + 50
3
.

Thus, we obtain

ES
n = ρSDI(RPH1

n) + ρSDI(RPH2
n) + (1− 2ρ)SDI(RPH3

n)

= 2ρ[SDI(RPHn−1) +
49

3
] + (1− 2ρ)[SDI(RPHn−1) +

50

3
]

ESDI
n = SDI(RPHn−1)− 2ρ

3
+

50

3
.(2.8)

But E[ESDI
n ] = ESDI

n , so apply the operator E on 2.8, we get

(2.9) ESDI
n = ESDI

n−1 −
2ρ

3
+

50

3
. n > 2

and after solving the recurrence relation 2.9 with initial condition, we get

ESDI
n = n

[50

3
− 2ρ

3

]
+

4ρ

3
− 14

3
.

�

We know that the phenylene linear and all-kinks-chains can be obtained for special
value of the probability as Ln = RPH(n; 1/2) phenylene all-kinks-chains Hn =
RPH(n; 0), respectively( see Fig. 2). We can obtain the sum-connectivity, harmonic
and symmetric division indices of these special chains from Theorems 2.1, 2.2 and
2.3 as Corollary, which were computed in [38] as extremal graphs with respect to
these topological indices.

Corollary 2.4. For n ≥ 2, we have

(1) • S(Ln) = ( 4√
5

+ 4√
6
)(n− 1) + 3.

• S(Hn) = (1
2

+ 2√
5

+ 5√
6
)(n− 1) + 5

2
+ 2√

5
− 1√

6
.

(2) • H(Ln) = 44
15

(n− 1) + 3

• H(Hn) = 44
15

(n− 1) + n
30

+ 44
15
.

(3) • SDI(Ln) = 50
3

(n− 1) + 12

• SDI(Hn) = 49
3

(n− 1) + 37
3
.
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3. A comparison between the expected values degree-based
topological indices for random phenylene chains

In this section, we will give analytic comparison between the expected values
for the sum-connectivity, harmonic and symmetric division indices for a random
phenylene chains with the same probabilities ρ. The the comparison between the
expected values of these indices for different values of the probability ρ has been
given in the following tables 1, 2 and 3. It is clear that symmetric difference index
index is always greater that the other two indices namely, the harmonic index and
sum-connectivity index.

Table 1. Expected values of indices for ρ = 1/3

n EH ES ESID

3 8.8889 9.8523 45.1111

4 11.8444 13.2840 61.5556

5 14.8000 16.7150 78.0000

6 17.7556 20.1461 94.4444

7 20.7111 23.5772 110.8889

8 23.6667 27.0082 127.3333

9 26.6222 30.4393 143.7778

10 29.5778 33.8703 160.2222

Table 2. Expected values of indices for ρ = 1/5

n EH ES ESID

3 8.8800 9.8492 45.2000

4 11.8267 13.2766 61.7333

5 14.7733 16.7040 78.2667

6 17.7200 20.1314 94.8000

7 20.6667 23.5587 111.3333

8 23.6133 26.9861 127.8667

9 26.5600 30.4135 144.4000

10 29.5067 33.84086 160.9333
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Table 3. Expected values of indices for ρ = 1/100

n EH ES ESID

10 29.4053 33.7988 161.9467

20 58.7453 68.0200 328.5467

30 88.0853 102.2413 495.1467

40 117.4253 136.4626 661.7467

50 146.7653 170.68380 828.3467

60 176.1053 204.9050 994.9467

70 205.4453 239.1263 1161.5467

80 234.7853 273.3475 1328.1467

90 264.1253 307.5688 1494.7467

100 293.4653 341.7899 1661.3467

The graphical profile of the comparison is given in Fig.3 and Fig. 4 which suggests
that symmetric division index is always grater than the harmonic index and sum-
connectivity index for any n.

0

0.2

0.4

020406080100

0

200

ES

EH

Figure 3. Comparison between expected values of S and H indices
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Figure 4. Difference between expected values of SDI and S indices

Now, we give the analytic proof that symmetric division index is always grater
than the harmonic index and sum-connectivity index for any n with the same prob-
ability ρ.

Theorem 3.1.

E[S(RPH(n; ρ))] > E[H(RPH(n; ρ))] ∀ n ≥ 2

Proof. It is easy to see that the statement is true for n = 2. Thus, for n > 2, Let us
denote a = 1

2
− 2√

5
+ 1√

6
and b = 4( 1√

5
+ 1√

6
), so, by applying the Theorems 2.1 and

2.2, we get

E[S(RPH(n; ρ))]− E[H(RPH(n; ρ))]

=
{
n(2aρ+ b)− 4aρ− b+ 3

}
−
{ n

15
(ρ+ 44)− 2

15
(ρ− 1

2
)
}
.

=
[
2aρ+ b− ρ

15
− 44

15

]
n+

2ρ

15
− 4aρ+ 3− b− 1

15

=
1

15
[ρ(30a− 1)(n− 2) + (15b− 44)(n− 1)]

> 0 ∵ n > 2, 30a− 1 > 0 and 15b− 44 > 0.

�

Theorem 3.2.

E[SDI(RPH(n; ρ))] > E[S(RPH(n; ρ))] ∀ n ≥ 2

Proof. It is easy to see that the statement is true for n = 2. Thus, for n > 2, Let us
denote a = 1

2
− 2√

5
+ 1√

6
and b = 4( 1√

5
+ 1√

6
), so, by applying the Theorems 2.1 and

2.3, we get

E[SDI(RPH(n; ρ))]− E[S(RPH(n; ρ))]
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=
{n

3
(50− 2ρ) +

4ρ

3
− 14

3

}
−
{
n(2aρ+ b)− 4aρ− b+ 3

}
.

=
1

3

[
(50− 2ρ− 6aρ− 3b)n+ 4ρ− 14 + 12aρ+ 3b− 9

]
=

1

3
[(50− 3b)(n− 1)− 2ρ(1 + 3a)(n− 2)]

> 0 ∵ n > 2, 50− 3b > 2ρ(1 + 3a) ∀ 0 ≤ ρ ≤ 1/2.

�

From Theorems 3.1 and 3.2, we have the following corollary:

Corollary 3.3. For n ≥ 2, we have

E[SDI(RPH(n; ρ))] > E[S(RPH(n; ρ))] > E[H(RPH(n; ρ))] ∀ n ≥ 2
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